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Bearing Fault Online Identification Based on ANFIS
Nang Toan Truong, Tae-Il Seo, and Sy Dzung Nguyen* �

Abstract: Effectiveness of online bearing status monitoring (OBSM) depends deeply on the online data process-
ing ability and the sensitivity of data features used to recognize the mechanical-system dynamic response change.
Focusing on these, we present a novel method of OBSM based on singular spectrum analysis (SSA) and adap-
tive neuro-fuzzy inference system (ANFIS) with the highlights as follows. A sensitive and stable multi-feature is
discovered to better the ability to distill the valuable information in noisy and massive databases (NMDs) and pro-
cess impulse-noise in them. The SSA-based high-frequency noise removal solution, the ANFIS’ interpolating and
identifying capability, and the dual function of the proposed multi-feature are combined in a new algorithm named
AfOBSM for building a system of OBSM through two phases, offline and online. The offline is to identify the
mechanical-system in the presence of the typical kinds of bearing faults. The ANFIS is trained in this phase using a
training dataset. Meanwhile, the online is to estimate online the real status of the bearing(s) based on the trained AN-
FIS and a monitoring dataset. Surveys from an experimental-system were performed. The obtained results showed
the positive effects of the AfOBSM.

Keywords: ANFIS-based fault diagnosis, bearing fault diagnosis, machine health monitoring, online damge iden-
tification.

1. INTRODUCTION

Fault online identification to exploit systems proac-
tively and safely is a meaningful task that has been consid-
ered in many different types of systems [1–22]. It could be
monitoring the status of Petri-nets based models depict-
ing manufacturing systems, software programs, or com-
munication networks [1,2]. It could also be the diagnosing
faults on continuous-time systems or discrete-time sys-
tems [3–5], or managing the health of mechanical struc-
tures [7,8,19–22]. Based on the approach way, fault iden-
tification methods can be classified into two groups, struc-
tured and unstructured. Unlike the first group to fully
know the system to describe, the second group pays at-
tention to solving the inverse problem described by the
system’s dynamic feedback signal only. As a highly prac-
tical approach, it has attracted many researchers [1–23].
To build a reliable unstructured model, reality has shown
that along with choosing an appropriate identification
model and providing effective solutions for filtering noise,
finding a feature stable and sensitive enough to distill
valuable information in data is an especially vital work

[7, 8, 10–16, 23]. These inspire us to build a novel method
of OBSM.

Noise from various sources such as measurement er-
rors, false observations, external disturbances, or unspec-
ified random aspects, etc., always exists in measurement
data [24–30]. In which, impulse noise comes from inter-
nal or external unknown random factors. This is a type of
electromagnetic interference normally existing in sensor-
based measurement data. Because the formation situations
and the mechanism of action on the measurement accu-
racy are unknown, and its source is unclear and not eas-
ily found [31], filtering random-valued impulse noise (IN)
in NMDs has always been a challenge [24]. Some filter-
ing methods, including the famous Kalman filter [32, 33],
had to rely on the assumption that their state variables
were normal probability distributions. The difference be-
tween the actual and assumed data distribution was the
reason for blurring their efficiency in filtering in [34].
Other approaches independent of the data distribution
have been proposed [7, 8, 24, 34–38]. In which, the mean
filters [35–38] relied on the mean value of signals in a
neighborhood called a window. Although the mean filters
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could outperform the normal-distribution based filters in
the case of facing IN, there existed also disadvantages re-
lated to the formation of the window. Setting up the win-
dow with a low size to maintain the local attributes of
the signal [38] may result in a significant increase in the
computational cost, especially when dealing with NMDs
with expanded data spaces. Whereas, determining the op-
timal window size is always a challenge. Different from
the above time-domain based methods, SSA can be em-
ployed as a tool for analyzing in the frequency domain
[22, 23]. Based on SSA, one can recognize the trend of
the original signal if the vibration frequency of the struc-
ture is known. This property is useful for building a faster
data processing mechanism. Also, by taking the notewor-
thy that the mechanical vibration concentrates most of its
power on the low-frequency ranges, one can remove the
high-frequency ranges. More especially, SSA can collab-
orate well with ANFIS. It should be noted that a combi-
nation of fuzzy logic [14] and artificial neural networks
[16, 39] in the form of ANFIS could be done to get the
enhanced advantages [24–30]. The collaboration of SSA
and ANFIS, therefore, is a promising option to synchro-
nize the phases of data-processing, identification, and pre-
diction effectively.

