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Fractional-order Sliding Mode Constraint Control for Manipulator Sys-
tems Using Grey Wolf and Whale Optimization Algorithms
Seong-Ik Han �

Abstract: This study investigates a new fractional-order nonsingular terminal sliding mode control (FTSMC) lever-
aging a finite-time extended state observer, a simpler prescribed control, and hybrid grey wolf optimization (GWO)
combined with whale optimization algorithm (WOA) for manipulator systems. The new FTSMC system is based
on an improved fractional-order terminal sliding surface. Initially, the study experimentally optimizes the dynamic
parameters and gains of the controller and the observer with the help of the newly developed GWO-WOA tech-
nique. As the next step, the uncertainties including optimization error and external disturbances are estimated by
the finite-time extended state observer designed using the sliding mode dynamics. Experimental results of GWO-
WOA optimization and joint position tracking for a self-designed articulated manipulator prove the efficacy of the
proposed control scheme.

Keywords: Experiemental grey-wolf and whale optimization, finite-time extended state observer, fractional-order
nonsingular terminal sliding mode control, manipulator systems, sliding mode constraint control.

1. INTRODUCTION

The sliding mode control (SMC) approach [1] has been
widely used owing to its attractive features of low sen-
sitivity to uncertainties, fast response, and easy realiza-
tion. To further improve the transient time performance
and to ensure finite-time convergence, the terminal slid-
ing mode control (TSMC) [2, 3] was developed to add
a nonlinear sliding surface to the first-order sliding sur-
face, which improve the robustness and tracking control
properties. However, the singularity issue that occurs in
achieving equivalent control via derivation of the termi-
nal sliding surface limits the applicability of the TSMC
approach. Thus, nonsingular terminal sliding mode con-
trollers (NTSMCs) were designed [4, 5] to overcome the
singularity issue and sustain the finite-time convergence
performance.

Fractional-order TSMC (FTSMC) methods [6–12] have
recently been proposed owing to their advantages of
fractional-order calculus over integer-order based TSMC
methods. Successful results have been obtained by apply-
ing FTSMC methods to several systems. This study pro-
poses a new fractional-order nonsingular sliding surface
that offers faster convergence compared to the previous
FTSMC systems. The proposed FTSMC surface helps in
avoiding the singularity issue while improving the con-

vergence control performance, comparing to the previ-
ous methods. Additionally, the extended state observer
provides feedforward compensation for modeling errors
and external disturbances, by utilizing finite-time second-
order sliding mode observer, thereby improving robust-
ness to uncertainties and reducing the conservativeness of
selecting switching control gains [13].

In most control systems, gains of the controller and the
observer are tuned using an iterative or a trial and error
method. With an increasing number of gains to be ad-
justed, tuning the gains becomes more time-consuming.
Popular bio-inspired optimization techniques, such as par-
ticle swarm optimization (PSO) [14], ant colony optimiza-
tion (ACO) [15], artificial bee colony (ABC) algorithm
[16,17] have been developed to optimize unknown system
parameters under minimization or maximization of the ob-
jective function. PSO is inspired by the social behavior of
bird flocking. It uses a number of particles (candidate so-
lutions) which fly around in the search space to find the
best solution. ACO algorithm is inspired by the social be-
havior of ants in an ant colony. In fact, the social intelli-
gence of ants in finding the closest path from the nest and
a source of food is the main inspiration of this algorithm.
ABC algorithm is a recently proposed optimization tech-
nique which simulates the intelligent foraging behavior of
honey bees.
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The recently developed grey wolf optimization (GWO)
technique [18–20] exhibited an improved optimization
performance, in comparison with the conventional PSO
and ACO techniques. However, to the best of our knowl-
edge, control system optimization via real-time experi-
ments has not been studied to date. Most of GWO adopted
simulation optimization process. Hence, although a few
applications of GWO to robotic systems have been re-
ported [21–24], yet these optimizations have been con-
ducted via off-line simulation. Moreover, the performance
of GWO technique can enhanced though GWO showed
the outperformed optimization results than other meta-
heuristic methods. Recently, whale optimization algo-
rithm (WOA) [25] inspired by the bubble-net hunting
strategy was studied. In [25], it was demonstrated that
WOA is very competitive compared to the state-of-the-
art optimization methods such as genetic algorithm (GA)
[26], PSO, gravitational search algorithm (GSA) [27].
Hence, if GWO and WOA are blended such that advan-
tages of individual methods are combined to maximize
synergy effect, more enhanced method can be obtained.

Based on this motivation, in this paper, we propose
a new hybrid GWO-WOA technique that offers a bet-
ter optimization performance than those of both GWO
and WOA techniques and we also proposed an experi-
ment optimization learning technique. For the purposes
of the study, we have executed the GWO-WOA process
via real-time experiment on the manipulator system. This
bio-inspired method bypasses the identification of the ma-
nipulator parameters and the time-consuming gain tuning
of the controller and the observer. The experimental opti-
mization method, which does not entirely depend on sim-
ulation optimization of conventional methods, can help in
designing a faster and more effective control system for a
manipulator compared to the conventional controller de-
sign systems.

