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Image Preprocessing-based Generalization and Transfer of Learning for
Grasping in Cluttered Environments
Kuk-Hyun Ahn and Jae-Bok Song* �

Abstract: In a cluttered environment in which objects are lying very closely to each other, the arranging motion
is required before the robot attempts to grasp the target object. Thus, a robot must determine which motion to per-
form based on a given situation. This study presents an approach to learning a decision-making ability for the robot
to grasp the target object after rearranging the surrounding objects obstructing the target object. The learning is
performed in the virtual environment, and the image, which is an input of the deep Q-network, is preprocessed to
directly apply the results of the learning to the real environment. That is, the difference between the two environ-
ments is minimized by making the states obtained from the virtual and real environments similar to each other. In
addition, image preprocessing can be used to generalize the results of learning so that the robot can determine the
appropriate actions to take when objects that were not used for learning are given. A hierarchical structure, which
consists of high-level and low-level motion selectors, is used for the learning: the former determines the grasping or
pushing actions while the latter determines how to perform such selected actions. The results of various experiments
show that the proposed scheme is effective in grasping the target object in a cluttered environment without the need
for any additional learning in the real world.
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1. INTRODUCTION

Substantial research has been conducted on grasping in
consideration of the fact that grasping is the most basic
task that a robot needs to perform. However, in most cases,
the focus is on grasping itself, such as the cases estimating
the grasp pose without considering the surrounding envi-
ronment [1–3]. In studies on grasping in cluttered environ-
ments, robots usually learn to grasp any object that is ex-
pected to be most likely to be grasped without a specified
target object [4–6]. This approach has certain limitations
if a robot performs a task for which a target object is spec-
ified, such as fetching an object specified by a user in a
home environment. Some studies have also investigated a
method of performing the pushing motion to arrange the
adjacent objects for grasping in a cluttered environment.
In [7], the scattering motion was carried out when the pix-
els of the dilated image of the target object overlapped
those of the surrounding objects. However, as the scatter-
ing motion was performed despite the fact that the adja-
cent objects did not interfere with grasping, it is not an
appropriate method for decision-making. In [8], in order
to grasp a target object in a cluttered environment, a task
plan was scheduled for a sequence of several given mo-

tions, and the goal was accomplished by conducting these
motions in sequence. There existed a limitation in that the
sequence of motions was not determined by recognizing a
given situation, but instead determined from the result of
performing the actions in the simulator.

Deep reinforcement learning [9], which combines the
reinforcement learning scheme with a deep neural net-
work (DNN), can serve as a solution to acquiring the abil-
ity of determining which action to perform. Through the
use of the DNN, the information necessary for the deci-
sion is extracted from the situation given as an image, and
the robot can thus learn the optimal way by repeating the
task using reinforcement learning. In [10], the action value
functions for pushing and grasping motions were approx-
imated by DNNs, and a robot learned how to grasp an ob-
ject after scattering the closely-placed objects. However,
in this case, the target object was not specified, and the
robot grasped one of the scattered objects as a result of
the pushing action. In this study, the Q-learning based re-
inforcement learning, which can be applied to robots for
motion planning [11,12], is used to train the robot to learn
the decision-making ability necessary to grasp the target
object after arranging the surrounding objects, if they are
interfering with the grasp.

Manuscript received August 2, 2019; revised November 29, 2019; accepted February 8, 2020. Recommended by Editor Fumitoshi Matsuno.
This work was supported by IITP grant funded by the Korea Government MSIT (No. 2018-0-00622).

Kuk-Hyun Ahn and Jae-Bok Song are with the School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul
02841, Korea (e-mails: {gookrice, jbsong}@korea.ac.kr).
* Corresponding author.

c©ICROS, KIEE and Springer 2020

http://www.springer.com/12555
https://orcid.org/0000-0002-5818-1938


Image Preprocessing-based Generalization and Transfer of Learning for Grasping in Cluttered Environments 2307