An important mechanical property exploited to build
unstructured fault identification models is that when a
fault occurs in the mechanical system, its dynamic re-
sponse is changed [10–20]. Signals to identify this change
are not only obvious physical parameters such as vibration
frequency, amplitude, or mode shape but also mathemati-
cal factors that hide the physical properties of the system
[7, 11]. The aforementioned physical or mathematical pa-
rameters are often called features. To ensure reliability, the
features must be stable and sensitive enough to the change
in system dynamic response deriving from the faults but
not sensitive to noise [17, 19]. The stable attribute here
requires that, if the system is undamaged, there is no sig-
nificant change in the value of the feature; otherwise, if
the fault varying trend is maintained, the corresponding
feature change trend must be preserved. Along with the
feature attributes, the choice between structures of the
feature should also be considered. Based on the struc-
ture, it can be separated into two groups, single-features
[11,12,19] and multi-features [15,18]. Single-features are
built upon the individual variability of a single physical
quantity, such as frequency, amplitude, mode shape, etc.,
to describe. Although the computational cost is low, the
single-feature based methods are only suitable for simple
systems with narrow dynamic varying ranges. In contrast,
the multi-features exploit the consequences of the inter-
actions of many variable quantities, such as geometric di-
mensions, frequencies, amplitudes, elastic modulus, iner-
tia moments, phase oscillations, etc. Actually, any dam-
age in a mechanical system causes most of the system’s
dynamic response parameters to be changed. So, such an

approach is more natural, and it reflects systematic sta-
tus more objectively. However, the multi-feature building
faces significant challenges because it is difficult to rec-
ognize the relevance of each quantity explicitly in such a
dynamic relationship. Besides, higher computational pres-
sure is an issue for online applications. Although facing
these difficulties, its comparative advantage of sensitivity
has attracted researchers [7, 8, 11, 15, 18].

In [11], vibration signals from multiple sensors
mounted in different positions were used to diagnose on-
line bearing errors. Due to the instability of the links, the
reliability of the data streams measured from the sensors
is significantly different. A full review of the sensitivity
differences for multiple channels was implemented to se-
lect the best data stream joining the training database at
each time. Based on the training and historical databases
and the K-nearest neighbor method, a framework of the
fault diagnosis was set up. The channel selection like this
could reduce the effect of system errors but could not can-
cel the negative effect of random-valued impulse noise,
nor did it replace the role of the noise filter. Other ap-
proaches can be referred to in [7,8], where online damage
management methods were set up based on the solutions
for data pre-processing and the interpolation capabilities
of artificial intelligence (AI). In [7], the method relied
on AI and a multi-feature model to estimate the status of
bearings. In the case of the high data reliability, this was
a promising method for distilling valuable information.
However, its effectiveness might be blurred when facing
IN and expanded data space size. Also, it often resulted in
high computational pressure, required a hardware config-
uration to be strong enough. In [8], a combination of SSA
and ANFIS was addressed to create new competencies
in online data processing, analyzing, and identifying the
change in system dynamic response. This was a meaning-
ful collaboration, however, such SSA-based filtering took
part in the high-frequency noise range only.

Inspired by the aforementioned issues, our motivation
in this study is as follows:

1) Seeking solutions for filtering noise in all frequency
bands and neutralizing the negative effects of IN;

2) Building a multi-feature with comparative advan-
tages to perform OBSM well.

Specifically, we present a new multi-feature owning a
dual function to distill valuable information in NMD. To-
gether with taking the main role in recognizing the status
of bearings based on the system’s dynamic response, the
multi-feature can blur the negative effect of IN and white
noise but not lose the data local characteristics. The SSA-
based solution for cancellation of high-frequency noise of
[8] and the dual function of the multi-feature are exploited
to process data. A combination of SSA, the multi-feature,
and ANFIS is presented in a proposed new algorithm
named AfOBSM for building a system of OBSM. It op-
erates in two phases, the offline and online. An ANFIS is
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trained in the offline to identify the mechanical-system in
the presence of the typical kinds of bearing faults. Mean-
while, the real status of the bearings is recognized in the
online relied on the trained ANFIS and online-measured
databases.

The two main contributions are as follows: The first is
the discovered multi-feature model. It owns the stability
and dispersion attributes as detailed in Section 3, and also
takes the role of a filter as mentioned in Remark 1. The
second is the multi-feature based AfOBSM for online rec-
ognizing the system’s real status. This aspect is presented
in Section 4. Via the proposed multi-feature, the difference
in the way of exploiting ANFIS, SSA, or their combina-
tion makes advantages of the AfOBSM comparing with
the previous works [8,19] or the other one [7]. The method
is not sensitive to noise and the data size. These are veri-
fied via real surveys in Section 5.

2. RELATED WORKS

2.1. Approximating a mapping by an ANFIS

Let consider a set of input-output data points (x̄i,yi),
x̄i = [xi1, ...,xin] ∈ ℜn, yi ∈ ℜ1, i = 1, ..., P, depicting an
unknown mapping f : X→ Y. For this work, the set is
separated into C clusters to make fuzzy inference laws.
The h-th fuzzy inference law is as follows:

R(h) : IF xi1 is Ah
1, ...,AND xin is Ah

n THEN yh
i is Bh.