Furthermore, the prescribed control method [28] was
developed to constrain the tracking error in the defined
boundary, guaranteeing good design performances in the
control system. However, the controller structure be-
came complicated as a result of the complex error func-
tion transformation procedures of the method. This study
presents a simpler prescribed control scheme to achieve
the prescribed control performance with easy realization
of the controller. The control scheme simultaneously con-
strains both the tracking error and its rate by constraining
the sliding surface, resulting in a more stable control.

The proposed control methods were applied to a self-
designed articulated manipulator. The successful exper-
imental parameter optimization procedure showed that
joint position tracking worked for the proposed FTSMC
surface, prescribed controller, observer, and GWO-WOA
technique. The obtained results can be effectively applied
to other manipulator control systems with easy realization.

2. DYNAMICS OF THE MANIPULATOR
SYSTEM

2.1. Dynamics of nonlinear MIMO strict-feedback
system

A nonlinear large-scale MIMO system is expressed by the
following dynamic equation:

M(q)q̈(t)+C(q, q̇)q̇(t)+G(q) = D(u(t))+L(t), (1)

where q, q̇, q̈ ∈ Rn×1 denote the generalized position, ve-
locity vector and acceleration vector, respectively; n is the
degree of freedom; M(q) ∈ Rn×n is the positive definite
moment of the inertia matrix; C(q, q̇) ∈ Rn×n is the cen-
tripetal Coriolis matrix; G(q) ∈ Rn×1 is the gravitational
vector; L ∈ Rn×1 is the 8disturbance vector including fric-
tion and external disturbance; u∈ Rn×1 is the control input
vector.

Assumption 1: There exist some finite positive con-
stants ρi > 0, i = M, C j, G, L such that ∀q ∈ Rn, ∀q̇ ∈ Rn,
‖M(q)‖ ≤ ρM , ‖C(q, q̇)‖ ≤ ρC1 + ρC2 ‖q̇‖, ‖G(q)‖ ≤ ρG,
and supt≥0 ‖L(t)‖ ≤ ρL.

Assumption 2: Two dynamic parameters of (6) can be
expressed as additive perturbations M(q) = KM +∆M(q),
C(q) =KC+∆C(q, q̇), and G(q) =KG ‖q‖+∆G(q), where
KM ∈ Rn×n, KC ∈ Rn×n, and KG ∈ Rn×1 are constant diago-
nal matrices and vector, respectively.

Assumption 3: There are approximated errors δM and
δG that are assumed to satisfy the following conditions:

‖M(q)−KM‖ ≤ δM,

‖C(q, q̇)−KC‖ ≤ δC,

‖G(q)−KG‖ ≤ δG.

(2)

The deadzone nonlinearity D(u) is described by

D(u) =


u(t)−dz for u(t)≥ dz,

0 for dz < u(t)< dz,

u(t)−dz for u(t)≤ dz,

(3)

where dz is the width of the deadzone. Setting ud(t) as the
control signal from the controller to achieve the control
object for the plant without a deadzone, control signal u(t)
is generated in accordance with the certainty equivalence
deadzone inverse [29]

u(t) =D−1(ud(t))

=(ud(t)+ d̂z)p+(ud(t)+ d̂z)(1− p), (4)

where d̂z is the estimate of d, p = 1 if ud(t)≥ 0 and p = 0
if ud(t) < 0 . Because the inertia and gravity terms are
more important than other dynamic terms in a manipulator
system, the reduced dynamics of (1) can be expressed as

KM q̈(t)+KG = ud(t)+N(q, t), (5)
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where KM ∈ Rn×n and KG ∈ Rn×n are unknown positive
diagonal constant matrices and N(q, t) ∈ Rn×1 is a lumped
unknown disturbance of N(q, t) = −∆M(q)q̈−C(q, q̇)q̇.
The state space representation of (1) is

ẋ1(t) = x2(t),

ẋ2(t) = f (x(t))+g(x(t))ud(t)+ fd(x(t), t),

y(t) = x1(t), (6)

where x1(t) = q(t), x2(t) = ẋ1(t), f (x(t)) = −K−1
M KG,

g(x(t)) =−K−1
M , and fd(x, t) = K−1

M N(q, t) is an unknown
lumped disturbance.

