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Event-triggered Consensus Control of Nonlinear Multi-agent Systems
based on First-order Hold
Yu Shang, Cheng-Lin Liu* � , and Ke-Cai Cao

Abstract: In this paper, consensus problem is studied for the first-order nonlinear multi-agent systems under di-
rected topology, and a novel event-triggered consensus protocol is proposed. Different from the existing results
with general zero-order hold, the first-order hold is adopted to construct the event-triggered control signal so as to
reduce the triggering rate. By using Lyapunov stability method and matrix theory, a sufficient consensus condition
is derived for the agents to reach the asymptotic consensus, and Zeno-behavior can be avoided. Finally, a numerical
example is presented to demonstrate the effectiveness of our proposed protocol.

Keywords: Consensus problem, directed topology, event-triggered control, first-order hold, nonlinear multi-agent
systems.

1. INTRODUCTION

In the past decades, the distributed consensus problem
of multi-agent systems (MASs) has received considerable
attention due to its important applications in a wide range
of engineering areas, such as sensor network [1, 2], vehi-
cles [3, 4], power network [5] and so on, and it has been
extensively analyzed and synthesized [6, 7].

In order to reduce the communication load of multi-
agent network and the updating frequency of controller,
recently, event-triggered control strategy has been ap-
plied to the consensus protocols [8–11, 23]. In the event-
triggered consensus protocol, the event time instant of
communication is determined by the predefined trigger-
ing function related closely to system measurement errors
or performance level [12]. Up to now, event-triggered con-
sensus protocols have been widely adopted, and there are
many outstanding research achievements for MASs under
undirected and symmetric topology [13–15]. However, in-
formation flow may usually be directed due to heterogene-
ity, non-uniform communication capabilities or sensing
with limited visual fields, and consensus analysis under di-
rected topology is more challenging than that under undi-
rected topology.

Recently, a lot of event-triggered protocols have been
developed to solve the consensus problem of MASs with
directed topology [16–22]. For the second-order MASs
with nonlinear dynamics, Dong and Gong [19] used the

decentralized event-triggered strategies to deal with the
consensus problem, and designed a time-variant trigger-
ing function to determine the event instants by switching
mechanism. For the general linear MASs under directed
graph, a distributed event-triggered consensus protocol
was proposed to determine the control updating by using
combinational measurements [20]. However, each agent
needs to know the state of all neighbors at all times, which
means that continuous communication is still necessary
[20]. In order to reduce communication and congestion
in the network, Liu et al. [16] proposed a novel dis-
tributed event-triggered consensus protocol without con-
tinuous communication. The triggering function in [16]
depends on the agents’ states, and each agent only needs
to communicate with their neighbors at discrete time at
which the event is triggered. Besides, Jian et al. [18] de-
signed the Kx-functional observer-based output feedback
event-triggered consensus protocol, which used the neigh-
bors’ states to predict the output of the controller, and
the controller signal is updated within the event interval
so as to reduce the triggering rate. Considering the con-
sensus problem of nonlinear MASs under directed topol-
ogy containing directed spanning trees, moreover, Li et
al. [17] obtained the triggering function and event time in-
tervals according to matrix theory and Lyapunov stability
approach.

In the aforementioned results on event-triggered con-
sensus problem of MASs with directed topology [17, 20–
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22], each agent communicates with its neighbors only
when the event is triggered. The sampled-states obtained
by the communication are used for updating the controller,
and the event-triggered controller signal is kept unchanged
by the zero-order hold (ZOH) until the next event time
instant, which is easy to realize, but it provides no trend
information. Thus, the information on changes between
the consecutive event time instants is lost. One possible
solution to improve the precision of the control signal is
to use high-order hold, such as first-order hold (FOH) in
[27,28], to provide trend information during the triggering
interval. Experimental results indicate that triggering rate
can be highly reduced by using FOH in [27].

Motivated by above discussions [17, 20, 27], a novel
event-triggered protocol based on FOH is proposed to re-
duce the triggering rate in this paper. The contributions of
our work are listed as follows:

1) An event-triggered consensus protocol for nonlin-
ear MASs with directed topology is proposed. Compared
with the existing results, this proposed protocol is based
on piecewise linear signal (FOH) instead of the standard
piecewise constant signal (ZOH), so as to decrease the up-
dating frequency of controller and reduce the amount of
communication.