(1)

In the above, Ah
l , l = 1, ..., n, is the input fuzzy set while

Bh is the corresponding output fuzzy set; ‘xil is Ah
l ’ is re-

flected by the relationship value µAh
l
(xil) of xil belonging

to Ai
l . For the center-average defuzzification and the prod-

uct law, the output of the i-th data point is calculated as (2)
or (3).

ŷi =

(
M

∑
h=1

y(h)i

n

∏
l=1

µAh
l
(xil)

)
/

M

∑
h=1

n

∏
l=1

µAh
l
(xil), (2)

ŷi ≡ ŷ(x̄i) = φ
T

λ (x̄i); (3)

φ =[y(1), ...,y(M)]T ; λ (x̄i)=[λ (1)(x̄i), ...,λ
(M)(x̄i)]

T ;

λ
(h)(x̄i) =

(
n

∏
l=1

µAh
l
(xil)

)
/

M

∑
h=1

n

∏
l=1

µAh
l
(xil). (4)

2.2. Singular spectrum analysis

SSA is described by three steps as follows [22]:
Step 1 (Embedding): From a given time series of N0

data points (z0, ..., zN0−1) and a window length L0, 1 <
L0 < N0, K = N0−L0 + 1 sliding vectors X j = (z j−1, ...,
z j+L0−2)

T , j = 1, ..., K, and a trajectory matrix X are de-

fined:

X =


z0 z1 . . . zN0−L0

z1 z2 . . . zN0−L0+1
...

...
. . .

...
zL0−1 zL0 . . . zN0−1

 . (5)

Step 2 (Building the trajectory matrix): One calculates
the eigenvalues and eigenvectors of S = XXT ∈ ℜL0×L0 .
Let λ1, ..., λd be the non-zero eigenvalues of S arranged
in the descending order, and U1, ..., Ud be the corre-
sponding eigenvectors. Vectors Vi are then constructed,
Vi = XT Ui/

√
λi, i = 1, ..., d. As a result, one obtains a

decomposition of the trajectory matrix into a sum of ma-
trices X = ∑

d
i=1 Ei, where Ei =

√
λiUiVT

i .
Step 3 (Reconstruction): Each elementary matrix

Ek(zi j) ∈ℜL0×K is then transformed into a principal com-
ponent of length N0, named gk , k = 1, ..., d, as in (6)
which applies a linear transformation known as diagonal
averaging or Hankelization.

gk =



(1/(k+1))
k+1

∑
m=1

zm,k−m+2, 0≤ k < L∗−1,

(1/L∗)
L∗

∑
m=1

zm,k−m+2, L∗−1≤ k < K∗,

(1/(N0− k))
N0−K∗+1

∑
m=k−K∗+2

zm,k−m+2,

K∗ ≤ k < N0,

(6)

where L∗= min(L0, K), K∗= max(L0, K).

3. PROCESSING MEASUREMENT DATA AND
CONSTRUCTING A MULTI-FEATURE

Let consider a measurement data set as in (7):

X̄ = [X̄1, ..., X̄n0 ] ∈ℜ
N×n0 , (7)

where X̄i = [x1i, x2i, ..., xNi]
T , i = 1, ..., n0, is called the

data vector of the i-th state variable. n0 is the number of
state variables, or the number of the physical parameters
to be employed to build the data set, such as the mechan-
ical vibration acceleration, displacement, frequency, etc;
in the surveys in Section 5, the only acceleration signal is
exploited, so n0 = 1.

3.1. Filtering noise based on SSA
The method of filtering high-frequency noise presented

in [8, 22] is adopted here to process the data set (7). For
each column X̄i, by using SSA we obtain QSSAtime se-
ries with different frequencies. Due to the trend of the me-
chanical vibration components concentrates most of their
power on the low-frequency ranges, among these series
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we retain only Q ones corresponding to the lowest fre-
quency ranges; the others owning the high frequencies are
considered as noise. A new data set iG obtained by this
way is shown as in (8), in which the length of each vector
ig(h), h = 1, ..., Q, is N.

iG = {ig(1), ..., ig(Q)}, i = 1...n0. (8)

3.2. Building a multi-feature for damage identifica-
tion

3.2.1 Formulation
Let consider the h-th series ig(h) of iG(8)

ig(h)T = (iz̄
(h)
1 , iz̄

(h)
2 , ..., iz̄

(h)
N ), h = 1...Q. (9)

By selecting two adaptive indexes to be the step (st)
and window length (L0), we construct a new matrix iXh ∈
ℜ(L0+st)×P0 deriving from ig(h) as below:

iXh =



iz̄
(h)
1 iz̄

(h)
st+1 · · · · · · iz̄

(h)
(P0−1)st+1

...
... · · · · · ·

...

iz̄
(h)
st iz̄

(h)
2st

. . . . . . iz̄
(h)
P0st

...
... . . . . . .

