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Reliable H∞ Control on Stochastic Delayed Markovian Jump System with
Asynchronous Jumped Actuator Failure
Wenpin Luo, Jun Yang* � , and Xinzhi Liu

Abstract: This paper studies the reliable H∞ control on stochastic delayed Markovian jump systems (SDMJSs) with
asynchronous jumped actuator failure and uncertain transition rates (TRs). It is assumed that the actuator failure
occurs randomly under a Markov process with its jumping mode different from the system’s one. A generalized
functional Itô’s formula for the closed-loop SDMJSs with mixed asynchronous Markovian jump modes (AMJMs)
is successfully established. By the generalized functional Itô’s formula and the mixed-mode-dependent Lyapunov
functionals, a sufficient delay-dependent condition of the reliable H∞ controller design for the SDMJSs with mixed
AMJMs is proposed via matrix manipulation and a relaxation method. Finally, an example on VTOL (vertical
take-off and landing) helicopter system is given to demonstrate the feasibility and effectiveness of the presented
controller design scheme.

Keywords: Asynchronous jumped actuator failure, functional Itô’s formula, Lyapunov functionals, reliable H∞

control, stability analysis, stochastic delayed Markovian jump systems (SDMJSs).

1. INTRODUCTION

In the past two decades, the stochastic delayed systems
(SDSs) have attracted great attention due to their wide
range of significant applications in economics, finance,
physics, biology, engineering and so on [1,2]. On the other
hands, it is widely acknowledged that time delays in SDSs
may cause instability or oscillation, which would be harm-
ful to the applications of SDSs. Therefore, it is of great
significance to study the stability and stabilization issues
of SDSs, and a large number of results have been obtained
on these issues, see, e.g. [1–3] and references therein.
For the present study, Razumikhin method and Lyapunov
functional are two primary techniques for stability anal-
ysis for SDSs [1–3]. However, different from its deter-
ministic counterpart, the stochastic Razumikhin method
has limited success [4]. By specific Lyapunov functionals,
[2] and [5] examined stability and related issues of SDSs,
but fundamental stability theory related to Lyapunov func-
tionals for SDSs has not yet been fully developed. Further-
more, the solution processes to SDSs are no longer Marko-
vian due to the existence of time delay which has defied
bona fide operators as well as functional Itô’s formulas in

the past. Recently, Dupire extended Itô’s formula to the
functional circumstance via path-wise functional deriva-
tives in [6], which was subsequently further developed to
the case of càdlàg semi-martingales in [7]. This functional
Itô’s formula ensures us to achieve bona fide operators for
SDSs and substantially ease the difficulties in using Lya-
punov functionals to investigate stability and related is-
sues for a much larger class of SDSs including SDSs with
Markovian switching. Most recently, based on functional,
Itô’s formula and degenerate Lyapunov functional [4] es-
tablished the moment and almost sure exponential stabil-
ity criteria for SDSs, while [8] studied almost sure and
Lp stability of SDSs with regime-switching by functional
Itô’s formula.

Meanwhile, since the Markov jump systems (MJSs) can
be applied to describe numerous practical systems with
structures subject to abrupt changes such as fluctuations
in financial markets, sudden environmental changes and
component failures [3, 9], researchers have paid consid-
erable attention to analysis of the stability, stabilization,
filtering and fault detection on stochastic delayed Marko-
vian jump systems (SDMJSs) during the last two decades
[3, 10–16]. On the other hand, for the dynamics of MJSs,
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it is generally difficult to obtain precise values of the tran-
sition rates (TRs) because they are determined by experi-
mental tests or numerical simulations [17, 18]. Therefore,
the uncertainty of TRs is an important issue in the liter-
ature. There are mainly three different types of uncertain
TRs, i.e., element-wise uncertainty, polytopic uncertainty
and general uncertainty. For the element-wise uncertainty,
each element of transition rate matrix (TRM) with known
error bound is assumed in practice [18–21]. For the poly-
topic uncertainty, the TRM is set to be in a convex hull
subject to known vertices [22, 23]. For the general uncer-
tainty, each TR is assumed to be (partially) unknown or
only its estimate to be known [24–29]. It’s noted that the
TRs can be measured in practice, thus their estimate val-
ues and estimate error bounds can be given [18]. There-
fore, in this paper, we mainly concern the element-wise
uncertainty in the TRs of SDMJSs.

As is well-known, for the robust control of MJSs sub-
ject to uncertain TRs, how to appropriately bind the un-
certain terms is a significant issue [18, 21]. By consid-
ering the relationships among the TRs, [20] provided a
controller design scheme for the MJSs subject to uncer-
tain TRs in terms of coupling LMIs. In [21], a tailored
technique was proposed to bind the uncertain terms for
reducing conservatism of the criteria on robust stabiliza-
tion of MJSs with uncertain TRs. By the cone comple-
mentary linearization method, the finite-time stability and
stabilization for stochastic MJSs subject to generally un-
certain TRs were addressed in [28]. In [27], the stabil-
ity and stabilization for singular semi-MJSs with gener-
ally uncertain TRs was studied. Recently, by applying the
variable elimination technique, [29] derived the necessary
and sufficient conditions of dynamic output-feedback sta-
bilization for singular MJSs with partly unknown TRs.

Moreover, it’s worth mentioning that the actuator fail-
ure can degrade performance of the closed-loop system
since it is a major source of system instability. Thus
the analysis and synthesis of control for MJSs subject
to actuator failure have received considerable attention
over recent decades [18, 30–33]. In practical applications,
the actuator failure can usually be caused by some spe-
cific stochastic events [18, 33, 34], such as the computer-
controlling actuator on a robotic mission which may be
randomly hit by cosmic ray [18], the stochastic fault of
multi-thrusters on the chaser spacecraft [34], the attack-
angle transducer on the aircraft, and the digital flight con-
trol system [33]. The evolution of these jumped actuator
failures can be generally modeled as Markovian chains
[18, 33, 35]. Therefore, for the MJSs in the presence of
asynchronous stochastic jumped actuator fault, it is ratio-
nal to assume that the actuator failure is governed by a
Markovian process with a different jumping mode from
the system jumping mode [18]. Then, the closed-loop sys-
tem can be represented as a mixed-mode MJSs subject
to asynchronous jumped failure. In [36], the H∞ estima-

tion for discrete-time MJSs subject to time-varying tran-
sition probabilities has been investigated. [37] studied the
reliable control for delayed systems with actuator satura-
tion and asynchronous stochastic failure whose fault factor
obeys certain probabilistic distribution. For the discrete-
time stochastic MJS, [38] designed an asynchronous l2-l∞
filter such that the filtering error system is in the form of
a stochastic mixed-mode MJS. For continuous-time lin-
ear semi-Markov jumping systems, the asynchronous H∞

control is addressed in [39], where the asynchronous con-
troller is governed by a stochastic process relating to the
system’s mode via conditional probability. More recently,
[18] investigated the reliable H∞ control of linear MJSs
with uncertain TRs, actuator saturation and asynchronous
jumping actuator failure.