2) On the basis of FOH implementation, the event-
triggered condition is derived to guarantee that the asymp-
totic consensus of nonlinear MASs can be achieved, and
Zeno-behavior is excluded. Experimental results show
that the proposed event-triggered consensus protocol pos-
sesses the less triggering rate than the event-triggered con-
sensus protocol based on ZOH.

The rest of this paper is organized as follows: In Section
2, we briefly introduce some notions on graph theory, and
give several lemmas, definitions and make an assumption
for later analysis. The event-triggered consensus protocol
is designed in Section 3. The main theoretical results are
given in Section 4. Section 5 presents a comparison be-
tween FOH and ZOH through a simulation example. Fi-
nally, Section 6 draws the conclusions.

2. PROBLEM FORMULATION

2.1. Notation
Throughout this paper, N, R and RN×N denote the set

of positive natural numbers, the set of real numbers and
N×N matrices, respectively. Let IN be the identity matrix
of order N, and 1N be the vector with all elements being 1.
‖·‖ represents the Euclidean norm. In addition, AT denotes
the transpose of a real symmetric matrix A, λmax(A) and
λmin(A) represent the maximum and the minimum eigen-
values of matrix A, respectively.

2.2. Graph theory
Let G = (V,E) denote a weighted directed graph of

N order with the set of nodes V = {1,2, · · · ,N}, and

E ⊆ V ×V is the set of directed edges. If directed edge
( j, i) ∈ E, then there is an edge from node j to node i
and node j is called a neighbor of node i. A = (ai j) ∈
RN×N is the weighted adjacency matrix of N nodes where
ai j > 0, if ( j, i) ∈ E and ai j = 0, otherwise. The neigh-
boring set of node i is defined as Ni = { j ∈ V : ( j, i) ∈
E}, while N̄i = |Ni| indicates the number of neighbors
belongs to node i. Define the in-degree of node i as
degin

i = ∑
N
j=1 ai j, and the in-degree matrix of G is de-

fined as Degin = diag{degin
1 , . . .degin

n }. The Laplacian ma-
trix L=[li j] ∈ RN×N of the directed graph G is defined as
L = Degin−A. A directed graph G is called strongly con-
nected if for any two distinct nodes i and j, there always
exists a directed path from node i to node j.

2.3. Plant model
Consider the first-order MASs consisting of N identical

agents, and the model of agent i is given by

ẋi(t) = f (xi(t), t)+ui(t), i = 1,2, · · · ,N, (1)

where xi ∈ R and ui ∈ R are the state variable and control
input, respectively, of the ith agent, and f (xi(t), t) ∈R is a
continuous nonlinear function.

In (1), the function f (·) describes the inherently nonlin-
ear dynamics of each agent, and we make an assumption
on this function as follows:

Assumption 1 [30]: Suppose that the nonlinear func-
tion f (xi(t), t) is locally Lipschitz continuous, and there
exist a positive constant ρ such that

‖ f (xi(t), t)− f (x j(t), t)‖ ≤ρ ‖xi(t)− x j(t)‖ ,
∀xi(t) 6= x j(t).

Definition 1: Consensus of MASs (1) is said to be
achieved asymptotically if for any initial states xi(0) ∈ R,

lim
t→∞
‖xi(t)− x j(t)‖= 0, ∀i, j = 1,2, . . . ,N.

The following lemma will play an important role in the
proof of main results.

Lemma 1 [26]: For arbitrary p,q ∈ R and a > 0,

pq6
a
2

p2 +
1
2a

q2

holds.

Lemma 2 [25]: If G is a strongly connected graph
with Laplacian matrix L, then, L1N = 0 and there exists
a positive vector ξ = [ξ1, ξ2, . . ., ξN ]

T with positive ele-
ments and ∑

N
i=1 ξi = 1 such that ξ T L = 0. Moreover, let

R = (ΞL + LT Ξ)/2 with Ξ = diag{ξ1, ξ2, . . ., ξN}, and
then matrix R is symmetric and ∑

N
i=1 Ri j = ∑

N
j=1 R ji = 0,

∀i, j = 1, 2, . . ., N.