3. DESIGN OF CONTROLLER AND
DISTURBANCE OBSERVER

3.1. Definition of sliding surface and design of con-
troller

The PD-type ordinary function is the most popular sliding
surface [1]

s = ė+ c0e, (7)

where c0 > 0 is a constant diagonal matrix. To enhance the
error convergence time, a terminal sliding surface function
[3] was developed

s = ė+ c0e+ c1 |e|γ0 sgn(e), (8)

where c1 > 0 is a constant diagonal matrix and the termi-
nal gain γ0 is typically selected as 0 < γ0 < 1. c0 and γ0

regulate the convergence rate of the tracking error. In this
case, the time derivative to obtain the equivalent control
law is

ṡ = ë+φs0, (9)

where φs0 = c0 + c1γ0dia(|ei|γ0−1)ė. However, φs0can be
singular if ė 6= 0 and e = 0 because 0 < γ0 < 1 in (9), and
diag(|ei|γ0−1)ė becomes ė/diag(|ei|1−γ0). Thus, to pre-
vent the singularity of the terminal sliding surface, it was
changed to nonsingular type

s = ė+ c0e+ c1 |e|γ1 sign(e), (10)

where γ1 > 2. However, in this case, degradation of con-
vergence performance is inevitable when γ1 > 2. There-
fore, to make the system achieve faster convergence and
reach the equilibrium point in finite time without singu-
larity, nonsingular fractional-order terminal sliding mode
surfaces were developed [7, 8, 11]

σ = s+ c2sγ2 + c3ṡγ3 , (11)

σ = ṡ+ c3Dα3−1[|s|γ3 sign(s)], (12)

σ = ṡ+ c2Dα2 [|s|γ2 sign(s)]+ c3Dα3−1[|s|γ3 sign(s)],
(13)

where the Riemann-Liouville definition of fractional
derivative is given as follows [30]:

0Dα

t f (t) =
1

Γ(n−α)

dn

dtn

∫ t

0

f (τ)
(t− τ)α−n+1 dτ, (14)

where n is the first integer larger than α , i.e., n−1≤α < n
and Γ is the Gamma function. This study proposes a new
sliding surface

σ = Dα1 s+Dα2−1[c2s+ c3 |s|γ3 sign(s)], (15)

where c2 and c3 are positive constant diagonal matrices,
and 0 < αi ≤ 1,1 < γ2 < 2, and γ3 > 1 are constants. For
mathematical comparison of the nonsingular sliding sur-
face only between (13) and (14), when σ = 0 with the
case of s > 0, (13) and (15) can be written as

s =−c2Dα2−1sγ2 − c3Dα3−2sγ3 , (16)

s =−c2Dα2−α1−1s− c3Dα2−α1−1sγ3 . (17)

Since γi > 1, (17) has more flexibility to select the tun-
ing gain than (16) to make the surface to be zero and can
be converged to zero more rapidly than (16). To be shown
in graphical behavior, for σ(t) = 0, the selected parame-
ters were α1 = 0.2, α2 = 0.2, α3 = 0.2, c2 = 5, c3 = 2,
γ1 = 1.5, γ2 = 1.5, and γ3 = 1.5 under the initial condition
s(0) = 1.

Fig. 1 shows that the proposed sliding surface offers the
fastest convergence compared with other surfaces. Taking
the time derivative of (15) and applying D−α1 to both sides
of (15), we obtain

Dᾱ1 σ =ṡ+Dᾱ2 [c2s+ c3 |s|γ3 sign(s)]

= f (x, t)+g(x)ud(t)− ÿd(t)+d(x, t)+φs2,
(18)

where Dᾱ1 and Dᾱ2 are represented by D1−α1 and Dα2−α1 ,
respectively, and φs2 = φs1 +Dᾱ2 [c2s+ c3(|s|γ3 · sign(s)].

Fig. 1. Convegence of s(t).
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To design a controller, the following is defined:

Dᾱ1 σ =−k1σ − k2 |σ |1/2 sign(σ)− k3σ(|σ |+ ς)−1,
(19)

where k1σ corresponds to the control to attract the states
to the sliding surface, k3σ(|σ |+ ς)−1 acts the states to
remain within the sliding surface, and k2 |σ |1/2 sign(σ) is
the finite-time control term. Considering (18) and (19), a
fractional-order nonsingular sliding mode control law is
designed as

ud(t) =g−1(x)[− f (x, t)+ ÿd(t)−d(x, t)−φs2]

− k1σ − k2 |σ |1/2 sign(σ)− k3σ(|σ |+ ς)−1,
(20)

where ki, i = 1, 2, 3, are positive constant diagonal ma-
trices and ς > 0 is a constant. However, the disturbance
d(x, t)is not known a priori, so a disturbance observer to
estimate d(x, t) is considered.

