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SD-TCSs Control Deriving from Fractional-order Sliding Mode and
Fuzzy-compensator
Sy Dzung Nguyen* � and Vien Quoc Nguyen

Abstract: Uncertainty and disturbance (UAD) always exist and influence negatively on technical systems. Focus-
ing on improving the effectiveness of smart dampers (SDs)-based semi-active train-car suspensions (SD-TCSs),
we present the fuzzy-compensator-enhanced fractional-derivative (FD) order sliding control of a class of SD-TCSs
subjected to UAD, in which the disturbance time-varying rate (DTVR) may be high but bounded. To reduce uncer-
tainty related to the mathematical model error, we propose a fractional derivative (FD)-based sliding mode controller
(FDSMC) for specifying the main control signal. Whereas, to estimate the compensation for external disturbance,
first, we utilize the well-known DO to build an initial framework of the compensator. To avoid conflict between
the update-laws of the DO and FDSMC, as well as to make the system dynamic response converge stably to the
desired state even if the DTVR increasing but bounded, constraints along with a fuzzy-based adjusting mechanism
are then discovered. Thus, we obtain an improved DO (imDO), update-laws of the imDO and FDSMC, and their
combination model (imDO-FDSMC) of the proposed controller. The survey results reflect the positive capability of
the method.

Keywords: Disturbance observer (DO), fractional-order sliding control, magneto-rheological damper (MRD),
MRD train-car suspensions.

1. INTRODUCTION

Smart dampers (SDs), for example, the magneto-
rheological damper (MRDs) has been widely applied to
vibration control systems [1]. To control SD-based sus-
pensions well, together with the building reasonable con-
trol strategies, seeking appropriate solutions for prevent-
ing the negative impact of UAD is also vital. The lack
of accuracy of the measurement devices and methods, the
error of mathematical models describing the systems, in-
cluding the hysteretic dynamic response of the smart flu-
ids, and the unknown influence of the surrounding envi-
ronment on the systems are the main causes of UAD [2–5].
In this study we concern with the control of SD-TCSs sub-
jected to UAD whose DTVR may be high but bounded.
Better depicting the system’s dynamic response to reduce
the model error, and quantifying compensation for UAD
closer to its real influence are considered.

Obviously, the negative participation of unknown as-
pects or uncertainty features results in inaccuracy in the
generated control signal. Therefore, many disturbance ob-
servers (DO) have been discovered to deal with this is-

sue [4,5]. The well-known DO [5] has been applied effec-
tively to several fields such as controlling ballistic trajec-
tory or vibration. One can refer to the control of a class
of smart suspensions subjected to UAD in [4]. It consisted
of a sliding mode controller (SMC) and a lumped distur-
bance observer. However, the controllers [4,5] could be
seen as tools fit for only the cases of the DTVR very low.
Recently, applications of fractional calculus have been
rapidly growing in the fields of physics, applied mathe-
matics, engineering, and also in nonlinear control [6–13].
Being different from the traditional ways, fractional calcu-
lus deals with arbitrary order derivatives and integrations
[6–9]. With the participating of FD, the complex nature
of many technical systems can be more precisely modeled
[6–8]. This can be seen as an approach to mitigate UAD.
Although fractional operators provide significant advan-
tages for the nonlinear control field, the stability analysis
for the closed-loop systems is very difficult related to the
derivative properties [10]. There have been some solutions
to overcome this issue partly. The theoretical basis devel-
opments in [10,11] allowed to preserve the most interest-
ing and useful FD properties, even in the case of not neces-
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sarily integer-order differentiable functions. Another way
regarding the FD-based control systems with their deriva-
tive order very close to the integer-order can be referred to
in [6,8]. In these, for simplicity, one combined the proper-
ties of the integer- and fractional-order systems in analyz-
ing the asymptotic stability of quadratic Lyapunov func-
tions to seek control laws. Besides, reality has shown that
fuzzy logic is a flexible tool; it allows modification in the
rules and even dealing with imprecise, distorted, and error
input information. This, hence, has inspired researchers
in seeking suitable solutions for challenges coming from
the control of nonlinear systems in the presence of UAD
[14–16]. Especially, a combination of fuzzy logic, FD, and
SMC can be set up to exploit their advantages [6–8].