With Lemma 2, we have the following definition and
lemma.
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Definition 2 [25]: For a strongly connected network G
with Laplacian matrix L, the general algebraic connectiv-
ity is defined as

λξ (L) = min
xT ξ=0,x 6=0

xT Rx
xT Ξx

.

Lemma 3 [25]: λξ (L) can be computed as follows:

λξ (L) =

{
max δ ,

subject to QT (R−δΞ)Q> 0.

where Q =

(
IN−1

− ξ̂ T

ξN

)
∈ RN×(N−1) and ξ̂ = (ξ1, ξ2, · · · ,

ξN−1)
T .

3. DESIGN OF EVENT-TRIGGERED
CONSENSUS PROTOCOL

In this section, we will construct the event-triggered in-
put signal based on FOH, and then, propose a novel event-
triggered function to determine the data communication.
In addition, the event-triggered control framework of each
agent i is shown in Fig. 1. In this framework, the event de-
tector has the ability to receive the packages at the storage
side. More specifically, the controller of agent i updates its
control input by using the received information from the
storage. Then, the output of the controller i is sent to the
actuator with FOH, which is used to keep the control input
of agent i piecewise linear until the next event time.

3.1. Event-triggered control signal based on FOH
Discrete-time control signals need to be converted into

continuous-time control signals by digital-to-converter
[32], such as ZOH and FOH. Compared with the ZOH-
based control signal, which is piecewise constant, the
FOH-based control signal varies linearly during the trig-
gering interval. By this difference, some results have
shown the performance improvement of FOH technology
[27, 28]. Hence, in this paper, we construct the control in-
put ui(t) based on sampled data by FOH technology, then

Event

Detector i

Agent iActuator i

Sensor i

Storage i

Neighbors
Trigger

Controller i FOH

Fig. 1. Event-triggered control framework for agent i.
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Fig. 2. State estimations of xi(t) based on FOH and ZOH.

the control signal of agent i is given by

ui(t) = c∑
N
j=1 ai j

(
x̂ j(t i

k)− x̂i(t i
k)
)
, t > t i

k, (2)

in which

x̂ j(t i
k) = x j(t i

k)+
x j(t i

k)− x j(t i
k−1)

t i
k− t i

k−1
(t− t i

k),

x̂i(t i
k) = xi(t i

k)+
xi(t i

k)− xi(t i
k−1)

t i
k− t i

k−1
(t− t i

k),

where t ∈ [t i
k, t

i
k+1), k ∈ N, t i

k denotes the kth triggering
instant of agent i, x̂ j(t i

k) and x̂i(t i
k) denote state the estima-

tions of x j(t) and xi(t), respectively, and c > 0 is the con-
troller gain to be designed later. Fig. 2 shows the state esti-
mations for ZOH (blue line) and FOH (red line) based on
sampled data. As the black line is the continuous state xi(t)
of agent i, i = 1, 2, · · · , N. During the interval [t i

k, t
i
k+1),

k ∈ N, the state estimations for ZOH is a constant xi(t i
k),

while that for FOH exhibits linear change.

Remark 1: Similar to that of [11, 15, 20], the protocol
(2) is updated at its own event instants and only depends
on the states at triggering time. Our proposed protocol (2)
has been analyzed for the nonlinear agents under undi-
rected and connected topology in our work [31]. However,
this paper takes into account the proposed algorithm under
directed and strongly connected topology, and it is well
known that the convergence analysis under directed topol-
ogy is much more challenging than that under undirected
topology.

3.2. Event-triggered function for MASs
Define ei(t) = x̂i(t i

k)− xi(t), then the proposed event-
triggered function is given by

Ei(t) =‖ei(t)‖−
ϕ1

N̄i
∑

j∈Ni

∥∥x̂i(t i
k)− x̂ j(t i

k)
∥∥

−ϕ2e−γ(t−t0), (3)

where ϕ1 > 0, ϕ2 > 0 and γ > 0. Therefore, the next event
instant of agent i is determined by the following condition,

t i
k+1 = inf{t : t > t i

k,Ei(t)> 0}.
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An event is triggered at t = t i
k+1 when Ei(t)> 0, and then

the dynamic error ‖ei(t)‖ is reset to zero.