3.2. Design of an extended state observer
The disturbance for the augmented state d(x, t) = fd(t)

in (6) is estimated by using the fractional extended state
observer From (10), the following dynamics can be con-
sidered

ṡ = f (x, t)+g(x)ud(t)− ÿd(t)+d(x, t)+φs1. (21)

A fractional-order extended state observer can be consid-
ered as

˙̂s(t) = f (x, t)+g(x)ud(t)− ÿd(t)+φs1 + d̂(x, t)

+κ1 |χ|γχ sign(χ)+κ2χ, (22)
˙̂d(x, t) = κ3sign(χ)+κ4χ, (23)

where χ = s− ŝ is the auxiliary error variable vector,
γχ > 1 is a constant, κi are positive constant matrices, and
ŝ(t) and d̂(x, t) are estimates of s(t) and d(x, t), respec-
tively. An error dynamics is considered for χ by defining
the system’s input d̃(x, t) such that the system converges
to the origin of the phase plane of χ− χ̇ in finite-time with
a twisting motion

χ̇(t) =−κ1 |χ(t)|γχ sign(χ(t))−κ2χ(t)+ d̃(x, t),
(24)

˙̃d(x, t) =−κ3sign(χ(t))−κ4χ(t)+ ḟd(x, t), (25)

where d̃(x, t) = d(x, t)− d̂(x, t) is the estimation error.
Thus, in finite time, d̃(x, t) → 0 if χ(t) → 0. In (25),
ḟd(x, t) is the uncertain term that satisfies the condition,∣∣ ḟd(x, t)

∣∣≤ δd1+δd2 |χ| for positive constants δd1 and δd2.

3.3. Design of prescribed sliding surface control
Considering the smooth decreasing positive perfor-

mance functions pc(t)

pc(t) = (pc0− pcs)e−at + pcs, (26)

where pc0 > 0, pcs > 0, a > 0, and lim
t→∞

pc(t) = pcs are con-
stant for a predefined tracking performance, transient per-
formance is guaranteed by the prescribed constraint con-
ditions of

−pc(t)< σ(t)< pc(t). (27)

Constraint function for the sliding surface is expressed as

Φc = tan
(

σ(t)
pc(t)

)
, (28)

where Φc is a smooth function that satisfies the following
condition:

0≤Φc < κc tan(1), (29)

where lim
σ>0→pc

Φc = tan(1) and lim
σ<0→−pc

Φc = tan(1). Us-

ing (29), the constraining controller can be constructed as
follows:

uc =−k4Θcσ , (30)

where Θc = Φcsign(σ) and k4 > 0 is a constant. As the
next step, a fractional-order finite-time sliding mode con-
troller, with an error surface constraint, is designed

ud(t) =g(x)−1[− f (x, t)+ ÿd(t)− d̂(x, t)−φs1]− k1σ

− k2 |σ |1/2 sign(σ)− k3σ(|σ |+ ς)−1

+g(x)−1uc. (31)

4. STABILITY ANALYSIS

Theorem 1: Consider the perturbed dynamics in (21),
(22), and (6), with the controller expressed in (31). The
errors χ(t) and d̃(x, t) in (24) and (25) converge to zero in
finite time if the gains κi satisfy the following conditions:

κ1 > 0, κ2 >
1
2

√
2δd2, κ3 > δd1,

κ4 >

[( 1
2 κ3

1 (2κ2
2 −δd2)+( 5

2 κ2
2 +δd2)

)
p1(

p1− 1
2 κ3

1

) − 1
2

κ2

]
,

p1 = κ1

(
1
4

κ
2
1 −δd1

)
+

1
2

κ1

(
2κ3 +

1
2

κ
2
1

)
. (32)

Proof: This proof is similar to that in [13] and then is
proved as follows: The Lyapunov function is defined as
Vξ = ξ T Θξ , where

ξ =
[
|χ|1/2 sign(χ) χ d̃

]T
,

Θ =
1
2

(4κ3 +κ2
1 ) κ1κ2 −κ1

κ1κ2 (2κ4 +κ2
2 ) −κ2

−κ1 −κ2 2

 .
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The time derivative along the trajectories of the system
with (24) and (25) is given by

V̇ξ =− 1

|χ|1/2 ξ
T

Ψ1ξ −ξ
T

Ψ2 +ψ
T
1 ξ , (33)

where ψ1 = [−δd1κ1 −δd1κ2 0]T . By using the bounds of
ḟd(x, t), it follows that

ψ
T
1 ξ ≤ 1

|χ|1/2 ξ
T

∆1ξ +ξ
T

∆2ξ , (34)

where

∆1 =

δd1κ1 0 0
0 δd2κ1 0
0 0 0

 , ∆2 =

δd1κ2 0 0
0 δd2κ2 0
0 0 0

 .
Equation (31) can then be rewritten as

V̇ξ =− 1

|χ|1/2 ξ
T (Ψ1−∆1)ξ −ξ

T (Ψ2−∆2)ξ . (35)

Ψ1 > ∆1 if κ1 > 0, κ2 > 1
2

√
2δd2, κ3 > δd1, and κ4 >[

( 1
2 κ3

1 (2κ2
2−δd2)+( 5

2 κ2
2+δd2))p1

(p1− 1
2 κ3

1)
− 1

2 κ2

]
. Next, Ψ2 > ∆2 if κ2 >

0, κ3 > δd1−2κ2
1 , and κ4 > κ2

2 +δd2. Considering the up-
per bounds for Ψ1 > ∆1 and Ψ2 > ∆2, the parameter con-
ditions in (32) guarantee the conditions of both Ψ1 > ∆1

and Ψ2 > ∆2. Thus, the global asymptotic stability and the
finite-time convergence are guaranteed and therefore, χ(t)
and d̃(t) converge to zero in finite-time. �

Assumption 4 [6]: The following condition is satisfied:∣∣∣∣∣ ∞

∑
j=1

Γ(1+ ᾱ2)

Γ(1− j+ᾱ2)Γ(1+ j)
D j

σDᾱ2− j
σ

∣∣∣∣∣≤ η |σ | , (36)

where η is a positive constant.
Lemma 1: Based on the Assumption 4, the following

condition is satisfied:∣∣∣∣∣ ∞

∑
j=1

Γ(1+ ᾱ2)

Γ(1− j+ᾱ2)Γ(1+ j)
D j

σDᾱ2−j
σ

∣∣∣∣∣≤η |σ |ζ , (37)

where ζ is a positive constant.
Proof: The following condition is obtained due to ζ >

1: If |σ |< 1, it follows that∣∣∣∣∣ ∞

∑
j=1

Γ(1+ ᾱ2)

Γ(1− j+ᾱ2)Γ(1+ j)
Dj

σDᾱ2−j
σ

∣∣∣∣∣≤η |σ |ζ <η |σ | .

(38)

If |σ | ≥ 1, it follows that∣∣∣∣∣ ∞

∑
j=1

Γ(1+ ᾱ2)

Γ(1− j+ᾱ2)Γ(1+ j)
Dj

σDᾱ2−j
σ

∣∣∣∣∣≤η |σ |≤η |σ |ζ.

(39)

Therefore, regardless of the|σ |, (37) is obtained if the As-
sumption 4 is satisfied. �

Theorem 2: Consider the dynamic system given in
(6), the sliding mode surfaces in (15), and control input
in (31). The second sliding mode surface converges to
the origin σ = 0 in finite-time tσ f ≤ [V ᾱ1−2

σ (tσr)/((k2 −
η)Λ)]1/(1−ᾱ1), where tσr is the time to reach from σ 6= 0 to
σ = 0, and k2, η , and Λ are positive constants.

Proof: By using Lemma 1 and defining the Lyapunov
function as Vσ = 1

2 σ T σ , applying the fractional operator
Dᾱ1 to the function with (16), and setting ζ = 3

2 , one ob-
tains

Dᾱ1Vσ =σDᾱ1 σ

+

∣∣∣∣∣ ∞

∑
j=1

Γ(1+ ᾱ1)

Γ(1− j+ ᾱ1)Γ(1+ j)
D j

σDᾱ1− j
σ

∣∣∣∣∣
≤σ [ f (x, t)+g(x)ud(t)− ÿd(t)+d(x, t)

+φs2]+η |σ |3/2 . (40)

Substituting (31) into (40), one obtains

Dᾱ1V̇σ ≤σ
T [d̃(x, t)− k2 |σ |1/2 sign(σ)

− k3σ(|σ |+ ς)−1− k4Θcσ ]+η |σ |3/2

≤σ
T [−k1σ − k2 |σ |1/2 sign(σ)]−Θc |σ |2

+η |σ |3/2+|σ |
∣∣d̃(x, t)∣∣−k3σ

T
σ(|σ |+ς)−1

≤− k1σ
T

σ − k2 |σ |3/2 +η |σ |3/2

−|σ |
(
k3 |σ |(|σ |+ ς)−1−δdm

)
. (41)

In (41), if k3 is selected such that k3 |σ |(|σ |+ ς)−1 ≥ δdm

is satisfied with
∣∣d̃′(x, t)∣∣≤ δdm, the condition

Dᾱ1Vσ ≤−(k2−η) |σ |3/2 , (42)

where k2 is selected appropriately such that k2 >η is satis-
fied. Taking fractional-order integral of (42) from reaching
time tσr to settling time tσ f , one obtains

Vσ (tσ f )−Vσ (tσr)
t ᾱ1−2
σ f

Γ(ᾱ1−1)
≤−(k2−η)D1−ᾱ1 |σ |3/2 .

(43)

Based on [6], there is a positive constant Λ such that
D1−ᾱ1 |σ |3/2 ≥ Λ. (43) can be expressed as

−Vσ (tσr)
t ᾱ1−2
σ f

Γ(ᾱ1−1)
≤−(k2−η)Λ, (44)

because Vσ (tσ f ) = 0 due to σ = 0 at tσ f in (41). Thus, one
obtains

tσ f ≤

(
V ᾱ1−2

σ (tσr)

Γ(ᾱ1−1)(k2−η)Λ

)1/(2−ᾱ1)

. (45)

Therefore, based on the Theorem 1, the tracking error e(t)
and sliding surface s(t) also converge to zero in finite-time
as does the sliding surface σ(t). �
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5. EXPERIMENTAL PARAMETER
OPTIMIZATIOIN USING HYBRID GREY