However, to the best of our knowledge, owing to the
complexity and mathematical difficulty, it lacks corre-
sponding results in the existing literature on the reliable
H∞ control of SDMJSs subject to uncertain TRs and asyn-
chronous jumping actuator failure that is governed by a
Markovian process with a different jumping mode from
the system’s one. This motivates our present work and the
aim is to close this gap via proposing a design scheme of
asynchronous reliable H∞ control on SDMJSs with uncer-
tain TRs by applying functional Itô’s formula. Compared
with the previous results, the main contributions of this ar-
ticle are as follows:

(i) By representing the mixed Markovian processes as
two Poisson integrals, a generalized functional Itô’s for-
mula for the closed-loop SDMJSs with mixed AMJMs is
established.

(ii) Based on the generalized functional Itô’s formula
and mixed-mode-dependent Lyapunov functionals, the re-
liable H∞ control problem on SDMJSs subject to uncer-
tain TRs and asynchronous jumping actuator failure is
addressed. Then, the mixed-mode-dependent controller
gains can be constructed with minimizing H∞ performance
as an objective under LMIs constraints.

(iii) A relaxation method is presented to appropriately
bind the uncertain terms related to TRs for reducing con-
servatism.

The rest of this article is organized as follows. Section
2 states necessary preliminaries and problems while Sec-
tion 3 presents the main results. A numerical example and
a concluding remark are given in Sections 4 and 5, respec-
tively.

Notations: Unless otherwise stated, the following no-
tations are adopted throughout this paper. Let R =
(−∞,+∞), R+ = [0,+∞), Rn be the n-dimensional Eu-
clidean space and {ei}n

i=1 be the canonical basis in Rn. | · |
represents the Euclidean norm. For a matrix A, let ai j be
its (i, j)-th component and denote A = [ai j]. Let the su-
perscript “T” denote matrix transposition, and “*" denote
the symmetry element of a matrix. If A is a square matrix,
He{A} := A+AT and tr(A) denotes its trace. For square
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matrices A and B, A > B (A ≥ B) denotes that A− B is
positive definite (semidefinite). Let L2[0,∞) be the space
of square-integrable vector functions on [0,∞). Denote by
(Ω,F ,{Ft}t≥0,P) a complete probability space with fil-
tration {Ft}t≥0 satisfying the usual conditions (i.e., it is
right continuous with F0 containing all P-null sets). For
τ > 0, let C([−τ,0];Rn) denote the family of all contin-
uous functions ϕ from [−τ,0] to Rn equipped with the
norm ‖ϕ‖ = sup−τ≤s≤0 |ϕ(s)|. Denote by D([−τ,0];Rn)
the family of all càdlàg (i.e., right continuous with left
limits) functions ϕ from [−τ,0] to Rn endowed with the
Skorokhod topology. Cb

F0
([−τ,0];Rn) stands for the fam-

ily of all bounded F0-measurable, C([−τ,0];Rn)-valued
random variables. For an Rn-valued càdlàg stochastic pro-
cess x(t) on [−τ,∞), let xt = {x(t +θ) :−τ ≤ θ ≤ 0} for
t ≥ 0, then xt represents a D([−τ,0];Rn)-valued stochastic
process. E(x) stands for the mathematical expectation of a
random variable x. Let 1A(x) be the indicator function of
a subset A of its domain.

2. PRELIMINARIES AND PROBLEM
STATEMENT

Consider the following SDMJSs:

dx(t) = [Aσ(t)x(t)+Ad
σ(t)x(t− τ)+Bσ(t)u(t)

+Cσ(t)ω(t)]dt

+[Dσ(t)x(t)+Dd
σ(t)x(t− τ)

+Eσ(t)ω(t)]dB(t), (1a)

z(t) = Gσ(t)x(t)+Gd
σ(t)x(t− τ)+Fσ(t)u(t)

+Hσ(t)ω(t), (1b)

for t ∈ R+ with initial condition

x0 = φ ∈Cb
F0
([−τ,0];Rn), σ(0) = σ0, (2)

where x(t) ∈Rn, z(t) ∈Rm, u(t) ∈Rp are respectively the
state, control output and control input; τ ≥ 0 is the time
delay and ω(t) ∈ Rq is the disturbance input belonging to
L2[0,∞); B(t) is a scalar Brownian motion defined on a
complete probability space (Ω,F ,{Ft}t≥0,P); {σ(t)}t≥0

is a right-continuous Markovian chain on the probabil-
ity space (Ω,F ,{Ft}t≥0,P) with a finite state space S =
{1, · · · ,s} and transition rate matrix (TRM) [λi j] (i, j ∈ S).
The evolution of the Markovian process {σ(t)}t≥0 is gov-
erned by the following transition probabilities:

P{σ(t +δ ) = j | σ(t) = i}

=

{
λi jδ +o(δ ), j 6= i,
1+λiiδ +o(δ ), j = i,

(3)

where limδ→0(o(δ )/δ ) = 0; λi j ≥ 0 is the transition
rate (TR) from mode i at time t to mode j at time

t + ∆ for j 6= i, and λii = −∑ j 6=i λi j; The system matri-
ces Aσ(t),Ad

σ(t), · · · ,Hσ(t) are known with appropriate di-
mensions, which will be denoted by Ai,Ad

i , · · · ,Hi, respec-
tively, for each σ(t) = i ∈ S.

Assumption 1: It is assumed that the unexpected actu-
ator failures with known mode-dependent actuator gains
occur randomly and independently under a Markovian
jumping mode that is different from the system’s one.

The asynchronous jumped actuator failure model is
given as follows:

uF(t) = Ξs(t)u(t), (4)

where Ξs(t) = diag
{

ς 1
s(t),ς

2
s(t), · · · ,ς

p
s(t)

}
with ς 1

s(t), · · · ,ς
p
s(t)

being the failure scale factors of each channel. {s(t)}t≥0
is another right-continuous Markovian chain on the prob-
ability space (Ω,F ,{Ft}t≥0,P) with a finite state space
S f = {1, · · · ,r} and TRM [π

σ(t)
kl ] (k, l ∈ S f ,σ(t) ∈ S).