SMC takes the role of a framework to set up control
laws. The main advantages of SMC are the robustness
against uncertainty, the adaptive ability to deal with ex-
ternal disturbance, and the simplicity in implementation
[1,17]. Theoretically, from a sliding surface expressing the
control aim, the first phase (or the reaching one) starts
from a certain initial condition and moves towards the
sliding surface. It finishes as the trajectory converging
to the sliding surface to begin the second phase (sliding
phase). The fast response time in the first phase and the
stability of holding or adhesion to the sliding surface in the
second phase reflects the quality of SMC [1,2]. In the ideal
case without UAD, the system states often move along the
sliding surface. So, for simplicity, linear functions with
constant parameters are the fit option to depict this surface
[18]. In fact, due to always existing UAD, imperfections
in the control action deriving from UAD often result in the
chattering status [19]. To face this, rather than forcing the
states to remain on the sliding surface like the ideal case,
one only requires them to move in a certain neighborhood
close enough to the sliding surface. Also, different kinds
of sliding surfaces have been proposed, such as the con-
stant nonlinear [20], nonlinear discrete moving [21], or
nonlinear continuous moving one [22]. Generally, sliding
surfaces can be classified into two groups: the linear slid-
ing surfaces (LSSs) and the moving nonlinear sliding sur-
faces (MNSSs). Despite the simplicity, the use of the LSSs
has certain disadvantages. For instance, the control signal
required to keep the system states on or in the neighbor-
hood of the LSSs usually increases in direct proportion
to the magnitude of the tracking error. This may exceed
the responding ability of actuators. Another problem of-
ten arises when states of the controlled system touch the
surface. As usual, at this time and the next duration, the
dynamic characteristics of the controlled system are of-
ten replaced by that of the sliding surface to estimate the
control laws; so, for LSS, it is difficult to seek a replace-
ment fit enough. In this context, MNSS can take the role
better [23]. Also, MNSS-based algorithms can lessen the
reaching time as well as improve the stability in the second
phase. However, for such an MNSS, there exist difficul-

ties in describing and determining its time-varying param-
eters. Moreover, setting up the control law and quantifying
the stability boundaries are also challenges [17]. The prob-
lem here is how to exploit the advantages of both, LSS and
MNSS, for the control of SD-TCSs.

So far, applications of FD for smart suspension systems
have concentrated on either describing equipment partici-
pating in the systems such as [12,13] or establishing non-
linear control laws as in [6,8]. A combination of the strong
points of the LSS and MNSS performed through the FD-
based nonlinear sliding surfaces was shown in [6,8]. In
these, by using optimal derivative-orders, the FD-based
sliding surfaces in the form of an LSS were able to re-
flect the global dynamics of the controlled systems better
than that of the traditional LSS and more simply than the
MNSS. The different control laws for SD-TCSs, a half-car
model, were discovered. Thus, they could control more ef-
fectively to minimize the translational and rotational chas-
sis vibrations independently [6] or compromisingly [8].
However, the two methods had to rely on the assumption
that there existed certain methods to estimate UAD accu-
rately. So, the following problems make our research mo-
tivation.

1) How to develop an FD-based controller for SD-TCSs
including a DO which can quantify the compensation
converging to the wanted value to mitigate the negative
impact of UAD?

2) What are the important observations/notes when using
FD for the control field?

Consequently, in this paper, we present a fractional-
order sliding controller enhanced by a compensator for a
class of SD-TCSs, quarter-railroad-car model, subjected
to UAD whose DTVR may be high but bounded. The con-
troller named imDO-FDSMC is a combination of an im-
proved DO (imDO), deriving from the DO presented in
[4], and an FD-based SMC (FDSMC). First, an FD-based
nonlinear sliding surface is defined, from which the con-
trol and update laws are then developed. In this process,
FD takes part in reducing uncertainty status related to the
mathematical model error. To build the compensator, first,
we build its initial framework; two solutions for ensuring
the effectiveness of the method are then proposed. The
first one relates to a constraint mechanism to avoid con-
flict between the update laws of the DO and FDSMC. The
second one is an adaptive fuzzy law (AFL) for enhancing
the stable zero-convergence ability of the sliding surface.

The main contributions in this paper are as follows: The
first one is the proposed initial framework of the controller
described via the FD-based SMC (see Theorem 1). This
makes advantages of the FDSMC compared with the tra-
ditional SMC as in [1,4,24] in mitigating model error. The
second is the proposed constraint mechanism and the AFL
to set up the update laws of the imDO and FDSMC (see
Theorem 2). Thus, the imDO-FDSMC can overcome the
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difficulty of the method [4] when facing with UAD whose
DTVR may be high but bounded. Also, the imDO is seen
as a supplement to the assumptions set out in [6,8]. The
last one comes from the surveys and conclusion in Sec-
tions 4 and 5 which provide application-oriented informa-
tion for the FD in the control field.