Remark 2: Note that the proposed event-triggered
condition (3) is dependent on the neighbors’ discrete-time
information x j(t i

k) and x j(t i
k−1) rather than the continuous-

time information x j(t), j ∈ Ni. This implies that each
agent does not need continuous communication with their
neighbors.

Remark 3: The proposed controller (2) and the trig-
gering function (3) both depend on the same time variable
t, i.e., all the agents evolve along the same time axis t, so
that the hardware that reaches the clock synchronization
is necessary. However, agents’ event-triggered instants are
determined by its triggering functions, i.e., the triggering
times of one agent does not need to synchronize with that
of other agents.

4. MAIN RESULTS

With control input (2), we obtain the following error
dynamical system

ẋi(t) = f (xi(t), t)− c∑
N
j=1 Li j (x j(t)+ e j(t)) . (4)

Let x̄(t) = ∑
N
j=1 ξ jx j(t) represent the weighed average tra-

jectories of all agents with the nonnegative left eigenvec-
tor of L in Lemma 2. Define yi(t) = xi(t)− x̄(t), we further
have

ẏi(t) = f (xi(t), t)− c∑
N
j=1 Li j (y j(t)+ e j(t))

+ c∑
N
l=1 ξl ∑

N
j=1 Li j (y j(t)+ e j(t))

−∑
N
l=1 ξl f (xl(t), t). (5)

Since ξ T L = 0, we have

∑
N
l=1 ξl ∑

N
j=1 Li j (y j(t)+ e j(t)) =ξ

T L(y(t)+ e(t))

=0.

Then, the dynamical system (5) is rewritten as

ẏi(t) = f (xi(t), t)− c∑
N
j=1 Li j (y j(t)+ e j(t))

−∑
N
l=1 ξl f (xl(t), t). (6)

For the convenience of analysis, we express (6) in a vec-
tor form,

ẏ(t) = (IN−1Nξ
T )F(x(t), t)− cLy(t)− cLe(t), (7)

where y(t) = (y1(t), . . ., yN(t)) ∈ RN , F(x(t), t) =
[ f (x1(t), t), . . ., f (xN(t), t)] ∈ RN , x(t) = (x1(t), . . .,
xN(t)) ∈ RN and e(t) = (e1(t), . . ., eN(t)) ∈ RN .

Theorem 1: Suppose that Assumption 1 holds and
the network G is strongly connected. Under the event-
triggered function (3), the system (1) achieves the con-
sensus asymptotically if

λξ (L)>
ρ + γ

c
+φ1

‖ΞL‖
λmin(Ξ)

+φ2
‖ΞL‖2

2aλmin(Ξ)
(8)

holds, where ρ > 0, γ > 0, c > 0, φ1 =
ϕ1(NM+N)

NM−ϕ1(NM+N) > 0,

φ2 = ϕ2NMN
NM−ϕ1(NM+N) > 0, 0 < ϕ1 < NM

NM+N , ϕ2 > 0, a > 0,
NM = max{N̄1, N̄2, · · · , N̄N}. In addition, Zeno-behavior
can be excluded.

Proof: Consider the following Lyapunov function can-
didate

V (t) =
1
2

yT (t)Ξy(t). (9)

Note that V (t) > 0 and V (t) = 0 if and only if y(t) = 0.
Differentiating V (t) along the trajectories of (7) gives

V̇ (t) =yT (t)Ξ
[
(IN−1Nξ

T )F(x(t), t)

−cLy(t)− cLe(t)] . (10)

With Assumption 1, one has

yT (t)Ξ
[
(IN−1Nξ

T )F(x(t), t)
]

= ∑
N
i=1 yi(t)ξi [ f (xi(t), t)− f (x̄(t), t)]

6∑
N
i=1 ‖yi(t)‖ξi (ρ ‖xi(t)− x̄(t)‖)

= ρ ∑
N
i=1 ξi‖yi(t)‖2. (11)

Taking (11) into (10), we have

V̇ (t)6 ρyT (t)Ξy(t)− cyT (t)ΞLy(t)− cyT (t)ΞLe(t).
(12)