The evolution of the asynchronous Markovian process
{s(t)}t≥0 is governed by the following transition proba-
bilities [18]:

P{s(t +δ ) = l | s(t) = k}

=

{
π

σ(t)
kl δ +o(δ ), l 6= k,

1+π
σ(t)
kk δ +o(δ ), l = k,

(5)

where the probability P{s(t +δ ) = l| s(t) = k} is as-
sumed to depend on the current system mode σ(t) [18].
π

σ(t)
kl ≥ 0 is the TR from mode k at time t to mode l at

time t +∆ for k 6= l, and π
σ(t)
kk =−∑k 6=l π

σ(t)
kl .

Assumption 2: Suppose that B(t) is independent of
σ(t) and s(t). It is also assumed that {σ(t)}t≥0 is inde-
pendent on the σ -algebra given by σ (s(θ),0≤ θ < t).

Assumption 3: Assume that the values of elements in
the TRMs [λi j] and [π i

kl ] are uncertain, and only their ad-
missible uncertainty domains are known [18, 21]:

DΛ=
{

Λ= Λ̂+∆Λ : |∆λi j|≤δi j ≤ |λ̂i j|,δi j≥0
}
,

Di
Π={Πi=Π̂

i+∆Π
i : |∆π

i
kl |≤θ

i
kl < |π̂ i

kl |,θ i
kl≥0},

(6)

where i, j ∈ S, k, l ∈ S f and

λ̂ii =−∑
j 6=i

λ̂i j,∆λii =−∑
j 6=i

∆λi j,

π̂
i
kk =−∑

l 6=k
π̂

i
kl ,∆π

i
kk =−∑

l 6=k
∆π

i
kl , (7)

in which λ̂i j (π̂ i
kl) and ∆λi j (∆π i

kl) denote the estimate
value and the estimate error value of the TR λi j (π i

kl), re-
spectively. δi j (θ i

kl) is the upper bound of |∆λi j| (|∆π i
kl |).

Moreover, the values of λ̂i j,δi j, π̂
i
kl and θ i

kl are known a
priori.

Remark 1: For the ι th (ι = 1,2, . . . , p) channel, the ran-
dom variable ς ι

s(t) in (4) represents its failure scale factor,
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which indicates that the actuator fault is governed by the
asynchronous Markov process {s(t)}t≥0. Specifically, for
each failure mode s(t) = k ∈ S f , when ς ι

k = 1 (ς ι

k = 0), the
ι th channel is normal (outage); when 0 < ς ι

k < 1, it corre-
sponds to the case of partial degradation of the ι th chan-
nel. Moreover, when S f = {1}, the asynchronous jumping
actuator fault (4) becomes the classic type investigated in
[20,21,40–43], i.e., the fault model in (4) is more general.

We adopt the following mixed mode-dependent state
feedback controller for SDMJSs (1) subject to asyn-
chronous jumping actuator failure (4)

u(t) = K (σ(t),s(t))x(t), (8)

where K (σ(t),s(t)) ∈ Rp×n are controller gains to be de-
signed.

By the controller (8), for each σ(t) = i ∈ S,s(t) = k ∈
S f , the closed-loop system of (1) can be written as

dx(t) = f (xt , t, i,k)dt +g(xt , t, i,k)dB(t), (9a)

z(t) = (Gi +FiΞkKik)x(t)+Gd
i x(t− τ)+Hiω(t),

(9b)

where f (xt , t, i,k) = (Ai + BiΞkKik)x(t) + Ad
i x(t − τ) +

Ciω(t) and g(xt , t, i,k) = Dix(t)+Dd
i x(t− τ)+Eiω(t).

Remark 2: The mixed mode-dependent state feed-
back controller (8) that depends not only on the system’s
jumping mode but also on the actuator failure’s asyn-
chronous jumping mode is more general and applicable
in the practice. To overcome the design challenges of the
mixed mode-dependent controller (8), the mixed mode-
dependent Lyapunov functionals and the generalized func-
tional Itô’s formula developed in Lemma 1 will be appro-
priately adopted.

Definition 1 [44, 45]: The nominal system (1) is said
to be stochastically stabilizable if, when ω(t) ≡ 0, there
exists a control law (8), such that

lim
T→∞

E
{∫ T

0
|x(t)|2dt| φ ,σ0

}
< ∞, (10)

for all initial mode σ0 ∈ S and finite initial condition
φ(θ) ∈ Rn defined on [−τ,0].

Definition 2 [18, 40]: Given the control law (8) and a
scalar γ > 0, the nominal system (1) is said to be stochas-
tically stabilizable with γ-disturbance attenuation, if (10)
holds and the control output z(t) satisfies

E
{∫ T

0
zT(t)z(t)dt

}
< γ

2E
{∫ T

0
ω

T(t)ω(t)dt
}
,

(11)

for zero initial condition and all admissible disturbance
input ω(t) ∈ L2[0,∞) and T > 0.

As is known that the continuous-time Markovian pro-
cess {σ(t)}t≥0 ({s(t)}t≥0) with its TRM Λ = [λi j] (Πi =
[π i

kl ], i ∈ S) can be rewritten as a stochastic integral with

respect to (w.r.t.) corresponding Poisson random mea-
sure [3]. In fact, for i 6= j ∈ S (k 6= l ∈ S f ), denote by
∆i j (∆i

kl) the consecutive (w.r.t. the lexicographic order-
ing on S ×S (S f ×S f )) left-closed right-open intervals
of the real line with length λi j (π i

kl). Let ρ : S ×R→ R

and ζ : S f × R → R be ρ(i,z) =

{
j− i, if z ∈ ∆i j

0, otherwise,

and ζ (k,v) =

{
l− k, if v ∈ ∆i

kl

0, otherwise,
respectively, where i,

j ∈ S , k, l ∈ S f . Then, {σ(t)}t≥0 and {s(t)}t≥0 can be
respectively represented as the following two Poisson in-
tegrals:

σ(t) = σ0 +
∫ t

0

∫
R

ρ(σ(θ−),z)ν(dθ ,dz), (12)

s(t) = s0 +
∫ t

0

∫
R

ζ (s(θ−),v)µ(dθ ,dv), (13)

where ν(dt,dz) (µ(dt,dv)) is a Poisson random measure
with intensity dzdt (dvdt). Let ν̃(dt,dz) = ν(dt,dz)−
dzdt (µ̃(dt,dv) = µ(dt,dv) − dvdt), then ν̃(dt,dz)
(µ̃(dt,dv)) is a martingale measure [46, 47].

Next, we will introduce the functional Itô’s formula for
the solution of (9). For small enough δ ≥ 0, η ∈ Rn and
each ϕ ∈ D([−τ,0];Rn), the horizontal extension ϕδ and
vertical perturbation ϕη of ϕ are defined as [6, 7, 48]:

ϕδ (θ) = ϕ(θ +δ )1[−τ,−δ ](θ)+ϕ(0)1(−δ ,0](θ),

∀θ ∈ [−τ,0],

ϕ
η(θ) = ϕ(θ)+η1{0}(θ), ∀ θ ∈ [−τ,0].