Since a robot must repeat a large number of tasks
to learn [6, 13], reinforcement learning is generally per-
formed in the virtual environment, then the learning re-
sults are transferred to the real world. Learning can be
performed more conveniently using a simulator because
information about the environment can be obtained from
the simulator without the need for an additional algorithm.
However, it is difficult to apply the results of learning in
the virtual environment to an actual robot due to the differ-
ences between the virtual environment and the real envi-
ronment. Therefore, further learning should be performed
in the real environment based on the learning result ob-
tained in the virtual environment, or a scheme to reduce
the difference between the two environments should be
used while learning. In [14] and [15], for the agent to learn
robustly against the environmental change, the color, pat-
tern, and ambient illumination of the environment were
continuously changed during the learning. In [16], the en-
vironmental difference was reduced by making the image
used as an input state in the virtual environment similar
to the real-world image using the DNN. In this study, a
relatively simple image preprocessing method is proposed
to overcome the difference between the two environments
by making the image obtained from the real environment
similar to the virtual environment.

Fig. 1 shows a flowchart of the proposed method
for grasping in cluttered environments. For learning the
decision-making ability, the robot repeatedly conducts a
given task in the virtual environment where robot motion
is selected from the preprocessed image through the DNN.
After the training is completed, the DNN parameters are
transferred to the real world, and the robot performs a mo-
tion selected from the image preprocessed to be similar to
the virtual environment. The originality and contributions
of this study are as follows:

• The vision-based method for learning the sequence of
motions is proposed to grasp a target object in clut-
tered environments.

Fig. 1. Flowchart of the proposed learning method for
grasping in cluttered envrionments.

• The image preprocessing method is proposed to in-
crease the learning efficiency by excluding the ele-
ments from the image that are not necessary to deter-
mine the proper actions to grasp an object. With this
method, the learning results also can be generalized
to various objects that are not used in learning.

• The learning results in the virtual environment can be
transferred directly to the real world using the pro-
posed method by making the real-world image simi-
lar to the input state used in the learning process.

The rest of this paper is organized as follows: The learn-
ing structure is described in Section 2. Section 3 details the
reinforcement learning method proposed in this study and
the image preprocessing method to transfer the learning
results to the real world, and Section 4 discusses the ex-
perimental results. Finally, a conclusion is drawn in Sec-
tion 5.

2. LEARNING STRUCTURE

In this study, the deep Q-network (DQN) [17], which
is an off-policy Q-learning method, is used to train the
robot to learn the decision-making ability. First, the DNN
approximates the action value function (Q-function), and
the robot takes an action with the greatest action value in
the given state s. Then, learning proceeds in the direction
of minimizing the following temporal difference error δ

under the greedy policy:

δ = [r+ γ maxa′ Qθ
′ (s

′
,a
′
)−Qθ (s,a)]2, (1)

where r is a reward obtained after an action a is performed,
γ is a discount factor, Qθ (s,a) is an action value which
is estimated from the Q-network with the parameter set
θ for the current state s and the selected action a, and
maxa′ Qθ

′ (s
′
,a
′
) represents the maximum action value in

the next state, which is estimated using the target network
with the parameter set θ

′
. Based on (1), the parameters of

the Q-network are updated through the gradient descent
method. As the Q-network comes to accurately estimate
the action values through iterative learning, the robot can
accomplish its goal by taking the appropriate series of ac-
tions.

In order to diversify robot motions for grasping or ar-
ranging and allow a robot to learn more efficiently, the
hierarchical reinforcement learning structure [18] is im-
plemented in this study by constructing the motion selec-
tor shown in Fig. 2. The high-level motion selector deter-
mines the motion that should be performed by the robot
and outputs a goal g, and the low-level motion selector
then outputs an optimal action a to perform the goal g.
Each selector has an independent Q-network with the pa-
rameter set denoted as θh and θl , respectively, and respec-
tively gains a reward, rh and rl , as a result of its action.



2308 Kuk-Hyun Ahn and Jae-Bok Song

Fig. 2. Overview of hierarchical structure of a motion se-
lector.

The temporal difference errors of both selectors can be ob-
tained using (1). Since each Q-network receives an image
as an input state, it has three convolutional layers for ex-
tracting the features from the image and outputs the action
values through two fully connected layers.

3. LEARNING IN VIRTUAL ENVIRONMENT

The learning process for the target task is carried out in
a virtual environment using a Gazebo simulator. A Sawyer
robot is used as the agent, and an image containing the tar-
get object and the surrounding objects is obtained using a
camera fixed in the space above the table on which the task
is performed. In this study, in transferring the learning re-
sults to the real environment, the image obtained in the
real environment is preprocessed to be similar to that ob-
tained in the virtual environment. Thus, as shown in Fig. 3,
the target object is set simply as a red rectangular paral-
lelepiped block while the surrounding objects are set as
green cubes in the virtual environment.