From the event-triggered condition (3) with all t > t0, we
can conclude that ‖ei(t)‖ will not exceed the threshold,
i.e.,

‖ei(t)‖6
ϕ1

N̄i
∑

j∈Ni

∥∥x̂i(t i
k)− x̂ j(t i

k)
∥∥+ϕ2e−γ(t−t0). (13)

It follows from (13) that

‖ei(t)‖6
ϕ1

N̄i
∑

j∈Ni

‖xi(t)+ ei(t)− x j(t)− e j(t)

−x̄(t)+ x̄(t)‖+ϕ2e−γ(t−t0)

=
ϕ1

N̄i
∑

j∈Ni

‖yi(t)+ ei(t)− y j(t)− e j(t)‖

+ϕ2e−γ(t−t0)

6
ϕ1

N̄i
∑

j∈Ni

‖ei(t)‖+
ϕ1

N̄i
‖e(t)‖+ϕ1

N̄i
∑

j∈Ni

‖yi(t)‖

+
ϕ1

N̄i
‖y(t)‖+ϕ2e−γ(t−t0)
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6ϕ1 ‖ei(t)‖+
ϕ1

NM
‖e(t)‖+ϕ1 ‖yi(t)‖

+
ϕ1

NM
‖y(t)‖+ϕ2e−γ(t−t0). (14)

Then, by (14), we further have

‖e(t)‖6
(

ϕ1 +
Nϕ1

NM

)
‖e(t)‖+

(
ϕ1 +

Nϕ1

NM

)
‖y(t)‖

+ϕ2Ne−γ(t−t0),

i.e., [
1− ϕ1(NM +N)

NM

]
‖e(t)‖6ϕ1(NM +N)

NM
‖y(t)‖

+ϕ2Ne−γ(t−t0).

It follows from above inequality that

‖e(t)‖6 ϕ1(NM +N)

NM−ϕ1(NM +N)
‖y(t)‖

+
ϕ2NMN

NM−ϕ1(NM +N)
e−γ(t−t0)

,φ1 ‖y(t)‖+φ2e−γ(t−t0),

where φ1 > 0,φ2 > 0,0 < ϕ1 <
NM

NM+N . Substituting above
expression into (12), with Lemma 1, one has

V̇ (t)6ρyT (t)Ξy(t)−cyT (t)ΞLy(t)+cφ1 ‖ΞL‖‖y(t)‖2

+ cφ2 ‖y(t)‖‖ΞL‖e−γ(t−t0)

6ρyT (t)Ξy(t)−cyT (t)ΞLy(t)+cφ1 ‖ΞL‖‖y(t)‖2

+
1

2a
cφ2‖y(t)‖2‖ΞL‖2 +

a
2

cφ2e−2γ(t−t0)

62ρV (t)−2cλξ (L)V (t)+2cφ1
‖ΞL‖

λmin(Ξ)
V (t)

+ cφ2

[
‖ΞL‖2

aλmin(Ξ)
V (t)+

a
2

e−2γ(t−t0)

]

=−2c
(

λξ (L)−
ρ

c
−φ1

‖ΞL‖
λmin(Ξ)

−φ2
‖ΞL‖2

2aλmin(Ξ)

)
V (t)+ cφ2

a
2

e−2γ(t−t0). (15)

If condition (8) holds, let

σ =λξ (L)−
ρ

c
−φ1

‖ΞL‖
λmin(Ξ)

−φ2
‖ΞL‖2

2aλmin(Ξ)

>
γ

c
> 0,

and we obtain that

V̇ (t)6−2cσV (t)+ηe−2γ(t−t0),

where η = acφ2/2. Thus

V (t)6
(

V (t0)+
η

2cσ −2γ

)
e−2γ(t−t0). (16)

Furthermore, it comes to

‖y(t)‖6

√
2

λmin(Ξ)

(
V (t0)+

η

2cσ −2γ

)
e−γ(t−t0).

(17)

Equation (17) implies that ‖y(t)‖ → 0, as t → ∞, and the
consensus of MASs (1) is achieved under the proposed
consensus protocol.