Let C2,1(D([−τ,0];Rn)×R+×S×S f ;R+) be the fam-
ily of nonnegative real-valued functionals which are con-
tinuously twice differentiable w.r.t. x and once differ-
entiable w.r.t. t. For a given functional V (ϕ, t, i,k) ∈
C2,1(D([−τ,0];Rn)×R+ ×S × S f ;R+), we define two
kinds of path-wise derivatives for the non-anticipative
functional V [7], i.e., the horizontal derivative, which is
a derivative w.r.t. time, and the vertical derivative, which
is a derivative w.r.t. the current value of underlying path x
[6, 7]:

DtV (ϕ, t, i,k) := lim
δ→0+

V (ϕδ , t +δ , i,k)−V (ϕ, t, i,k)
δ

,

∇xV (ϕ, t, i,k) := (∂1V (ϕ, t, i,k), · · · ,∂nV (ϕ, t, i,k)),

∂pV (ϕ, t, i,k) := lim
h→0

V (ϕhep , t, i,k)−V (ϕ, t, i,k)
h

,

∇xxV (ϕ, t, i,k) := (∂pqV (ϕ, t, i,k))n×n,

∂pqV (ϕ, t, i,k) := lim
h→0

∂qV (ϕhep , t, i,k)−∂qV (ϕ, t, i,k)
h

,

where p, q = 1, · · · , n.
In what follows, we first establish a generalized func-

tional Itô’s formula (Lemma 1) for the closed-loop system
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(9) by applying the well-known functional Itô’s formula
for càdlàg semi-martingale, and its proof will be given in
the Appendix for the sake of readability.

Lemma 1: Let (x(t),σ(t),s(t)) be the jointly Marko-
vian process defined by (9), (12) and (13), and V ∈
C2,1(D([−τ,0];Rn)×R+×S ×S f ;R+). Then, for t > 0,
with probability 1, we have

V (xt , t,σ(t),s(t)) =V (x0,0,σ0,s0)+M(t)

+
∫ t

0
LV (xθ ,θ ,σ(θ),s(θ))dθ ,

(14)

where

LV (xt , t, i,k)

=DtV (xt , t, i,k)+∇xV (xt , t, i,k) f (xt , t, i,k)

+
1
2

tr
{

gT(xt , t, i,k)∇xxV (xt , t, i,k)g(xt , t, i,k)
}

+
s

∑
j=1

λi jV (xt , t, j,k)+
r

∑
l=1

π
i
klV (xt , t, i, l),

∀ i ∈ S,k ∈ S f ,

andM(t) is a martingale given by

M(t)

=
∫ t

0
∇xV(xθ,θ,σ(θ),s(θ))g(xθ,θ,σ(θ),s(θ))dB(θ)

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−)+ρ(σ(θ−),z),s(θ−))

−V (xθ− ,θ ,σ(θ−),s(θ−))]ν̃(dθ ,dz)

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−),s(θ−)+ζ (s(θ−),v))

−V (xθ− ,θ ,σ(θ−),s(θ−))]µ̃(dθ ,dv). (15)

3. MAIN RESULTS

In this section, based on the generalized functional
Itô’s formula (Lemma 1) and mixed-mode-dependent Lya-
punov functionals, our major purpose is to design the con-
troller in the form of (8) for SDMJSs (1) with uncertain
TRs and asynchronous jumped fault (4), such that the
closed-loop SDMJSs (9) is stochastically stable with min-
imum H∞ performance.

Theorem 1: For the closed-loop SDMJSs (9) subject to
asynchronous jumped actuator faults (4), given the mixed-
mode-dependent control gains Kik, TRMs [λi j] and [π i

kl ],
if there exist a scalar γ > 0, symmetric matrices Pik > 0,
Q > 0 and Z > 0 with appropriate dimensions, such that
for any (i,k) ∈ S ×S f ,

0 > Φik

=



Φ11
ik PikAd

i PikCi Z DT
i Pik τDT

i Z Φ17
ik

∗ Φ22
ik 0 0 (Dd

i )
TPik τ(Dd

i )
TZ (Gd

i )
T

∗ ∗ −γ2I 0 ET
i Pik τET

i Z HT
i

∗ ∗ ∗ −Z 0 0 0
∗ ∗ ∗ ∗ −Pik 0 0
∗ ∗ ∗ ∗ ∗ −τZ 0
∗ ∗ ∗ ∗ ∗ ∗ −I


,

(16)

where Φ11
ik = He{Pik(Ai +BiΞkKik)}+Q−Z+∑

s
j=1 λi jPjk

+∑
r
l=1 π i

klPil , Φ17
ik = (Gi +FiΞkKik)

T and Φ22
ik = −Q+Z,

then the closed-loop system (9) is stochastically stable
with H∞ performance γ .

Proof: Construct the following mixed mode-dependent
Lyapunov functionals for the closed-loop system (9):

V (xt , t,σ(t),s(t))

= xT(t)P(σ(t),s(t))x(t)+
∫ t

t−τ

xT(θ)Qx(θ)dθ

+
∫ 0

−τ

∫ t

t+v
gT(xθ ,θ ,σ(θ),s(θ))Zg(xθ ,θ ,σ(θ),

s(θ))dθdv. (17)

By the generalized functional Itô’s formula (Lemma 1),
along the trajectory of the system (9) with ω(t) = 0, for
all (i,k) ∈ S ×S f , we have

LV (xt , t, i,k) =2xT(t)Pik[(Ai +BiΞkKik)x(t)

+Ad
i x(t−τ)]+gT(xt, t, i,k)Pikg(xt, t, i,k)

+ xT(t)Qx(t)− xT(t− τ)Qx(t− τ)

+
s

∑
j=1

λi jxT(t)Pjkx(t)+
r

∑
l=1

π
i
klx

T(t)Pilx(t)

+ τgT(xt , t, i,k)Zg(xt , t, i,k)

−
∫ t

t−τ

gT(xθ ,θ ,σ(θ),s(θ))

×Zg(xθ ,θ ,σ(θ),s(θ))dθ . (18)

Integrating (9a) on both sides from t− τ to t, we have

x(t)− x(t− τ)

=
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ

+
∫ t

t−τ

g(xθ ,θ ,σ(θ),s(θ))dB(θ), t ≥ τ. (19)

By Itô isometry and (19), it follows that

E(
∫ t

t−τ

gT(xθ,θ,σ(θ),s(θ))Zg(xθ,θ,σ(θ),s(θ))dθ)

= E((
∫ t

t−τ

g(xθ ,θ ,σ(θ),s(θ))dB(θ))TZ

× (
∫ t

t−τ

g(xθ ,θ ,σ(θ),s(θ))dB(θ)))
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= E((x(t)−x(t−τ)−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ)T

×Z(x(t)−x(t−τ)−
∫ t

t−τ

f (xθ,θ,σ(θ),s(θ))dθ))

= E((x(t)−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ)TZ(x(t)

−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ)−2x(t−τ)TZ(x(t)

−
∫ t

t−τ

f (xθ,θ,σ(θ),s(θ))dθ)+x(t−τ)TZx(t−τ)).