...

iz̄
(h)
L0+st iz̄

(h)
L0+2st · · · · · · iz̄

(h)
L0+P0st


,

or in another form as in (10):

iXh =



Z11 · · · Z1 j · · · Z1P0
...

. . .
... . . .

...
Zk1 · · · Zk j . . . ZkP0

... . . .
...

. . .
...

Z(L0+st)1 · · · Z(L0+st) j · · · Z(L0+st)P0

 .

(10)

We then create a column vector of P0elements ia
(h)
me =

[ia
(h)
me(1), ..., ia

(h)
me(P0)

]T . The j-th one is constituted of the
elements in the j-th column of iXh as follows:

ia
(h)
me( j)=Kme

1
L0+st

L0+st

∑
k=1
|Zk j| ; h=1...Q, j=1...P0.

(11)

Above, Kme > 0 is a default parameter selected by the
designer to adjust the amplitude.

Remark 1: It should be noted that ia
(h)
me( j), i = 1, ..., n0,

h = 1, ..., Q, j = 1, ..., P0, in (11) derives from the i-th
physical parameter (or the i-th state variable) in (7), hence
it is the mean-quantification in the j-th sampling duration
of the signal belonging to the h-th frequency range (or the
h-th principal component of SSA) of this physical param-
eter.

We then define vector ia
(h)
me = [ia

(h)
me(1), ..., ia

(h)
me(P0)

]T to de-
pict the h-th single-feature corresponding to the h-th prin-
cipal component of SSA belonging to the i-th state vari-
able. Due to i = 1, ..., n0 and h = 1, ..., Q, so from these
vectors we obtain matrix M f ∈ℜP0×(n0Q) below:

Mf = [1a(1)me , ..., 1a(Q)
me · · · n0 a(1)me , ..., n0 a(Q)

me ]

∈ℜ(P0×n0Q) , (12a)

Mf
(P0×n0Q)

=



1a(1)me(1) . . . 1a(Q)
me(1) n0 a(1)me(1) . . . n0 a(Q)

me(1)
...

...
...

...

1a(1)me(k)
. . . 1a(Q)

me(k) . . . n0 a(1)me(k)
. . . n0 a(Q)

me(k)
...

...
...

...

1a(1)me(P0)
. . . 1a(Q)

me(P0) n0 a(1)me(P0)
. . . n0 a(Q)

me(P0)


.

(12b)

Each row of Mf in the form of a row vector signed f (1×
n0Q) constitutes a multi-feature. At the k-th sampling time
duration, k = 1, ..., P0, the multi-feature is quantified as in
(13), where ia

( j)
me(k) comes from (11).

f(k)=
[

1a(1)me(k) · · · 1a(Q)
me(k) · · · n0 a(1)me(k) · · · n0 a(Q)

me(k)

]
(1×n0Q)

,

k = 1...P0. (13)

The multi-feature reflects the dynamic response char-
acteristics of the mechanical system at each sampled time
duration. It collects local information of the mechanical-
system dynamic response. Each element ia

( j)
me(k) (11) of

f(.)(13) is so-called SSA-based data’s local feature coeffi-
cient (SS-DLFC). To enhance the capability of the multi-
feature to distill valuable information from the database,
optimizing parameters (st,Q,L0,P0) in (11) is carried out
as in Section 4.

3.2.2 Attributes of the SS-DLFC and the multi-feature
We perform a short survey to analyze and evaluate

the functional attributes of the SS-DLFC and the multi-
feature. Some bearing-fault data sets measured by accel-
eration sensors in the experimental apparatus detailed in
Section 5 are used. Due to following the acceleration sen-
sors only, the number of state variables in this case is
n0 = 1 (see (7)). Fig. 1 shows a(2)

me(i), i = 1...P0, deriving
from L0 = 8000, st = 200, P0 = 300, Q=20, and Kme = 30
and the second principal component of SSA in 10 different
damage statuses of the bearing. They related to the bearing
undamaged or being damaged at the inner or outer or ball
with the damage levels 1 to 3, under the 2-typed load. For
example, ‘Damage1-Ball’ denoted the bearing was dam-
aged level 1 at the ball, the 2-typed load.

It should be noted that 1) the bearing status was almost
not changed during each of the surveyed time durations to
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Fig. 1. Value of the SS-DLFC in ten statuses of the sur-
veyed bearing.

build the corresponding line in Fig. 1, and 2) the ten lines
in the figure express the ten different statuses of the bear-
ing. It is possible to draw from Fig. 1 that the SS-DLFC
and the proposed multi-feature f satisfy two functional at-
tributes as below.