2. ISSUE FORMULATION AND APPROACH

2.1. Mathematical model of the survey object
We build a quarter-railroad-car model via a controllable

bogie considering the impact of the rails, precast con-
crete panels, and concrete support layers on the system dy-
namic response. Fig. 1(a) depicts the bogie shown in http:
//passion-trains.over-blog.com/article-8965339.html.

The primary and secondary suspensions are the main
systems for stamping out the vibration of the railroad car.
In bogies of high-speed railroad cars, smart suspensions
are often used. Let consider a smart bogie using an MRD
installed in the secondary suspension. To build its math-
ematical model, we employ the dynamic analysis model

Fig. 1. (a) Structure of the bogie and (b) the pro-
posed MRD-based suspension quarter-railroad-car
model.

of a vehicle-track coupling system showed in [25]. Each
rail, precast track slab, and the concrete support layer is
modeled as a 2D-beam element with the corresponding
continuous viscoelastic support. By using equivalent vis-
coelastic factors, we describe each half of the bogie as a
quarter-railroad-car model as in Fig. 1(b), where (1) and
(2), respectively correspond to the secondary and primary
suspensions in Fig. 1(a); while (3) is the area to be con-
stituted of the rails, precast concrete panels, and concrete
support layers. In area (1), the equivalent spring stiffness
and damping coefficients are denoted by ks and cs; the
MRD is installed here to create control force u(t). In ar-
eas (2) and (3), the viscoelastic behavior from the con-
tinuous viscoelastic support of the rails, track slabs, and
concrete layer impacts directly on the the primary suspen-
sion. Therefore, we denote the stiffness and damping co-
efficients of area (2) considering the impact coming from
area (3) by equivalent stiffness and damping coefficients
kt and ct , respectively. Thus, uncertainty due to the model
error always exists. We thereby denote all the unknown
lumped model error and external disturbance by time pa-
rameter d(t).

The volume acting on half of the bogie in Fig. 1(a) is
the sprung mass or chassis mass ms(t) in Fig. 1(b). It is
constituted of the passenger mass, cargo mass, the vertical
aerodynamic component, and the mass of the framework.
This is an unknown time-varying parameter. The known
unsprung mass mu includes the wheels, shaft, brakes, sus-
pension linkage, and so on. The vertical displacement of
ms, mu and the track profile are denoted by zs, zu and zr.
The spring and damper forces generated by ks, kt , cs, ct are
fs, fts, fd , ftd . The controller has to estimate u(t) to stamp
out chassis vibration.

Assumption 1: There exists a known thresholds of
ms(t) : ms = min(ms(t)) and ms = max(ms(t)),

ms ≤ ms(t)≤ ms. (1)

Assumption 2: Related to the spring stiffness and
damping coefficients, ks and cs are observable; kt = kt(t)
and ct = ct(t) are time-varying parameters unknown and
bounded.

Assumption 3: For UAD, the uncertainty comes from
the model errors while the disturbance relates to two
sources. The first is the random change in the load in-
cluding the vertical aerodynamic component which par-
ticipates in ms(t). The second derives from the unstable
support of the rails, track slabs, and concrete support layer
which relates to the unknown kt = kt(t) and ct = ct(t). All
the lumped UAD is denoted by d(t) as in Fig. 1(b). The
time-varying rate of d(t) may be high but bounded by a
known value, |ḋ(t)|< Ω.

Be noted that to design technique systems, generally,
one has to know at least the maximum and minimum
thresholds of the related technical parameters; from these

http://passion-trains.over-blog.com/article-8965339.html
http://passion-trains.over-blog.com/article-8965339.html
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thresholds, their normal values are estimated. Here, actu-
ally, the unknown ms(t), kt = kt(t) and ct = ct(t) impact
directly on the suspension. However, their known nomi-
nal values msn, ktn and ctn, respectively, are used to cal-
culate the main part in u(t), the error is then estimated to
compensate. These aspects reflect the reasonability of the
above assumptions.

2.2. Issue formulation and solution
For a quarter car model, the suspension system can be

depicted via a state vector x(t) as follows:{
ẋ(t) = f(x, t)+g1(t)u(t)+g2(t)d(t),

y(t) = x1(t),
(2)

where x(t) =
[
x1, x2, x3, x4

]T
=
[
zs, żs, zu, żu

]T , and
f(x, t) =

[
x2(t) − Fsd

ms(t)
x4(t) Fsd−Fr

mu

]T
,

g1(t) =
[

0 − 1
ms(t)

0 1
mu

]T
,

g2(t) =
[

0 1
ms(t)

0 0
]T

,

(3)

Fsd = fs + fd = ks(x1− x3)+ cs(x2− x4), (4)

Fr = fts + ftd = ktn(x3− zr)+ ctn(x4− żr), (5)

u(t) = us(t)+uc(t). (6)

In the above, us(t) is used for controlling the system (2)
without UAD, while uc(t) compensates for UAD.