(20)

By using Lemma 1 in [49] and (19), we obtain

E(−2x(t− τ)T Z(x(t)−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ))

= E(−2x(t− τ)T Z(x(t− τ)

+
∫ t

t−τ

g(xθ ,θ ,σ(θ),s(θ))dB(θ)))

= E(−2x(t− τ)T Zx(t− τ)). (21)

Substituting (21) into (20) gives

E(
∫ t

t−τ

gT(xθ ,θ ,σ(θ),s(θ))

×Zg(xθ ,θ ,σ(θ),s(θ))dθ)

= E((x(t)−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ)T

×Z(x(t)−
∫ t

t−τ

f (xθ ,θ ,σ(θ),s(θ))dθ)

− xT(t− τ)Zx(t− τ)). (22)

By (18) and (22), we get

ELV (xt , t, i,k)≤ EXT(t)Φ̌ikX(t), (23)

where X(t)=
[
xT(t), xT(t− τ),

∫ t

t−τ

f T(xθ ,θ ,σ(θ),s(θ))

dθ

]T
and Φ̌ik =

 Φ11
ik PikAd

i Z
∗ Φ22

ik 0
∗ ∗ −Z

+
 DT

i
(Dd

i )
T

0

(Pik

+τZ)×

 DT
i

(Dd
i )

T

0

T

. On the other hand, it follows from

(16) that
Φ11

ik PikAd
i Z DT

i Pik τDT
i Z

∗ Φ22
ik 0 (Dd

i )
TPik τ(Dd

i )
TZ

∗ ∗ −Z 0 0
∗ ∗ ∗ −Pik 0
∗ ∗ ∗ ∗ −τZ

< 0. (24)

Applying Schur complement, (24) implies that Φ̌ik < 0,
thus there exists a constant β > 0 such that Φ̌ik < −β I.
This toghther with Dynkin’s formula, Fubini’s theorem
and (23) gives that

E {V (xT ,T,σ(T ),s(T ))}−E {V (φ ,0,σ0,s0)}

= E
{∫ T

0
LV (xθ ,θ ,σ(θ),s(θ))dθ

}
=
∫ T

0
ELV (xθ ,θ ,σ(θ),s(θ))dθ

≤−βE
{∫ T

0
|x(θ)|2dθ | φ ,σ0

}
, (25)

which implies

lim
T→∞

E
{∫ T

0
|x(θ)|2dθ | φ ,σ0

}
≤ 1

β
E {V (φ ,0,σ0,s0)}< ∞. (26)

Thus, it follows from (26) and Definition 1 that the closed-
loop system (9) with ω(t) = 0 is stochastically stable.

Moreover, for the system (9) with nonzero ω(t) ∈
L2[0,∞], define JT ,E

{∫ T
0

[
zT(t)z(t)− γ2ωT(t)ω(t)

]
dt
}
.

Under zero initial condition, it follows from Dynkin’s for-

mula that EV (x(T ),T,σ(T ),s(T ))=E
{∫ T

0
LV (xt , t,σ(t),

s(t))dt
}
. Then, for any nonzero ω(t) ∈ L2[0,∞], by Fu-

bini’s theorem, we have

JT =E
∫ T

0
[zT(t)z(t)− γ

2
ω

T(t)ω(t)

+LV (xt, t,σ(t),s(t))]dt−EV (x(T ),T,σ(T ),s(T ))

≤E
{∫ T

0
X̄T(t)Φ̄ikX̄(t)dt

}
,

where

X̄(t),
[
xT(t),xT(t− τ),ωT(t),

∫ t

t−τ

f T(xθ ,θ ,σ(θ),

s(θ))dθ

]T
,

and

Φ̄ik =


Φ11

ik PikAd
i PikCi Z

∗ −Q+Z 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −Z



+


DT

i
(Dd

i )
T

ET
i

0

(Pik + τZ)


DT

i
(Dd

i )
T

ET
i

0


T

+


Φ17

ik
(Gd

i )
T

HT
i

0




Φ17
ik

(Gd
i )

T

HT
i

0


T

.

By Schur complement, (16) implies that Φ̄ik < 0. There-
fore, for all T > 0, ω(t) ∈ L2[0,∞), this gives that JT < 0.
According to Definition 1 and Definition 2, the system (9)
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is stochastically stable with H∞ performance γ . This com-
pletes the proof. �

Remark 3: In Theorem 1, the matrix inequalities (16)
are difficult to be solved due to the existence of uncertainty
in TRs. Therefore, the following theorem will develop a
relaxation method to obtain a finite number of solvable
LMIs from (16).

Theorem 2: For the closed-loop SDMJSs (9) with un-
certain TRs and asynchronous jumped actuator faults (4),
given the mixed-mode-dependent control gains Kik, the
estimated TRs λ̂i j, π̂ i

kl and their estimate errors δi j ≥
0, θ i

kl ≥ 0, if there exist a scalar γ > 0, symmetric ma-
trices Pik > 0, Q > 0, Z > 0 and matrices Vi jk ≥ 0,Ṽikl ≥
0,Tik, T̃ik (i, j ∈ S,k, l ∈ S f ) with appropriate dimensions,
such that for any (i,k) ∈ S ×S f ,

Pjk−Tik ≤Vi jk, ∀ j ∈ S, j 6= i, (27)

Pil− T̃ik ≤ Ṽikl , ∀l ∈ S f , l 6= k, (28)

Pik−Tik ≥ 0,Pik− T̃ik ≥ 0, (29)

0 > Φ̂ik

=



Φ̂11
ik PikAd

i PikCi Z DT
i Pik τDT

i Z Φ̂17
ik

∗ Φ̂22
ik 0 0 (Dd

i )
TPik τ(Dd

i )
TZ (Gd

i )
T

∗ ∗ −γ2I 0 ET
i Pik τET

i Z HT
i

∗ ∗ ∗ −Z 0 0 0
∗ ∗ ∗ ∗ −Pik 0 0
∗ ∗ ∗ ∗ ∗ −τZ 0
∗ ∗ ∗ ∗ ∗ ∗ −I


,

(30)

where

Φ̂
11
ik =He{Pik(Ai +BiΞkKik)}+Q−Z

+
s

∑
j=1, j 6=i

[(λ̂i j−δi j)(Pjk−Tik)+2δi jVi jk]

+ (λ̂ii +δii)(Pik−Tik)+
r

∑
l=1,l 6=k

[(π̂ i
kl−θ

i
kl)

× (Pil− T̃ik)+2θ
i
klṼikl ]+ (π̂ i

kk +θ
i
kk)(Pik− T̃ik),

Φ̂
17
ik =(Gi +FiΞkKik)

T, Φ̂
22
ik =−Q+Z,

with i, j ∈ S , k, l ∈ S f , then the closed-loop system (9) is
stochastically stable with H∞ performance γ .