1) Stability attribute: The stability attribute of a feature
requires that if there is not any considerable change in the
system damage status, then the varying range of the fea-
ture must be narrow. Conversely, if the system fault vary-
ing tendency is upholden then the corresponding varying
trend of the feature must be changed more quickly and
conserved stably.

This attribute of the SS-DLFC can be recognized
clearly in the figure via the two following characteristics:
a) each line to be located in a corresponding narrow area,
and b) the ten lines to be quite individual.

2) Dispersion attribute: It expresses the sensibility of
a feature. Related to a graph, the dispersion attribute here
displays the capability to distinguish clearly the difference
between the lines depicting the feature corresponding to
different damage statuses.

The dispersion attribute of the SS-DLFC can be im-
plied from Fig. 1 via the different fault cases (damage
degree and/or area) such as the Undamaged, Damage1-
Outer, Damage1-Ball, Damage3-Outer, etc.

Because the proposed multi-feature f is constituted of
the SS-DLFC coming from Q the independent frequency
ranges of the original signal, so its attributes coincide with
that of the SS-DLFC as abovementioned.

Remark 2: From the stability and dispersion attributes,
it can infer that if system mechanical status is sustained,
there will exist a narrow varying area established by the
SS-DLFC corresponding to each status. This can be seen
as the manifestation reflecting the system fault status.

Remark 3: In Fig. 1, despite deriving from the different
damage cases, there sometimes exist overlapped ranges
from some lines. So, to exploit the SS-DLFC effectively
we use the multi-feature f instead of the single one, SS-
DLFC, and adopt an ANFIS with an unsupervised learn-
ing process; the ANFIS can interpolate the real status of

the surveyed object via the multi-feature as presented in
the algorithm AfOBSM.

Remark 4: The SS-DLFC (11) follows the mean-value
idea presented in [34–39]. However, it exploits an adap-
tive window depicted by (L0,st) which will be optimized
when operating the proposed algorithm (see (16) in Sec-
tion 4). Thus, SS-DLFC can maintain the local property of
data when taking the dual function as mention in Section
1: distilling the valuable information in data and filtering
low-frequency noise along with blurring the negative ef-
fects of IN as well as of external disturbance.

4. PROPOSED ALGORITHM FOR OBSM

4.1. Building database
As presented in Section 3, for the d-th fault kind (d = 1,

..., D), we obtain Mf (12). It is now re-signed dMf to de-
note the d-th fault kind. Using this way for D the consid-
ered bearing’s typical fault kinds, we obtain data matrix
W ∈ℜ(P×n)as in (14).

W = [ 1Mf
dMf

DMf ]T ∈ℜ
(P×n),

P = DP0, n = Qn0. (14a)

Corresponding to the input data space W, we then encode
D the bearing’s typical fault kinds as below:

y = [y11, ...,y1P0 , ...,yD1, ...,yDP0 ]
T

≡ [y1, ...,yP]
T ∈ℜ

P×1. (14b)

Finally, a database called the historical data set or the ini-
tial data space (IDS) for training ANFIS is created as in
(15), where Wtr ≡W comes from (14).

IDS = 〈input−out put〉 ≡ 〈Wtr−y〉. (15)

Remark 5: From Remark 4, the SS-DLFC (11) can fil-
ter low-frequency noise and blur the negative effects of IN
as well as of external disturbance. So, the role of the com-
bination of SSA-based high-frequency filtering and (11)-
based filtering can be seen as an integrated filtering system
(INFS). The AfOBSM is therefore depicted via the INFS
as in its flowchart in Fig. 2.

4.2. Algorithm AfOBSM
There are two phases as in Fig. 2. The offline is to iden-

tify the dynamic response of the mechanical system where
the bearing is fixed. Firstly, by initializing the parameters
(Q,st,L0,P0) in (11), the IDS (15) is built. By using the
same way of building Wtr we also set up a test set Wte

whose structure and size are similar to that of Wtr. An AN-
FIS is trained upon the IDS and the algorithm FIN-ANFIS
[24]. A loop process is then operated upon the algorithm
DE [40] to optimize (Q,st,L0,P0). In this process, Wte is
employed to adjust the parameters after each loop l until
either their optimal values to be determined or l > [l]. As
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Fig. 2. Flowchart of the AfOBSM.

a result, we obtain an optimal ANFIS signed ANFISopt ,
and the optimal parameters (Q,st,L0,P0)optfor the online
phase.

The online phase undertakes the OBSM during the me-
chanical system operating process upon the interpolating
ability of the ANFISopt. At checking time, the vibration
measurement is performed online to build an input data
set signed Wmo using (Q,st,L0,P0)opt such that it is simi-
lar to the form and size of the matrix (12), Wmo ≡M f ∈
ℜP0×(n0Q). By using Wmo as the input of the ANFISopt ,
∆yi = yi− ŷi will reflect the status of the bearing(s) as pre-
sented in Step 5 of the AfOBSM. Where, yi and ŷi respec-
tively are the i-th data output and the correspoinding out-
put of the ANFISopt.