WOLF AND WHALE ALGORITHM

5.1. Hybrid grey-wolf and whale optimization algo-
rithm

The GWO technique [18–24] is inspired by nature and fol-
lows the leadership and hunting mechanism of the grey
wolf in its environment. Four types of grey wolves are en-
gaged to optimize unknown parameters: alpha (αw), beta
(βw), omega (ωw), and delta (δw). In the entire search
space, the three best located alpha, beta, and delta grey
wolves help in directing the remaining omega wolves to-
ward the best location. The following equations are con-
sidered to mathematically model the encircling behavior:

~Dg =
∣∣∣~Cg~Xp(t)−~Xg(t)

∣∣∣ , (46)

~Xg(t +1) = ~Xp(t)−~Ag~Dg, (47)

where t indicates the current iteration, ~Ag and ~Cg are coef-
ficient vectors, ~Xp is the position vector of the prey, and ~Xg

indicates the position vector of the grey wolf. The vectors
~Ag and ~Cg are calculated as follows:

~Ag = 2~a~r1−~a,~Cg = 2~r2, (48)

where ~a are linearly reduced from 2 to 0 over the course
of iteration, r1 and r2 are random vectors in [0, 1]. The
following different mathematical equations are utilized to
evaluate the hunting action of the prey:

~Di =
∣∣∣~Cg j~Xi−~Xg

∣∣∣ , i = αw, βw, δw, j = 1,2,3, (49)

~Xgi = ~Xi−~Ag j(~Di), i = αw, βw, δw, j = 1,2,3, (50)

~Xg(t +1) =
~Xgαw +~Xgβw +~Xgδw

3
. (51)

Humpback whales use a unique hunting method called
the bubble-net feeding method [25]. Humpback whales
prefer to hunt school of krill or small fish close to the sur-
face. The updating behavior of humpback whales when
encircling their prey is represented by the following equa-
tions:

~D =
∣∣∣~C~X∗w(t)−~Xw(t)

∣∣∣ , (52)

~Xw(t +1) = ~X∗w−~Aw ·~Dw, (53)

where t indicates the current iteration, ~Aw and ~Cw are co-
efficient vectors, ~X∗w is the position vector of the best so-
lution, ~Xw is the position vector of the humpback whale,
and · represents an element-by-element multiplication. X∗w
is updated in each iteration if there is a better solution.
Vectors ~Aw and ~Cw are similarly calculated by (48). The
humpback whales swim around the prey within a shrink-
ing circle and along a spiral path simultaneously. Includ-
ing this behavior and assuming a probability of 50% to

choose either the shrinking encircling mechanism or the
spiral model to update the position of whales during opti-
mization leads to the following mathematical model:

~Xw(t +1) =

{
~X∗w(t)−~Aw ·~Dw if p < 0.5,
~D′w · ebl · cos(2πt)+~X∗w(t) if p≥ 0.5,

(54)

where ~D′w =
∣∣∣~X∗w(t)−~Xw(t)

∣∣∣ indicates the distance of the
ith whale to the prey, b is a constant for defining the shape
of the logarithmic spiral,l is a random number in [−1, 1],
and p is a random number in [0, 1]. In this study, we com-
bine the GWO and WOA optimization techniques such
that

~Xg(t +1) =
~Xw +~Xgβw +~Xgδw

3
(55)

by introducing (55) into (51) instead of~Xgαw . This hybrid
technique improves the optimization performance over the
performance of the GWO and WOA techniques individu-
ally.

5.2. Experimental optimization strategy of the manip-
ulator parameters and the proposed controller and
observer

The unknown parameters of the manipulator and tuning
gains of the controller and observer were experimentally
optimized by the proposed GWO-WOA technique. We de-
signed the articulated manipulator with dynamixel servo
motors. Fig. 2 shows the 3D CAD drawing and photo-
graph of the manipulator.

In this study, only three links among them were se-
lected to apply the control system excluding the wrist axis.
The specifications of the manipulator dynamics with the
dynamixel servo motors (XM540-W270-R) assembled in
each joint are given as, m1 = 1.2 kg, m2 = 0.6 kg, m3 = 0.7
kg, l1 = 0.1 m, and l2 = l3 = 0.2 m. To control the dy-
namixel servo motor equipped in each joint of the manip-
ulator, the R+ manager was installed. The torque mode

(a) (b)

Fig. 2. Self-designed articulated manipulator system. (a)
3D drawing. (b) Photograph.
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of the dynamixel motor was set and the data communica-
tion line via the USB serial port connected to each joint
motor was checked. Next, the path in the Matlab package
was added and support packages such as DynamixelSDK-
master and the MinGW-w64 C/C++ compiler were in-
stalled. After setting the torque mode, we executed the
following Matlab code to create the object of the slDxl
class:

myDxl = slDxl(’COMi’, 57600);
myDxl.doEnableTorque(i); i =1,2,3

To release the torque mode, we executed the following
command:

myDxl.doDisableTorque(i), i = 1,2,3.
These torque control commands were used in the

process of the experimental GWO-WOA optimization
and end-effector tracking experiment. The GWO-WOA
pseudo code with the experimental optimization is given
as follows:

Initialize the grey wolf and whale population Xgβwi ,
Xgδwi , and Xwi(i=1,2,3) % i is a link number

Initialize a, A, C, l , and p
Calculate the fitness of each search agent

Xwi= the best search agent of whale
Xgβwi = the second best search agent of grey wolf
Xgδwi = the third best search agent of grey wolf

while (t < Max number of epoch)
myDxl.doEnableTorque(i)
for each search agent
Update a, A, C, l, and p
Update the position of the current search agent by
the above equations
Calculate the fitness of all search agents using real-
time
Matlab simulink

fitness = simulink-script- file(Xgi4)

UpdateXwi,Xgβ wi, andXgδwi

myDxl.doDisableTorque(i) t = t+1 end while
myDxl.doEnsableTorque(i)

returnXgi = (Xwi +Xgβwi +Xgδwi)/3.

The controller used in the GWO-WOA was imple-
mented by the Matlab real-time simulink model.

5.3. Results of experimental GWO-WOA optimiza-
tion

The performance criteria used to define the objective func-
tion were selected as the minimization of the integral time
absolute error (ITAE). Some important features of ITAE
are that (a) the absolute error minimizes the percentage of
overshoot, and (b) the time multiplication term minimizes
the oscillations in the further response and effectively re-
duces settling time. The ITAE-based objective function is
expressed as

Table 1. Final ITAE value of the WOA, GWO, GWO-
WOA technique.

Technique Link 1 Link 2 Link 3
WOA 0.032 (100%) 0.39 (100%) 0.023 (100%)
GWO 0.027 (84%) 0.029 (74%) 0.019 (83%)

GWO-WOA 0.024(75%) 0.022(56%) 0.018 (78%)

Ob jective_ f unction = ITAE =
∫

t |e(t)|dt. (56)

The objective function was minimized such that 18×
no. o f link = 36 constraint conditions with the upper and
lower bounds for the unknown manipulator dynamics and
tuning gains of controller and observer: KMi, KGi, d̂zi, c ji,
j = 0, 1, 2, 3, i = 1, 2, 3, α ji, j = 1, 2, i = 1, 2, 3, γ ji,
j = 1, 3, i = 1, 2, 3, k ji, j = 1, 2, 3, i = 1, 2, 3, κ ji,
j = 1, 2, 3, 4, i = 1, 2, 3. The prescribed control tuning
gain k4i was not optimized because the special condition
must be considered in this control case. The test position
command inputs for optimization were selected as qd1 =
0.125sin(1.26t)+1.84 rad, qd2 = 0.125sin(1.26t)+2.76
rad, and qd2 = 0.125sin(1.26t)+3.07 rad. The number of
agent in each link was set as 5 and maximum epoch was
30.

Fig. 3(a) shows the tracking outputs in each link until
5 epochs optimized by the GWO-WOA technique. It can
be shown that the tracking performances increasingly im-
proved according to increase in epoch number in all links.
In the final epoch, more, all parameters are converged to
the optimized values. Fig. 3(b) shows the fitness value
of the GWO, WOA, and GWO-WOA techniques in each
link. First of all, the convergence speed is very impor-
tant performance in the optimization technique. As seen
Figs. 3(d), (e), and (f), the GWO-WOA reaches the min-
imum ITAE values most rapidly within about 10 epochs
than the other techniques. Next, it is seen that the size of
ITAE maintains until the end of epoch. Table 1 presents
the obtained ITAE fitness values of three techniques. In
Table 1, the ITAE size of the proposed method deceases
until maximum 56% of that of WOA.

Since these metaheuristic methods use the random val-
ues in initial steps, the final estimation results may vary a
little in each estimation experiment. Therefore, several it-
erational optimization experiments were reprated and the
average values are summarized in Table 1. From these re-
sults, it can be shown that the proposed GWO-WOA tech-
nique outperforms compared with other two techniques.

However, the main difficulty of the proposed GWO-
WOA including GWO technique is the setting of the opti-
mization boundaries of each parameter. Now, the bound-
ary setting can’t help depending on the individual expe-
rience and engineering sensitivity. Further setting method
for the boundary setting of the parameters is necessary in
next time.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Experimental optimization results in each link. Tracking output for the testing command inputs according to op-
timizing epochs of the GWO-WOA: (a) link 1, (b) link2, and (c) link 3. Fitness values of the GWO, WOA, and
GWO-WOA techniques: (d) link 1, (e) link 2, and (f) link 3.