There are two issues related to (6). In many cases, the
solution (6) to the system (2) is sought via integer-order-
derivative-based depictions. Reality has shown that due
to the complexly natural attributes of technology systems,
this approach lacks in accuracy [6,8,13], which results in
increasing uncertainty or the model error. To overcome
partly this issue, we exploit FD. The second issue re-
lates to the compensation. The well-known disturbance
observer DO [5] has been seen as a tool fit only for the
time-varying rate of disturbance to be very low or ḋ(t)≈ 0
[4,5]. In this study, we focus on the case DTVR may be
high but bounded. For this aim, we propose a solution for
improving DO.

3. DESIGN OF THE PROPOSED CONTROLLER

Lemma 1 [7]: Let X(t) ∈R be a continuous and deriv-
able function. For any time instant t ≥ t0 and ∀α ∈ (0,1),
then 0.5C

t0 Dα

t X2(t)≤ X(t)C
t0 Dα

t X(t).
Property 1 [9]: Let C1[a,b] denote the space of contin-

uously differentiable functions on [a, b]. If X(t) ∈C1[a,b]
for some b > a≥ 0, then for t ∈ [a, b],

CDα2
a+

CDα1
a+X(t) = CDα1

a+
CDα2

a+X(t) = CDα1+α2
a+ X(t),

where α1, α2 > 0 and α1 +α2 ≤ 1.

3.1. The initiation of the imDO-FDSMC
We define an FD-based sliding surface as below.

S(x, t) = k1x1(t)+CD1−α

t x2(t), (7)

where α ∈ (0, 1) and k1 is a positive coefficient, the initi-
ation of the imDO-FDSMC is depicted as follows.

Theorem 1: System (2) subjected to UAD is controlled
by u(t) (6) as detailed below

us(t) = k1ms(t)CDα

t x1(t)−Fsd

+ k2(t)ms(t)sat(S(x, t)), (8a)

uc(t) = d̂(t), (8b)

where d̂(t) is the estimate of d(t). If d̂(t)→ d(t), then
(x1(t), x2(t))→ 0 is a stable Lyapunov proccess.

Proof: From Property 1 and (7), it can be infer that for
any b > a≥ 0 and t ∈ [a, b], the fractional-order derivative
of S(x, t) with respect to time as in (9) always exists.

CDα

t S(x, t) = k1
CDα

t x1(t)+ ẋ2(t)

= k1
CDα

t x1(t)−
Fsd

ms(t)
− us(t)

ms(t)
+

d(t)
ms(t)

.

(9)

A Lyapunov candidate function is defined as

V1(1) = 0.5S2(x, t). (10)

From (10) and Lemma 1, we get

CDα

t V1(t) = 0.5CDα

t S2(x, t), (11)
CDα

t V1(t)≤ S(x, t)CDα

t S(x, t). (12)

Due to V1(t) ≥ 0 ∀t, we can infer from (12) that to
(x1(t),x2(t)) → 0 is a Lyapunov stable process, control
law u(t) in (2) must be updated such that

CD
α

t =−k2(t)sgnS(x, t), ∀k2(t)> 0. (13)

From (9) and (13), the following is yielded.

u(t) = k1ms(t)CD
α

t x1(t)−Fsd

+ k2(t)ms(t)sgnS(x, t)+d. (14)

In case d̂(t)→ d(t) and sgn(.) is replaced by sat(.) as in
(15) to prevent chattering, (14) then becomes (16) with the
two parts as in (8).

sat(Ξ) =

{
sgn(Ξ), if |Ξ| ≥ 1,

Ξ, if |Ξ|< 1.
(15)

Remark 1: To infer (13), we i) relied on the properties
of integer-order derivative, and ii) had to assume that the
integer-order differentiability condition of S(x, t) was sat-
isfied. This way has been exploited in [6,8]. Fortunately,
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through the survey shown in Section 4, we found that with
the system (2), the optimal value of alpha is 0.95 to be
very close to 1, so the difference between the integer- and
fractional-order properties is faded; besides, as shown in
Fig. 5 (Section 4), the differentiability of S(x, t) is almost
fulfilled. This approach is fit for some systems, including
the one (2). However, it should be better to analyze the
stability of a more general class of fractional-order non-
linear systems upon the Mittag–Leffler stability such as
the methods shown in [10,11].