Proof: For the closed-loop system (9) with asyn-
chronous jumped actuator faults (4), given the estimated
TRs λ̂i j, π̂ i

kl and their estimate errors δi j ≥ 0, θ i
kl ≥ 0, we

only need to prove that (30) guarantees the holding of (16).
Noting (6) and (7), we have

s

∑
j=1

λi jPjk =
s

∑
j=1

λi j(Pjk−Tik),

r

∑
l=1

π
i
klPil =

r

∑
l=1

π
i
kl(Pil− T̃ik). (31)

By (27)-(29) and (31), we get

Φ
11
ik =He{Pik(Ai +BiΞkKik)}+Q−Z

+
s

∑
j=1

λi j(Pjk−Tik)+
r

∑
l=1

π
i
kl(Pil− T̃ik)

=He{Pik(Ai +BiΞkKik)}+Q−Z

+
s

∑
j=1

(λ̂i j +∆λi j)(Pjk−Tik)

+
r

∑
l=1

(π̂ i
kl +∆π

i
kl)(Pil− T̃ik)

=He{Pik(Ai +BiΞkKik)}+Q−Z

+
s

∑
j=1, j 6=i

(λ̂i j +∆λi j)(Pjk−Tik)

+(λ̂ii +∆λii)(Pik−Tik)

+
r

∑
l=1,l 6=k

(π̂ i
kl +∆π

i
kl)(Pil− T̃ik)

+(π̂ i
kk +∆π

i
kk)(Pik− T̃ik)

=He{Pik(Ai +BiΞkKik)}+Q−Z

+
s

∑
j=1, j 6=i

[(λ̂i j−δi j)+(δi j +∆λi j)](Pjk−Tik)

+(λ̂ii+∆λii)(Pik−Tik)+(π̂ i
kk+∆π

i
kk)(Pik−T̃ik)

+
r

∑
l=1,l 6=k

[(π̂ i
kl−θ

i
kl)+(θ i

kl +∆π
i
kl)](Pil− T̃ik)

≤Φ̂
11
ik . (32)

Then, it follows from (32) that (30) guarantees the holding
of (16). This completes the proof. �

Remark 4: As is well-known, a significant issue of the
analysis and synthesis of control for MJSs with uncertain
TRs is to appropriately bind the uncertain items [18, 21].
Inspired by the work of [18], Theorem 2 has proposed a re-
laxation method without using traditional Young inequal-
ity to bind the uncertain terms by fully considering (a) the
property of TRs as well as the characteristic of uncertainty
domains (i.e., λ̂ii+∆λii < 0, π̂ i

kk +∆π i
kk < 0, δi j +∆λi j ≥ 0

and θ i
kl +∆π i

kl ≥ 0), and (b) the introduction of the free
matrices {Tik, T̃ik} (via the facts that ∑

s
j=1(λ̂i j +∆λi j) = 0

and ∑
r
l=1(π̂

i
kl +∆π i

kl) = 0) to avoid the coupling items and
reduce conservatism with the purpose of synthesis. Thus
our results are more general and less conservative than that
of [18,20,21,50,51], where the traditional Young inequal-
ity has be employed to bind the uncertain TRs.

Next, we will design the mixed-mode-dependent H∞

controller for the closed-loop SDMJSs (9).

Theorem 3: For the closed-loop SDMJSs (9) with un-
certain TRs and asynchronous jumped actuator faults (4),
given the estimated TRs λ̂i j, π̂

i
kl and their estimate errors

δi j ≥ 0, θ i
kl ≥ 0, if there exist a scalar γ > 0, symmet-

ric matrices Xik > 0,Qik > 0,Z > 0 and matrices Vi jk ≥
0, Ṽikl ≥ 0,Tik, T̃ik,Yik (i, j ∈ S,k, l ∈ S f ) with appropriate
dimensions, such that for any (i,k) ∈ S ×S f ,
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−Tik−Vi jk Xik

∗ −X jk

]
≤ 0, ∀ j ∈ S, j 6= i, (33)[

−T̃ik−Ṽikl Xik

∗ −Xil

]
≤ 0, ∀l ∈ S f , l 6= k, (34)

Xik−Tik ≥ 0, Xik−T̃ik ≥ 0, (35)

Φ̃ik < 0, (36)

where Φ̃ik is given at the bottom with

Φ̃
11
ik = He{AiXik +BiΞkYik}+Qik +

s

∑
j=1, j 6=i

[2δi jVi jk

− (λ̂i j−δi j)Tik)]+(λ̂ii +δii)(Xik−Tik)

+
r

∑
l=1,l 6=k

[2θ
i
klṼikl− (π̂ i

kl−θ
i
kl)T̃ik]

+ (π̂ i
kk +θ

i
kk)(Xik−T̃ik),

Φ̃
17
ik = XikGT

i +Y T
ik Ξ

T
k FT

i ,

Φ̃
19
ik =

[√
λ̂i1−δi1, · · · ,

√
λ̂i,i−1−δi,i−1,√

λ̂i,i+1−δi,i+1, · · · ,
√

λ̂is−δis

]
Xik,

Φ̃
1,10
ik =

[√
π̂ i

k1−θ i
k1, · · · ,

√
π̂ i

k,k−1−θ i
k,k−1,√

π̂ i
k,k+1−θ i

k,k+1, · · · ,
√

π̂ i
kr−θ i

kr

]
Xik,

Φ̃
99
ik =−diag{X1k, · · · ,Xi−1,k,Xi+1,k, · · · ,Xsk} ,

Φ̃
10,10
ik =−diag{Xi1, · · · ,Xi,k−1,Xi,k+1, · · · ,Xir} ,

then the stabilizing controller to provide γ−disturbance
attenuation for the closed-loop system (9) can be con-
structed as

Kik = YikX−1
ik . (37)

Proof: Let Xik = P−1
ik , Z = Z−1, Qik = XikQXik, Tik =

XikTikXik, Vi jk =XikVi jkXik, T̃ik =XikT̃ikXik, Ṽikl =XikṼiklXik.
Then, Applying the congruent transformation (CT) Xik to
both sides of inequalities (27) and (28) as well as using
Schur complement, it follows that (27) and (28) are equiv-
alent to (33) and (34), respectively.