Algorithm AfOBSM

In the offline phase: Identify the dynamic response of the
mechanical system fixed the bearing(s).
Initialize the parameters in (11) to be (Q,st,L0,P0).
Step 1: Build Wtr, Wte (14a)) and set up the IDS (15).
Step 2: Identify the system by an ANFIS based on the
IDS and the algorithm FIN-ANFIS [24].
Step 3: Optimize (Q,st,L0,P0).
Use Wte as the input of the ANFIS and estimate the objec-
tive function J (16).

J(Q,st,L0,P0)≡= E =

√
P−1

P

∑
i=1

(∆yi)2→ [E], (16)

∆yi = yi− ŷi. (17)

If (16) not converge: call the DE [40] to adjust
(Q,s,L0,P0) and return to Step 1; otherwise, save the
optimal ones as in (18), and stop the offline.

[ANFISopt,(Q,st,L0,P0)opt]. (18)

In the online phase: Recognize the bearing(s) status.
Step 4: Build Wmo.
Step 5: Conclusion
By utilizing Wmo as the input of the ANFISopt in (18), the
present status of the bearing(s) can be recognized, which
is the q-th one encoded in y (15) such that

P0

∑
j=1
|∆yq j|= min

k

P0

∑
j=1
|∆yk j|, k = 1, ...,D.

Remark 6: 1) To enhance the effectiveness, Wtr should
cover almost the typical fault kinds of a bearing; and the
datasets for building Wtr and Wte must be measured at two
separate times. 2) In the offline, the role of the ANFISopt

is to identify the dynamic response of the mechanical sys-
tem via Wtr. Meanwhile, in the online, the ANFISopt can
interpolate all behaviors of the system via Wmo, even if
the ones not being trained.

5. EVALUATING THE PROPOSED METHOD

5.1. Experimental apparatus and approach way
The experimental apparatus in Fig. 3 is used to verify

the proposed method. In the apparatus, (1) and (3) are the
checked bearings; (2) and (4) are acceleration sensors; (5)
is a computer for installing the relative software and con-
necting with the hardware, (6) is the module for process-
ing and transforming time-series vibration signal (Model:
NI-9234). Besides, a disc brake was also installed in the
system to adjust load impacting on the bearings. We con-
sider bearing (3) under different load levels via the signal
from sensor (2) and sensor (4).

We used the laser cutting technology to create the fault
types on the bearings as in Table 1 with some notations
as follows. The damaged location at the Inner or Outer or
Balls respectively is signed In, Ou, or Ba. Four considered
damage degrees are undamaged or damaged with degrees
from 1 to 3 which are signed UnD, D1, D2, and D3, re-
spectively. Three load levels are signed by L1, L2, or L3.
The above notations are used to abbreviate the surveyed
cases. For example, LmDnBa expresses the bearing under
the load m (1, ..., 3), to be damaged level n (1, ..., 3) at the
ball.

We utilize four measuring datasets as follows. The first
one (signed FtDS) is 121,000-sample set constituted of
L1UnD, L1D1In, L1D2In, L1D3In, L1D1Ou, L1D2Ou, and
L1D3Ou. The second one (signed SDS) is 121,000-sample
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Fig. 3. Experimental apparatus.

Table 1. The fault types to be made in the bearing (3).

Fault bearing cases Crack size
Fault degrees (1-3)
and their location Width (mm) Depth (mm)

D1Ou 0.20 0.3
D2Ou 0.30 0.3
D3Ou 0.46 0.3
D1In 0.20 0.3
D2In 0.30 0.3
D3In 0.40 0.3
D1Ba 0.15 0.2
D2Ba 0.20 0.2
D3Ba 0.25 0.2

set from L2UnD, L2D1In, L2D2In, L2D3In, L2D1Ba,
L2D2Ba, and L2D3Ba. The third one (signed TDS) is
121,000-sample set from L3UnD, L3D1Ou, L3D2Ou,
L3D3Ou, L3D1Ba, L3D2Ba, and L3D3Ba. While the fourth
one (signed FhDS) is 175,000-sample set deriving from
L2UnD, L2D1In, L2D2In, L2D3In, L2D1Ou, L2D2Ou,
L2D3Ou, L2D1Ba, L2D2Ba, and L2D3Ba.

To compare, together with the proposed AfOBSM, the
intelligent fault diagnosis relied on unsupervised learning
towards mechanical big data [7], the bearing fault diag-
nosis method using ANFIS, SSA, sparse filtering and big
data [8], and the method of damage-diagnosis based on
ANFIS and wavelet analysis [19] are used to identify fault
status of the bearing (3) in Fig. 3 in two cases. The first

case relies on the signal from the nearby sensor (4) while
the other uses the farther sensor (2).