3.2. The structure of the compensator
Based on the theory shown in [5], the initial structure of

the DO for system (2) is depicted as in (16)-(19) [4].

d̂(t) = z(x(t), t)+ l(x(t))x(t), (16)

l(x(t)) = [0, l2(t), 0, 0], (17)

ż(x, t) =− l2(t)
ms(t)

z(x, t)− l(x(t))M(x(t),u(t)), (18)

M(x(t),u(t)) =


x2

m−1
s (l(x(t))x(t)−Fsd−u(t))

x4

m−1
u (Fsd−Fr +u(t))

 .
(19)

For this DO, the condition for e(t)→ 0 is ḋ(t)→ 0;

e(t) = d(t)− d̂(t). (20)

Remark 2: We focus on ḋ(t) 6= 0 but |ḋ(t)| < Ω con-
trasting to ḋ(t)→ 0 of the DO [4,5]. So, to exploit (16)-
(19), Theorem 2 will supplement new constraints between
the update-rules of us(t) (8) of the FDSMC and uc(t) =
d̂(t) (16) of the DO to obtain the improving DO (imDO)
in the combination form imDO-FDSMC.

3.3. The imDO-FDSMC
From S(x, t) (7) and DS(x, t) (9), we propose update-

laws for k2(t) and l2(t) as in (21) and (22).k2(t) = k2
S2(x, t)+Ω2

ξ +2ms|S(x, t)|
, k2 > 1,

l2(t) = klms, kl > 1,
(21)

where 0 < ξ � 1 is an arbitrarily chosen parameter.

AFL: IF S≥ 0 AND DS≥ 0, or

IF S < 0 AND DS < 0,

THEN k2(t) = UD via (21);

Otherwise, k2(t) = NC. (22)

The adaptive fuzzy law (AFL) (22) illustrated in Fig. 2
is adopted for k2(t) only. NC denotes ‘No Change’ or to
be maintained equal to the value in the previous loop; UD
(Updated) means k2(t) to be updated as (21).

Fig. 2. The fuzzy relation for updating k2(t).

Theorem 2: System (2) subjected to UAD satisfying
Assumption 3 is controlled by law (6), in which us(t) is
specified by (8), and uc(t) = d̂(t) is specified by (16). If
l2(t) = klms, kl > 1, and k2(t) is updated by law (22) then
the convergence to zero of the chassis’ vertical vibration
is a Lyapunov asymptotically stable process.

Proof: Be noted that in both the followings: i) S(x, t)>
0 but CDα

t S(x, t) < 0, and ii) S(x, t) < 0 but CDα

t S(x, t) >
0 corresponding to the areas ‘NC’ in Fig. 2, the varying
tendency of the sliding surface to be S(x, t)→ 0. So, there
is not any change in the control signal to be performed.
Otherwise, related to ‘UD’ in Fig. 2, the control signal
must be updated to force S(x, t)→ 0. This work is carried
as below.

From (7), taking note of (2)-(5), we obtain

CD
α

t S(x, t) = k1
CD

α

t x1(t)

− 1
ms(t)

[Fsd +u(t)−d(t)]. (23)

From (6), (8), and (20), equation (23) becomes

CD
α

t S(x, t) = k2(t)satS(x, t) +
e(t)

ms(t)
. (24)

By taking note of (16)-(20), we get

ė(t) = ḋ(t)− l(x)g2e(t). (25)

A trade-off between the update-laws of the FDSMC and
imDO is infered via Lyaponov function (26).

V2 = 0.5S2(x, t)+
e2(t)
2ms

≥ 0, (26)

V̇2 = S(x, t)Ṡ(x, t)+
e(t)ė(t)

ms
. (27)

Due to α ∈ [0.9, 1], from Lemma 1 it can infer that in
both the areas signed UD in Fig. 2, 0 ≤ S(x, t)Ṡ(x, t) ≤
S(x, t)CDα

t S(x, t). So

V̇2 ≤ A = S(x, t)CDα

t S(x, t)+
e(t)ė(t)

ms
. (28)

By substituting ė(t) from (20) and CDα
t S(x, t) from (24)

into expression A, we have

A = S(x, t)
[
−k2(t)satS(x, t)+

e(t)
ms(t)

]
+

e(t)
ms

[ḋ(t)− l(x)ggg2e(t)]. (29)
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From (3), (17), and (29), the followings are yielded.

A = S(x, t)
[
−k2(t)satS(x, t)+

e(t)
ms(t)

]
+

e(t)
ms

[
ḋ(t)− l2(t)

e(t)
ms(t)

]
(30)

=− k2(t)|S(x, t)|+
S(x, t)e(t)

ms(t)
+

e(t)ḋ(t)
ms

− l2(t)e2(t)
ms(t)ms

≤ − k2(t)|S(x, t)|+
S2(x, t)+ e2(t)

2ms(t)

+
e2(t)+ ḋ2(t)

2ms(t)
− l2(t)e2(t)

ms(t)ms
. (31)

In case of l2(t) = klms, kl > 1, due to
∣∣ḋ(t)∣∣ < Ω, the fol-

lowings can be inferred from (31).