Remark 4: The designed parameters ϕ1, ϕ2 and γ of
event-triggered function (3) and control gain c are closely
related to the convergence rate and the inter-event inter-
val. Intuitively, the smaller γ and the larger ϕ1 and ϕ2 lead
to the longer triggering interval. On the other hand, the
smaller the control gain c is, the longer triggering interval
is. Therefore, triggering interval can be pre-designed by
selecting these parameters properly. From (16), moreover,
it is found that increasing the parameter γ or the control
gain c can make the convergence rate increase.

In the following, we will show that the inter-event inter-
val for each agent is strictly positive, {t i

k+1− t i
k} ≥ τi > 0

for all k ∈ N and i = 1,2, · · · ,N, such that the proposed
consensus protocol has no Zeno-behavior.

Suppose that the events of agent i occur at time instants{
t i
k

}∞

k=0, that is, ei(t i
k) = 0. During the interval t ∈ [t i

k, t
i
k+1],

for agent i in network G, one has

‖ėi(t)‖6‖ui(t)‖+‖ f (xi(t), t)‖+
∥∥∆(t i

k, t
i
k−1)

∥∥
6ρ ‖xi(t)‖+‖ui(t)‖+

∥∥∆(t i
k, t

i
k−1)

∥∥
6ρ
(
‖ei(t)‖+

∥∥x̂i(t i
k)
∥∥)+U +

∥∥∆(t i
k, t

i
k−1)

∥∥ ,
where ∆(t i

k, t
i
k−1) =

(
x(t i

k)− x(t i
k−1)

)
/
(
t i
k− t i

k−1

)
and U =

maxt∈[t i
k ,t

i
k+1)
{‖ui(t)‖}. Let χ(t i

k, t
i
k−1) = ρ

∥∥x̂i(t i
k)
∥∥+U +∥∥∆(t i

k, t
i
k−1)

∥∥, then we have

‖ei(t)‖6
χ(t i

k, t
i
k−1)

ρ
eρ(t−t i

k)−
χ(t i

k, t
i
k−1)

ρ
.

Taking t = t i−
k+1, one has

∥∥ei(t i−
k+1)

∥∥6 χ(t i
k, t

i
k−1)

ρ

(
eρ(t i

k+1−t i
k)−1

)
. (18)

According to the event-triggered condition (3), for agent
i, we can see that the next triggering time instant t i

k+1 hap-
pens to the moment when∥∥ei(t i−

k+1)
∥∥= ϕ1

N̄i
∑

j∈Ni

∥∥x̂i(t i
k)−x̂ j(t i

k)
∥∥+ϕ2e−γ(t i

k+1−t0).

(19)

Combining (18) and (19), we have

ϕ1

N̄i
∑

j∈Ni

∥∥x̂i(t i
k)− x̂ j(t i

k)
∥∥+ϕ2e−γ(t i

k+1−t0)
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6
χ(t i

k, t
i
k−1)

ρ

(
eρ(t i

k+1−t i
k)−1

)
.

For some i ∈V and k ∈ N, if there exists time instant t i
k+1

such that τi = t i
k+1− t i

k = 0, then we have

ϕ1

N̄i
∑

j∈Ni

∥∥x̂i(t i
k)− x̂ j(t i

k)
∥∥+ϕ2e−γ(t i

k−t0) = 0,

which implies that ϕ1 = ϕ2 = 0. This contradicts with the
fact that ϕ1 > 0 and ϕ2 > 0. Consequently, Zeno-behavior
is excluded for all k ∈ N and i = 1,2, · · · ,N. Theorem 1 is
thus completed. �

5. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed method in
this paper, we consider the nonlinear MASs consisting of
six agents, and the directed topology is plotted in Fig. 3.
In addition, the Laplacian matrix L is chosen as

L =


1 0 0 0 0 −1
−1 1 0 0 0 0
0 −2 2 0 0 0
0 0 −1 1 0 0
0 0 −1 −1 2 0
0 −1 0 0 −2 3

 .