The RMSE E (19) and the percentage accuracy Ac (20)
are used, where ∆yi is the error shown in Fig. 2; P is the
number of the surveyed samples; cr_samples denotes the
number of samples expressing correctly the real status of
the bearing (among the P samples).

E =

(
P

∑
i=1

(∆yi)
2/P

)0.5

. (19)

Ac = 100× cr_samples/P (%). (20)

Also, we use the mean value (MV) of Ac in each survey.
Let D be the number of fault types existing in the database
for the survey, Acd , d = 1...D, be Ac (20) corresponding
to the d-th fault type, then

MV = ∑
D
d=1 Acd/D(%). (21)

5.2. Survey of AfOBSM’s functional parameters
5.2.1 Series length N

The optimal results (Q,st,L0,P0)optin (18) depends
deeply on the sought area reflected by the time-series
length N in (7). Therefore, quantifying an appropriate
value of N for each application to reduce the calculating
cost needs to be performed. For this, we performed sur-
veys via the FtDS to obtain the results as in Fig. 4 and
Table 2. As in Fig. 4(a), with increasing N from 60,000 to
70,000, the E (19) of the ANFIS reduces considerably. In
its larger varying range as in Fig. 4(b), when N < 50,000,
the increase of N makes Ac (%) go up quickly; this ten-
dency is not maintained when N > 70,000; while in case
N > 100,000, Ac and the ANFIS’s training time tANFIS

are quite stable, but the time duration tFmo for building
Wmo grows up quickly. This is a disadvantage for the
online phase of the AfOBSM. Therefore, we will use
N = 100,000 for the FtDS-based surveys. By the similar
way, we also speculated the other databases. As a result,
the fit values of N related to SDS and TDS are 100,000,
while N related to FhDS is 150,000.

5.2.2 Length P0

In fact, it is difficult to estimate P0 via theoretical an-
alyzation. In this study, we carry out a loop process in
the offline phase to adjust P0 together with (Q,st,L0) until
J(Q,st,L0,P0)≡ E→ [E] (16) as in Fig. 2. Table 3 shows
some extractions from the obtained results where the AN-
FIS was used to approximate the FtDS (Wtr ∈ℜ(121,000×7))
with [E] = 10−5. The table shows that ANFIS training
time tANFIS increases quickly when P0 goes up. Also, E
reaches to [E] when P0 → 2,500. To weaken the calcu-
lating cost, we therefore selected two values of P0 which
were 2,500 for the set FhDS and 3,000 for the other data
sets FtDS, SDS, TDS.
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(a)

(b)

Fig. 4. Influence of N: the error ∆yi = yi− ŷi (see Fig. 2)
in two cases, N = 60,000 and N = 70,000 (a)the
relation between N and (signed ‘time for Wmo’ in
the figure), as well as MV of the AfOBSM (b).

Table 2. The influence of N on tFmo when building Wmo,
time for training the ANFIS in the offline phase
tANFIS and the accuracy Ac of the proposed
method.

N
(×104)

tFmo

(second)
tANFIS

(minute)
Ac (%)

1 5.14 67.76 86.97
2 7.07 66.05 88.18
3 9.57 66.19 89.66
4 12.98 63.44 96.54
5 15.63 66.71 98.01
6 17.89 66.34 98.55
7 21.82 67.24 99.74
8 24.67 68.56 99.77
9 27.83 67.45 99.79
10 30.56 68.82 99.78
11 35.71 69.94 99.78
12 39.99 69.01 99.79

5.2.3 Length of the step st

The set FtDS having 121,000 data samples together
with P0 = 2,500, L0 = 8,000, N = 100,000, Q = 7 were
used to survey the relationship between the step st and
the stability ability of the single feature a(.)

me(.) (11). The
obtained results showed that an appropriate value of st in-
fluenced positively on the effectiveness of the proposed
method. However, the stability of the single feature could

Table 3. The relation between E, tANFIS (minute) and P0.

P0 2200 2500 2800 3000 3200
tANFIS 65.89 76.87 89.56 104.2 125.1

E (×10−4) 2.199 0.391 0.381 0.378 0.370

Fig. 5. The single feature deriving from Wtr when st =
180 (signed ‘For training’) or deriving from Qmo

when st = 220 (signed ‘For identifying’), in which
Wtr and Wmo came from a similar bearing status
(L2D1Ou).

Table 4. Ac (%) of the methods corresponding to the data
set FhDS from sensor 2 (see Fig. 3).