A≤−k2(t)|S(x, t)|+
S2(x, t)+2e2(t)(1− kl)+ ḋ2(t)

2ms(t)
,

(32)

A <−k2(t)|S(x, t)|+
S2(x, t)+Ω2

2ms(t)
. (33)

Finally, from (31) and (33) we can conclude that if k2(t)
and l2(t) satisfy (34) as below then V̇2 < 0.k2(t)>

S2(x, t)+Ω2

2ms(t)|S(x, t)|
,

l2(t) = klms, kl > 1.
(34)

To prevent (34) from getting the irregular case when
|S(x, t)| = 0, 0 < ξ � 1 is added into the expression to
obtain the form of (21). Thus, V̇2 < 0, meaning e(t)→ 0
(20) and S(x, t)→ 0 are Lyapunov asymptotically stable
processes such that |ḋ(t)|< Ω.

Remark 3: Condition (34) takes the role of a trade-off
between the update-laws of the FDSMC via k2(t) and the
DO via l2(t) to ensure V̇2 < 0. In this process, fuzzy law
(22) also set up a mechanism of adjustment of k2(t) to
enhance the stability of (x1(t),x2(t))→ 0.

3.4. Control strategy
From Theorems 1 and 2, the control strategy is summa-

rized.

- Set up the suspension via (ms, ms, ks, cs, ktn, ctn);
- Optimize the parameters (α , k1, k2, kl).

imDO-FDSMC

Step 1: Determine state vector x(t).
Step 2: Update S(x, t) via (7), CDα

t S(x, t) via (9), l2(t)
via (21), k2(t) via (22), uc(t) = d̂(t) via (16) and us(t)
via (8).

Step 3: Control (x1(t),x2(t)) → 0 by determining the
current intensity to support the MRD in Fig. 1(b)
such that it generates control force u(t) (6).

Return to Step 1

Remark 4: To exploit well the imDO-FDSMC, opti-
mizing (α , k1, k2, kl) needs to be performed. By selecting
a track profile for testing (the one in Figs. 3 and 4 is used
in this paper), it is carried out based on the DE method
[26] to minimize the objective function (35).

JDE(α,k1,k2,k2,kl)

= min

[
max

j=1,...,N
|ẋ2,i| +

1
N

N

∑
i=1
|ẋ2,i|

]
, (35)

in their variable regions α ∈ [0.9, 1), k1 > 0, k2 > 1, kl > 1,
where N is the number of sampling points of ẋ2.

4. VERIFYING THE METHOD

First, we determine optimal values of (α , k1, k2, kl)
via MATLAB simulation. Then, the ability of the imDO-
FDSMC is analyzed/compared with the corresponding re-
sults from the passive suspension and the suspensions con-
trolled by controllers [4,24,27–29]. They are the fuzzy-
based predicting sliding controller (FPSC) [4], the adap-
tive type-2 fuzzy sliding controller (AT2FC) [24], the
adaptive prescribed performance controller (APPC), and
the skyhook [29]. The parameters in Table 1 are used
for simulations. The maximum acceleration Aa, maximum
control force Au, the absolute mean of acceleration Ma and
of control force Mu as in (36) are adopted to verify.

Aa = max
i=1...N

|ẋi
2|; Au = max

i=1...N
|ui|,

Ma = N−1
N

∑
i=1
|ẋi

2|; Mu = N−1
N

∑
i=1
|ẋi

2|.
(36)

In the above, N is the number of sampling points.

Table 1. The quarter car model parameters.

Parameters Value Unit
Nominal chassis mass (msn) 350 kg
Maximum chassis mass (ms) 390 kg
Minimum chassis mass (ms) 310 kg

Unsprung mass (mu) 59 kg
Spring stiffness (ks) 13500 N/m

Damping coefficient (cs) 1250 Ns/m
Nominal equivalent stiffness (ktn) 190000 N/m

Equivalent stiffness (kt ) ktn±20% N/m
Nominal equivalent damping (ctn) 14500 Ns/m

Equivalent damping coef. (ct ) ctn±20% Ns/m
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4.1. Parameter optimization

The parameters in Table 1, the track profile (37) and
Fig. 3, and unwanted impact of UAD consisting of d(t)
and ms(t) as in (37) and Fig. 4 are all adopted to optimize
α , k1, k2, kl based on the method in Remark 4.

zr = 0.1sin(ωt)+0.004sin(20πt)

+0.002[sin(2πt)+ sin(7.5πt)],

d(t) = 300[sin(1.5πt)sin(0.15πt)

+ cos(0.6πt)sin(0.3πt)],

ms(t) = msn +0.05msn[sin(0.5πt)sin(0.15πt)

+ cos(0.6πt)sin(0.3πt)]. (37)

The obtained optimal parameters are k1 = 1.34, kl =
1.21, k2 = 235.1 and α = 0.95. They will be used for all
the surveys in the rest of this paper. The optimization has
a vital role in control effectiveness. As an example, Table
2 expresses clearly that the ability of the imDO-FDSMC
depends deeply on α; therefore, its optimum value needs
to be determined for each specific application.