6. EXPERIMENTAL RESULT FOR THE
END-EFFECTOR POSITIONING OF THE

MANIPULATOR

Based on the optimized control gains, the end-effector
tracking experiment for the manipulator was executed.
For comparison of the control performance, three con-
trollers were designed: the terminal nonsingular sliding
mode controller (TSMC) based on (10), which was de-

signed as

ud(t) =g−1(x)[− f (x, t)+ ÿd(t)− d̂(x, t)−φs1]

− k1s− k2 |s|1/2 sign(s)− k3s(|s|+ ς)−1,
(57)

the fractional order terminal nonsingular sliding mode
controller (FTSMC) without prescribed control and the
fractional order terminal nonsingular sliding mode con-
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Table 2. Optimized controller parameters.

Joint Optimized values of each parameter

Joint1
KM1 = 0.045, KC1 = 0, KG1 = 0, Dz1 = 0.11,
c21 = 5.3, c31 = 6.5, k11 = 0.13, k21 = 14.7, k31 = 1.64,
α11 = 0.31, α21 = 0.29, γ31 = 1.03

Joint2
KM2 = 0.001, KC2 = 0.005, KG2 = 0.1,
c22 = 1.3, c32 = 1, k12 = 5, k22 = 10, k32 = 19,
]-0.2pc] α12 = 0.23, α22 = 0.4, γ32 = 1.1

Joint3
KM3 = 0.006, KC3 = 0.0014, KG3 = 0.14,
c32 = 1.66, c32 = 10, k13 = 9, k23 = 1.7, k33 = 1,
α13 = 0.29, α23 = 0.15, γ33 = 1.05

Fig. 4. Block diagram of the implemented controller.

troller with prescribed control (PFTSMC). The parame-
ters and gains for the prescribed control were selected
as pc0i = 3.834, ps1 = 1.227, ps2 = ps2 = 0.614, a1 = 2,
a2 = a3 = 1, and k41 = 12, k42 = 20, k43 = 5. The opti-
mized controller parameters are presented in Table 2.

Remark 1: The fractional-order parameters in Table 2
are much sensitive to the control performance than others
because these determine the property of the sliding sur-
faces.

Fig. 4 shows the block diagram constructed by the
Matlab simulink realtime package combined with the dy-
namixel motor library.

The desired position of the end-effector in Cartesian co-
ordinate was selected as follows:

xr(t) = 400 mm, yr(t) =−195+19.5t mm,

zr(t) =−120sin(0.016(y(t)+195))+330 mm.
(58)

The sampling frequency was 100Hz. The experimental
results of the articulated manipulator system are presented
in Fig. 6 for the tracking command trajectory given in (58)
and Fig. 5. Fig. 5(b) represents the inverse position of each
joint for the rectangular position of the end-effector given

(a) (b)

Fig. 5. Cartesian position of the end-effector and inverse
joint angles of each link. (a) Trace of the movement
of the end-effector. (b) Inverse joint angle of each
link.

in (58). The tracking errors of each link are presented in
Figs. 6(a), (b), and (c), where the error size of the proposed
PFTSMC system is smaller than those of the other two
systems. The estimated results for the first sliding mode
surface of the FTSMC system given in (10) are presented
in Figs. 6(d), (e), and (f). It is expected that the extended
state observer of (22) can accurately estimate the unknown
uncertainty from these results. For the designedσi, the pre-
scribed control effectively constrains the rising effect of
σi and the tracking error ei, its rate ėi and the sliding sur-
face si decrease indirectly. Thus, the tracking errors of the
PFTSMC system can be made significantly smaller than
those of the FTSMC by constraining the second sliding
mode surface σi.

Finally, the control inputs of the PFTSMC system are
presented in Fig. 6(j), where the second joint requires
a higher control torque than the other joints because it
should support the load of the third link including the
load of the second link. Therefore, we showed through the
experimental verfication that the proposed GWO-WOA
technique offers a more advanced optimization perfor-
mance than the conventional GWO and WOA techniques
and that PFTSMC and the extended observer deliver out-
standing performances.

7. CONCLUSION

In this study, a fractional-order nonsingular terminal
sliding controller with prescribed control (PFTSMC), op-
timized by a hybrid GWO-WOA technique, was designed
to achieve a more precise position tracking performance
and faster controller design procedure for robotic ma-
nipulators. The improved PFTSMC offers a simpler pre-
scribed control and extended state observer, and it also of-
fers an improved GWO-WOA technique and experimen-
tal parameter optimization process, which could not be
achieved in earlier bio-inspired optimization studies. This
study enables a more precise motion control performance
and an easier controller design for manipulator systems,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 6. Experimental results of the manipulator. (a) Joint angle tracking errors of link1. (b) Joint angle tracking errors
of link2. (c) Joint angle tracking errors of link3. (d) Estimate ŝ1. (e) Estimate ŝ2. (f) Estimate ŝ3. (g), (h), and (i)
Prescribed function and for each link. (j) Control inputs of the PFTSMC system.

without consuming considerable amount of time and ef-
fort to tune the parameters of the control system through
direct experimental optimization. As a next study, an au-
tomatic setting method for the parameter boundary limi-
tation of the metaheuristic method combined with neural
networks or fuzzy logic system is necessary.
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