The nonlinear dynamics of agent i is described by

ẋi(t) = ui(t)+ f (xi(t), t), i = 1,2, · · · ,6,

where f (xi(t), t) = 0.1sin t
t xi(t) + 0.2sin(t). By computa-

tion, one has ρ = 0.1. By Lemma 2, we have the nonneg-
ative left eigenvector as ξ = [0.3, 0.3, 0.1, 0.1 0.1, 0.1]T .
According to Definition 2 and Lemma 2, one has the gen-
eral algebraic connectivity degree as λξ (L) = 0.6045. Se-
lecting c= 0.8, ϕ1 = 0.01, ϕ2 = 0.03, γ = 0.1 and a= 100,
we check the condition (8) in Theorem 1, λξ (L)>

ρ+γ

c +

φ1
‖ΞL‖

λmin(Ξ)
+φ2

‖ΞL‖2

2aλmin(Ξ)
= 0.5826.

The simulation results for both the proposed consensus
protocol and the ZOH-based consensus protocol [17] are
shown in Fig. 4 to Fig. 9. The state trajectories of nonlin-
ear MASs (1) under the proposed protocol is indicated by

1 6 5

2 3 4

Fig. 3. The network topology.
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Fig. 4. State trajectories of agents based on FOH.
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Fig. 5. Event time instants of agents based on FOH.

Fig. 4. It indicates that the global consensus of MASs (1)
is achieved. In addition, Fig. 5 and Fig. 6 show the trig-
gering instants of six agents by the proposed method (3)
and the ZOH-based one, respectively. During [0,20] (s),
the triggering times by proposed protocol for agent 1-6 are
328, 324, 300, 290, 305, 345, respectively, while the trig-
gering times by ZOH-based protocol for agent 1-6 are 587,
650, 521, 587, 603, 599, respectively. In this example, we
come to the conclusion that the triggering frequency is re-
duced by our proposed protocol.

From the dynamical trajectory of control signal of
FOH-based in Fig. 7 and ZOH-based in Fig. 8, we can see
that the control signal of FOH-based is piecewise linear,
while that of ZOH-based is piecewise constant. Define
the total consensus error as

δ (t) =

√√√√ 6

∑
i=1

(
xi(t)−

6

∑
j=1

ξ jx j(t)

)2

,

and we have compared consensus converging time for the
proposed protocol and the existing ZOH-based protocol in
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Fig. 6. Event time instants of agents based on ZOH.
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Fig. 7. State trajectories of ui(t) based on FOH.
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Fig. 8. Trajectories of ui(t) based on ZOH.
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Fig. 9. Consensus error of the proposed and ZOH-based
protocols.

Table 1. Comparison on the average triggering interval Tat

(s) and the consensus converging time tct (s).

Control gain c 0.8 1 1.5 2 3
Tat (Proposed) 0.0634 0.0576 0.0446 0.0341 0.0264

Tat [17] 0.0305 0.0287 0.0213 0.0170 0.0151
tct (Proposed) 5.5050 4.4175 2.9525 2.2125 1.4625

tct [17] 5.1675 4.1425 2.7774 2.0700 1.3750

Fig. 9. By choosing δ (t) < 10−2, the consensus converg-
ing time of or proposed protocol is 5.5050 (s), and that of
the ZOH-based protocol is 5.1675 (s).

In addition, we have also compared the average trigger-
ing intervals for the proposed FOH-based and the existing
ZOH-based protocols under different control gain c, and
the results are presented in Table 1. It is observed that the
average triggering interval obtained by the proposed pro-
tocol is longer than that obtained by the ZOH-based proto-
col. Evidently, since the control inputs of the agents under
the FOH-based protocol are updated less frequently, the
convergence rate is slower than that for the ZOH-based
protocol.

6. CONCLUSION

In this paper, we designed a distributed event-triggered
consensus protocol to solve the consensus problem of the
first-order nonlinear MASs with directed topology. Our
proposed protocol uses the FOH instead of the standard
ZOH to construct the event-triggered control signal. The
stability of the closed-loop system has been analyzed by
constructing Lyapunov function. In addition, it is also
proved that there is no Zeno-behavior when the proposed
FOH-based protocol is applied. Experimental results in-
dicate that triggering rate can be highly reduced by using
the FOH strategy. In our future work, we will focus on the
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event-triggered consensus control for second-order non-
linear MASs under denial-of-service attack.
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