Fig. 3. Sinusoidal track profile.

Fig. 4. The external disturbance and randomly varied
chassis mass.

Table 2. The role of α .

α Aa (m/s2) Ma (m/s2)
1.0 0.1694 0.0931
0.99 0.1721 0.0774
0.93 0.1006 0.0519

αop = 0.95 0.0742 0.0356

4.2. Simulations
4.2.1 Sinusoidal track profile

The track profile (37) is again used. For the imDO-
FDSMC, the two cases with and without the AFL (22) are
adopted. The results in Fig. 5 and Table 3 reflect that under
the impact of the AFL, S(t)Ṡ(t) becomes much lower; as
a result, chassis acceleration in the case of using the AFL
is much smaller than that but without using. So, the AFL
will be employed in the rest of this paper. The results in
Table 3 are also shown the control ability of the proposed
method to be better than the others.

4.2.2 Track profile with two opposite bumps and UAD
An excitation as in Fig. 6 and (38) is employed, where

d1(t) = 0.002[sin(2πt)+ sin(7.5πt)] is disturbance.

Fig. 5. S(t) · Ṡ(t) and acceleration of the chassis controlled
by the imDO-FDSMC with/without the AFL.

Table 3. Sinusoidal profile: Chassis’ vertical acceleration.

Methods Aa (m/s2) Ma (m/s2)

Passive 1.544839 0.489623

Skyhook 1.340440 0.455658

SARC 0.727523 0.188782

APPC 0.559276 0.206107

AT2FC 0.429106 0.149222

FPSC 0.414792 0.106733

Proposed (with the AFL) 0.361782 0.058835

Fig. 6. Track profile with two opposite bumps and UAD.
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Fig. 7. The vertical acceleration of the chassis.

Fig. 8. The control forces.

Table 4. Vertical chassis accelerations and control force.

Methods Aa (m/s2) Max |u|
(N)

Ma (m/s2) Mean |u|
(N)

Passive 1.381371 0 0.365787 0
Skyhook 1.099272 216.33 0.283219 65.89
SARC 0.275502 1778.22 0.052213 419.87
APPC 0.168557 2569.90 0.025509 542.18

Proposed 0.049113 2464.57 0.0052443 545.94

zr(t)

=



−0.0592t3
1 +0.1332t2

1 +d1(t), if 3.5≤ t < 5,

0.0592t3
2 +0.1332t2

2 +d1(t), if 5≤ t < 6.5,

0.0592t3
3 −0.1332t2

3 +d1(t), if 8.5≤ t < 10,

−0.0592t3
4−0.1332t2

4+d1(t), if 10≤ t<11.5,

d(t), otherwise.
(38)

The results from this are shown in Figs. 7-8 and Table
4. Namely, vertical acceleration of the chassis controlled
by the imDO-FDSMC is the smallest. Although the peak
of the vertical acceleration approaches to the zero vicinity,
the control force supported by the proposed stays in a large
border quite similar to the force of the APPC but higher
than that from the Skyhook.

4.2.3 Track profile constituted of consecutive bumps

A track profile like the speed humps with six consecu-
tive bumps as in Fig. 9 and described mathematically via
the velocity of a train-car passing through them as below

Fig. 9. The track profile like the speed humps.

Fig. 10. The chassis’ vertical acceleration.

is used to evaluate the controller.

zr(t) =



0.02sin[ω(t−1)]+d2(t),

if 1≤ t ≤ 1+TD,

0.02sin[ω(t−1−TD−TW )]+d2(t),

if 1+TD +TW ≤ t ≤ 1+2TD +TW ,

0.02sin[ω(t−1−2TD−2TW )]+d2(t),

if 1+2TD +2TW ≤ t ≤ 1+3TD +2TW ,

0.02sin[ω(t−1−3TD−3TW )]+d2(t),

if 1+3TD +3TW ≤ t ≤ 1+4TD +3TW ,

0.02sin[ω(t−1−4TD−4TW )]+d2(t),

if 1+4TD +4TW ≤ t ≤ 1+5TD +4TW ,

0.02sin[ω(t−1−5TD−5TW )]+d2(t),

if 1+5TD +5TW ≤ t ≤ 1+6TD +5TW ,

d2(t), otherwise.