Applying the CT Xik to the left side of inequality (29),
it follows that (29) is equivalent to (35).

Letting

Ωik =



Xik 0 0 Xik 0 0 0 0
0 Xik 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 Z 0 0 0 0
0 0 0 0 Xik 0 0 0
0 0 0 0 0 Z 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


,

and applying the CT Ωik to the right side of (30) as well as
using Schur complement, it follows that (30) is equivalent
to (36) by letting Yik = KikXik. This completes the proof.�

Remark 5: The design scheme of the controllers with a
minimum H∞ performance in Theorem 3 can be expressed
as the following optimal minimization problem:

OP: minγ
2

s.t. LMIs (33)-(36) with Xik > 0, Qik > 0, Z > 0,

Vi jk ≥ 0 ( j 6= i),Ṽikl ≥ 0 (l 6= k),

∀ i, j ∈ S, ∀ k, l ∈ S f . (38)

Remark 6: Theorem 3 has proposed a new scheme to
design the mixed-mode-dependent reliable H∞ controllers
for the closed-loop SDMJSs (9) subject to asynchronous
jumping actuator failure and uncertain TRs. Besides, The-
orem 3 has extended the related results of some existing
literature [53–57] from the following aspects: (i) the meth-
ods in [53–57] cannot be applied to the asynchronous con-
trol problem on SDMJSs with mixed AMJMs and uncer-
tain TRs. (ii) the random disturbance of Brownian motion
on the system, which is usually a key factor causing sys-
tem instability, was ignored in [53–57]; (iii) the time-delay
as well as asynchronous control problem for the MJSs has
not been taken into account in [53–57].

Remark 7: It is worth pointing out that the number of
decision variables in Theorem 3 is sr(s+ r+ 5)+ 2, and
the number of LMIs is sr(s+ r+1), where s and r denote
the number of the finite state space S and S f , respectively.

Φ̃ik =



Φ̃11
ik Ad

i Xik Ci 0 XikDT
i τXikDT

i Φ̃17
ik 0 Φ̃19

ik Φ̃
1,10
ik

∗ −Qik 0 0 Xik(Dd
i )

T τXik(Dd
i )

T Xik(Gd
i )

T Xik 0 0
∗ ∗ −γ2I 0 ET

i τET
i HT

i 0 0 0
∗ ∗ ∗ −Z 0 0 0 0 0 0
∗ ∗ ∗ ∗ −Xik 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −τZ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Z 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃99

ik 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃

10,10
ik


.
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4. NUMERICAL EXAMPLE

As an application of the controller design scheme pre-
sented in this paper, a simulation example for the VTOL
helicopter system is given.

Example 1: Consider the following VTOL helicopter
system [39, 52], which is modified for our purpose. For
this system, the internal and external environments, such
as airspeed, temperature, electromagnetic field and atmo-
spheric pressure are assumed to be constantly changing
with stochastic disturbances. Therefore, the VTOL he-
licopter system can be formulated as the SDMJS. Let
x1(t),x2(t),x3(t) and x4(t) be the horizontal velocity, ver-
tical velocity, pitch rate and pitch angle, respectively, then
the VTOL helicopter system can be presented by system
(1) with the following parameters:

Aσ(t) =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 a1

σ(t) −0.707 a2
σ(t)

0 0 1 0

 ,
Bσ(t) =

[
0.4422 bσ(t) −5.5200 0
0.1761 −7.5922 4.4900 0

]T

,

Ad
1 = 10−3×

 −1 0 −2 0
0 5 4 −3
−7 3 2 0
0 5 0 −3

 ,

Ad
2 = 10−3×

 3 2 −1 0
0 3 0 −3
0 3 2 0
0 4 0 −3

 ,

Ad
3 = 10−3×

 −1 1 0 0
0 3 2 −3
−4 3 2 0
0 2 3 0

 ,
C1 = 10−2×

[
1 −2 1 2
0 3 1 −3

]T

,

C2 = 10−2×
[
−1 3 1 1
−3 0 0 2

]T

,

C3 = 10−2×
[

2 1 2 0
0 0 −3 2

]T

,

D1 = 10−2×

 −7.6 1.5 −2.9 −4.7
1.8 −2.5 5.5 1.6
3.7 −2.6 −4.3 −1.9
0 0 3 0

 ,

D2 = 10−2×

 −2.5 2.7 4.5 −1.7
−8.7 −1.5 3.9 1.5
1.4 −1.3 −1.5 −1.4
0 0 1 0

 ,

D3 = 10−2×


−9.0 1.1 1.2 3.5
7.5 −1.8 1.6 2.7
4.0 −8.4 −3.7 −2.9
0 0 2 0

 ,

Table 1. The parameters depending on the airspeeds.

Airspeed (kn) σ(t) a1
σ(t) a2

σ(t) bσ(t)

135 1 0.3681 1.4200 3.5446
60 2 0.0664 0.1198 0.9775

170 3 0.5047 2.5460 5.1120

E1 = 10−2×
[

1 −2 1 2
0 3 1 −3

]T

,

E2 = 10−2×
[
−1 3 1 1
−3 0 0 2

]T

,

E3 = 10−2×
[

2 1 2 0
0 0 −3 2

]T

,

Gσ(t) =

[
0.4 0 0.3 0
0 0.2 0 0.5

]
,

Gd
σ(t) =

[
0 0.2 −0.4 0

0.3 0 0 −0.2

]
,

Fσ(t) =

[
1 0.2

0.1 −1

]
, Hσ(t) =

[
−0.6 −0.12
0.23 0.8

]
,

Dd
σ(t) = 0.1Dσ(t), τ = 0.5. (39)

Here, σ(t) ∈ {1,2,3} varies with different airspeeds
135 (nominal value), 60 and 170 knots. The behavior of
σ(t) can be formulated as a Markovian chain with three
modes [39]. The parameters a1

σ(t),a
2
σ(t) and bσ(t) are given

in Table 1.
It is worth noting that the TRs among airspeeds are

usually difficult to obtain if the external environment
(i.e.,weather) changes. Therefore, the TRM is set to be
uncertain and the estimated TRs is given by [λ̂i j] = −1.3 0.7 0.6

0.5 −1.3 0.8
0.7 0.5 −1.2

 with its estimate error sat-

isfying |∆λi j| ≤ 0.1λ̂i j =: δi j. Assume that there are
two modes for asynchronous jumped failure with Ξ1 =
diag {1 0.6}, Ξ2 = diag {0.4 0.8}. The estimated