Data [7] [8] [19] Proposed
L3UnD 98.13 98.25 91.34 98.34
L3D1In 96.34 97.11 94.87 97.24
L3D2In 95.53 95.08 95.23 99.94
L3D3In 97.14 95.94 93.44 99.65
L3D1Ou 93.57 97.16 92.45 96.76
L3D2Ou 97.59 97.93 96.11 99.12
L3D3Ou 96.98 97.64 90.89 96.75
L3D1Ba 94.09 96.53 92.77 98.97
L3D2Ba 98.34 98.77 95.20 98.21
L3D3Ba 95.50 95.85 90.99 98.90

be maintained in a quite widely varying range of the step
st. As in Fig. 5, the single feature is maintained stably in
a narrow range during the varying process of st in [180,
220], even if it was calculated from two different time
series Wtr and Wmo. This is really meaningful to reduce
the training time related to specifying the optimal param-
eters (Q,st,L0,P0)opt. From this result, st = 200 will be
employed for all our surveys in the rest of this section.

5.3. Comparison results
The AfOBSM along with the other methods were

adopted to recognize fault status of the bearing (3) via dif-
ferent datasets consisting of the FtDS, SDS, TDS, and the
FhDS measured from either sensor (2) or sensor (4) as in
Fig. 3. The obtained results were shown in Figs. 6-9 and
Tables 4-5.

Generally, the prediction outputs of the proposed
method track quite well the real fault statuses of the
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(a)

(b)

Fig. 6. Surveying via the data set FtDS: the error ∆yi and
the RMSE of the AfOBSM (a); Ac (20) and MV
(21) of the AfOBSM and [7] (b).

(a)

(b)

Fig. 7. Deriving from the SDS: ∆yi and the RMSE of the
AfOBSM (a); Ac and MV of the AfOBSM and [7]
(b).

Table 5. MV (%) of the methods corresponding to each
dataset (S2: sensor 2; S4: Sensor 4).

Data [7] [8] [19] Proposed
FtDS 97.96 98.19 91.45 99.74
SDS 97.79 97.93 89.98 98.99
TDS 97.29 98.14 93.67 99.40

FhDS (S2) 96.32 97.03 93.33 98.55
FhDS (S4) 97.81 96.05 94.08 97.99

(a)

(b)

Fig. 8. Deriving from the TDS: ∆yi and the RMSE of the
AfOBSM (a); Ac and MV of the AfOBSM and [7]
(b).

(a)

(b)

Fig. 9. Deriving from the SDS: ∆yi and the RMSE of the
AfOBSM (a); Ac and MV of the AfOBSM and [7]
(b).

bearing. For example, MV in Figs. 6-9 respectively are
99.74, 98.99, 99.40, and 98.55%. The prediction out-
puts of the ANFISopt created by the AfOBSM as illus-
trated in Fig. 2 can reach well the corresponding encoded
values expressed by ∆yi = yi − ŷi. This is expressed by
the very small RMSEs of ∆yi given in Figs. 6-9 respec-
tively to be 3.7754.10−5, 1.0134.10−4, 7.9115.10−5, and
2.3533.10−4. The comparing results from them also show
that among the four considered methods, the AfOBSM is
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the best. For example, from Table 5 corresponding to the
dataset FhDS (sensor 4), MV (%) of [7], [8], [19], and the
proposed respectively are 97.81, 96.05, 94.08, and 97.99.

Finally, based on MV of these methods using the dataset
FhDS measured from either the nearby sensor (4) or the
farther sensor (2) in Table 5, it can infer that signal from
both sensors can be employed effectively. There is not any
common tendency to be recognized from the last two rows
in Table 5. It means, similar to the others, the proposed
method is not too sensitive to the sensor-installing loca-
tion. This characteristic enhances the reliability and feasi-
bility of the method to deal with more complex mechani-
cal systems.

6. CONCLUSION

The new method for OBSM has been presented via the
proposed algorithm AfOBSM. The sensitive and stable
multi-feature constituted of the single features SS-DLFCs
was discovered to better the ability to distill valuable in-
formation in massive and noisy data. Theoretical anal-
ysis showed that together with taking the main role of
describing the mechanical dynamic response, the multi-
feature could also blur the negative effect of impulse noise
and external disturbance, and keep the local characteris-
tics of data. To accommodate online large database pro-
cessing in the wide frequency ranges including IN, the
mechanism of the combination of the SSA based filter-
ing and SS-DLFC based filtering was presented. These
aspects were incorporated to constitute the AfOBSM. Sur-
veys based on the experimental-system were performed.
The obtained results showed that the system of OBSM
built by the AfOBSM could track the bearing real fault
statuses with an accuracy higher than that from the consid-
ered others. Also, the OBSM system was not too sensitive
to sensor-installing locations. It is a necessary characteris-
tic to ensure reliability and feasibility when dealing with
more complex systems.

Despite focusing on the online approach, the dynamic
attributes of the evolving data streams (EDSs) coming
from the sensors, however, did not be considered when
building the databases for the AfOBSM. This impacts neg-
atively on the effectiveness of the proposed method. How
to deal with EDSs to improve the method of OBSM will
be paid attention to in our next research.
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