In the above, TD = D
v s, TW = W

v s; D = 0.1 m is the bump
width; W = 2.5 m is the step distance between the two
consecutive bumps; v = 10 m/s is the train-car velocity;
d2(t) = 0.002[sin(30πt) + sin(20πt)] denotes the rough
surface.

The results in Figs. 10-11 and Table 5 illustrate that
controlled by the imDO-FDSMC the train-car could cross
through the intense terrain with the chassis acceleration to
be maintained in low amplitude and stamped out quickly.

4.3. Evaluating the method via an experimental appa-
ratus

The experimental apparatus as in Fig. 12 is employed.
The hydraulic exciter makes displacement at the wheel.
It then makes the upper-bed vibrate vertically via the sus-
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Fig. 11. The control forces.

Table 5. Chassis acceleration and control force.

Methods Aa (m/s2) Ma (m/s2) Max |u|
(N)

Mean |u|
(N)

APPC 4.483555 0.442549 4.483555 0.442549
Skyhook 4.985060 0.385575 4.985060 0.385575
SARC 4.547051 0.374275 4.547051 0.374275
Passive 5.996610 0290423 5.996610 0.290423

Proposed 0.974527 0.052058 0.974527 0.052058

pension. The suspension here is constituted of an MRD
and a spring. Displacement x1(t) of the upper-bed and the
relative displacement (dre) between the upper-bed and the
wheel are measured by an LVDT (linear variable differ-
ential transformer) sensor. Acceleration of the upper-bed
ẋ2(t) is determined by the coordination of an IEPE (In-
tegrated Electronics Piezo-Electric) sensor, NI 9234, and
the computer which work as an accelerometer. The com-
puter is also used to make the hydraulic excitation, estab-
lish control laws, and set up an inverse-MRD model as
mentioned in [1].

Be noted that the structure and operating principle of
the system in Fig. 12 is similar to that of the MRD-based
suspension in Fig. 1(b). The mass ms = 246.5± 35 kg is
set up at the upper bed; made vibration with an amplitude
of 0.025 m and a frequency of 2Hz at the wheel. Surveys
are then performed to obtain Table 6. The results from the
table again reflect the positive role of the imDO-FDSMC.
Among the surveyed methods, the capability of the pro-

Fig. 12. The block diagram of the control system for
the semi-active MRD suspension, a quarter-car
model.

Table 6. Vertical acceleration of the upper bed.

Methods Aa (m/s2) Ma (m/s2)
Passive 0.2594 0.0978
AT2FC 0.1237 0.0641
APPC 0.1180 0.0508
FPSC 0.0974 0.0489

Proposed 0.0842 0.0456

posed method to stamp out the vibration is the best.
Collaborating with Subsection 4.2, it can easily be ob-

served that although the effectiveness of the proposed
method is the best, unlike the simulations, in the real appli-
cation, the compared effectiveness of the imDO-FDSMC
is not too much. It relates to the time-delay due to the
larger calculation cost.

5. CONCLUSION

The compensator-enhanced FD sliding control of a
class of SD-TCSs subjected to UAD whose disturbance
time-varying rate may be high but bounded has been pre-
sented. It was constituted of the FD-based sliding mode
controller FDSMC for controlling the SD-TCSs without
UAD and the imDO for compensating for UAD. Some as-
pects observed from the surveys are as follows:
• Compared with the considered methods, i) the control

performance of the imDO-FDSMC reflected via the abil-
ity to stamp out the chassis vibration stably is the best; ii)
the control force used by the proposed method is however
not smallest which is quite similar to the force utilized by
the APPC.
• The imDO-FDSMC is able to adjust itself adaptively

to improve control effectiveness. The optimal values of its
main parameters (α , k1, k2, kl) can be determined easily
by simulation.
• Because the FD equation is a generalization of the

differential equation, the design of control systems based
on FD can be seen as a general approach, from which one
may obtain FD-based systems or integer-order derivative-
based systems depending on the optimal result α = αop.
• Be noted that even if alpha is very close to 1, the dif-

ferentiable attribute cannot be guaranteed. Without loss
of generality, when the solution of (2) is not an integer-
order derivative, the extended Caputo derivative of [10,11]
should be considered. Besides, the time delay due to the
calculation cost of the proposed method is an issue need-
ing to be improved. The approach based on the extended
Caputo derivative considering the impact of the time delay
will be presented in our next research.
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