TRs of faults are
[
π1

kl

]
=

[
−0.6 0.6
0.5 −0.5

]
,
[
π2

kl

]
=[

−0.5 0.5
0.8 −0.8

]
and

[
π3

kl

]
=

[
−0.4 0.4
0.7 −0.7

]
with its

estimate error values of TRs satisfying
∣∣∆π i

kl

∣∣≤ 0.15π̂ i
kl =:

θ i
kl .
Note that the unforced system with AMJMs is unstable

(see Fig. 1, which shows the state responses of the open-
loop system). However, the unforced system is stochas-
tically stabilizable according to Theorem 3, and by using
the MATLAB LMI toolbox to solve the optimization prob-
lem (38), we can obtain γmin = 0.7948 as well as the fol-
lowing controller gains:

K11 =

[
−0.9492 0.1267 0.5691 1.5274
−0.3252 0.3065 −0.1560 0.0904

]
,
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K21 =

[
−0.9655 0.1558 0.6152 1.5130
−0.0158 0.2961 −0.2964 −0.3114

]
,

K31 =

[
−0.8361 0.1084 0.4967 1.4602
−0.4189 0.3084 −0.1548 0.2415

]
,

K12 =

[
−1.3639 0.1868 0.8145 2.1959
−0.2494 0.2306 −0.1114 0.0724

]
,

K22 =

[
−1.4350 0.2335 0.9103 2.2446
0.0019 0.2269 −0.2286 −0.2570

]
,

K32 =

[
−1.2664 0.1692 0.7499 2.1831
−0.3323 0.2365 −0.0973 0.1944

]
.

For the convenience of simulation, under zero initial
condition, let the disturbance input ω(t) = [ 50

1+t3/2
−30

2+t3/2 ]
T

and the initial modes be σ0 = 1 and s0 = 1. Then, By em-
ploying the Euler-Maruyama method with step size 0.002,
the simulation results of the closed-loop SDMJSs (9) with
(39) are given in Figs. 2-4. Fig. 2 shows the reliable con-
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Fig. 1. The sate responses of the open-loop system with
AMJMs.
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Fig. 2. The reliable control input of the closed-loop sys-
tem.

trol input while Fig. 3 describes the state responses of the
closed-loop system with AMJMs. Moreover, Fig. 4 gives
the state responses of the closed-loop system in 100 ran-
dom samplings (RSs). It is thus clear from Figs. 1-4 that
the designed controller can stabilize the unforced system
as well as achieving the prescribed level of disturbance
attenuation.

5. CONCLUSIONS

This paper has mainly concerned with the reliable H∞

control for SDMJSs with asynchronous jumped actua-
tor failure and uncertain TRs. By representing the mixed
Markovian processes as two Poisson integrals, a general-
ized functional Itô’s formula for the closed-loop SDMJSs
with mixed AMJMs has been successfully established. By
the generalized functional Itô’s formula, the mixed-mode-
dependent Lyapunov functionals and matrix manipulation,
a delay-dependent design scheme of the asynchronous
reliable H∞ control for SDMJSs is proposed. Then, the
mixed-mode-dependent controller gains can be achieved
by solving a convex optimization problem under LMIs
constraints. Meanwhile, a relaxation method is presented
to bind the uncertain terms appropriately for reducing the
conservatism. Finally, the controller design scheme has
been verified via a simulation example on the VTOL heli-
copter system.

APPENDIX A

In this appendix, the proof of Lemma 1 is given.
Proof of Lemma 1: With the inspiration of [47], the

proof is given as follows. For the joint Markovian process
(x(t),σ(t),s(t)) given by by (9), (12) and (13), applying
the functional Itô’s formula for càdlàg semi-martingales

Fig. 3. The state response of the closed-loop system with
AMJMs.
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Fig. 4. The state response of the closed-loop system with
100 RSs.

(see [7], Proposition 6) to functional V (xt , t,σ(t),s(t)) on
the interval [0, t], we have

V (xt , t,σ(t),s(t))

=V (x0,0,σ0,s0)

+
∫ t

0
DtV (xθ− ,θ ,σ(θ−),s(θ−))dθ

+
∫ t

0
∇xV (xθ− ,θ ,σ(θ−),s(θ−))

× f (xθ− ,θ ,σ(θ−),s(θ−))dθ

+
∫ t

0
∇xV (xθ− ,θ ,σ(θ−),s(θ−))

×g(xθ− ,θ ,σ(θ−),s(θ−))dB(θ)

+
1
2

∫ t

0
tr{gT(xθ− ,θ ,σ(θ−),s(θ−))

×∇xxV (xθ− ,θ ,σ(θ−),s(θ−))

×g(xθ− ,θ ,σ(θ−),s(θ−))}dθ

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−)+ρ(σ(θ−),z),s(θ−))

−V (xθ− ,θ ,σ(θ−),s(θ−))]dzdθ

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−)+ρ(σ(θ−),z),s(θ−))

−V (xθ− ,θ ,σ(θ−),s(θ−))]ν̃(dθ ,dz)

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−),s(θ−)+ζ (s(θ−),v))

−V (xθ− ,θ ,σ(θ−),s(θ−))]dvdθ

+
∫ t

0

∫
R
[V (xθ− ,θ ,σ(θ−),s(θ−)+ζ (s(θ−),v))

−V (xθ− ,θ ,σ(θ−),s(θ−))]µ̃(dθ ,dv)

=V (x0,0,σ0,s0)+M(t)

+
∫ t

0
DtV (xθ− ,θ ,σ(θ−),s(θ−))dθ

+
∫ t

0
∇xV (xθ− ,θ ,σ(θ−),s(θ−))

× f (xθ− ,θ ,σ(θ−),s(θ−))dθ

+
1
2

∫ t

0
tr{gT(xθ− ,θ ,σ(θ−),s(θ−))

×∇xxV (xθ− ,θ ,σ(θ−),s(θ−))

×g(xθ− ,θ ,σ(θ−),s(θ−))}dθ

+
∫ t

0

s

∑
j=1, j 6=σ(θ−)

[V (xθ− ,θ , j,s(θ−))

−V (xθ− ,θ ,σ(θ−),s(θ−))]λσ(θ−), jdθ

+
∫ t

0

r

∑
l=1,l 6=s(θ−)

[V (xθ− ,θ ,σ(θ−), l)

−V (xθ− ,θ ,σ(θ−),s(θ−))]πσ(θ−)
s(θ−),ldθ

=V (x0,0,σ0,s0)+
∫ t

0
LV (xθ ,θ ,σ(θ),s(θ))dθ

+M(t). (A.1)

The proof is completed. �
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