3.1. Robot motion
As shown in Fig. 4, the high-level selector determines

the motion that the robot should perform among five mo-
tions: a grasping motion and four arranging motions. The
low-level selector then determines the target position of
each motion output from the high-level selector. When
the high-level selector outputs a grasping motion, the low-
level selector determines the grasping point among five
points: the center point of the object and four offset points
along the major axis. The grasp is performed along the
minor axis of the object, and the center point of the object
is provided by the simulator, as are the directions of the
major and minor axes.

When the high-level selector outputs an arranging mo-
tion, the robot pushes the objects to the left or right side of
the target object in the direction of the major axis. At this
time, the low-level selector determines the starting point
of the pushing motion, which is set near each vertex of the

Fig. 3. Virtual environment for learning process.

Fig. 4. Schematic description of robot motions.

target object in consideration of its length and width. In-
creasing the number of possible motions through the low-
level selector allows the robot to perform the selected ac-
tion while avoiding the surrounding objects. For example,
when it would be difficult to grasp near the center point
of the target object due to the presence of surrounding ob-
jects, the robot can instead pick up the object by grasping
its end part.

3.2. State
In order to determine whether to directly grasp the tar-

get object or remove the surrounding object first, it is nec-
essary to know how the objects are arranged. In this case,
factors such as the direction in which the objects lie or
their color are irrelevant. That is, it is only necessary to
judge whether the surrounding objects interfere with the
grasping of the target object according to the grasping
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Fig. 5. Preprocessing of images for input states.

pose. Therefore, in this study, the RGB image obtained
from the camera is preprocessed so that the image that
will be used as a state contains only the information nec-
essary to aid the decision of robot motion. To obtain this
state, as shown in Fig. 5, only the image around the tar-
get object excluding color information is taken from the
raw camera image containing the entire workspace. This
image is then rotated so that the major axis of the target
object is vertical.

The preprocessing of the images used for states has sev-
eral advantages in the learning process. First, since the di-
rection in which the target object is placed is excluded in
learning, the range of the state to be estimated by the Q-
network decreases. That is, the Q-network only estimates
the action value for the input state, which always has the
same direction as the target object. In addition, since only
images aligned in the grasping direction of the object are
used, the learning data can be collected more quickly, thus
increasing the convergence rate of learning. Furthermore,
by learning the action value function based only on the
state depending on the arrangement of objects, it is pos-
sible to generalize the decision-making ability so that the
results obtained by learning with simple-shaped objects
can be applied to various objects. That is, the robot can
learn, regardless of the shape and directions of objects,
that picking up the target object is not possible if the ad-
jacent objects block certain points at which the fingers of
the gripper should be located to grasp the target.

3.3. Reward

As the high-level and low-level selectors each have their
own reinforcement learning structures, their rewards are
also defined separately. Specifically, the high-level selec-
tor is rewarded (rh = 1) only when the robot successfully
grasps the target object, and it is not rewarded (rh = 0) oth-
erwise, even if the surrounding objects are well removed
by the robot. At this time, if the grasping motion is out-
put but the grasping fails due to the surrounding objects,
a penalty (rh =−1) is imposed to clarify the learning ob-

jective.
The low-level selector is rewarded (rl = 1) when the

robot performs the motion output from the high-level se-
lector, and it is not rewarded (rl = 0) if the robot fails to do
so. After the grasping motion is output from the high-level
selector, it is considered to be successful when the robot
picks up the target object over the predetermined height.
All of the motions are considered to be failures if the robot
is caught by an object while approaching the ground in or-
der to perform the motion. If the robot fails to accomplish
the selected motion even after performing all of the actions
of the low-level selector, the high-level motion is regarded
as a failure.

3.4. Learning process
The objects are randomly arranged at the beginning of

the episode. The image containing the objects is trans-
formed into the state s in the preprocessing stage described
above, and is input to the Q-network of the high-level se-
lector that outputs the goal g. The Q-network of the low-
level selector receives g and s as inputs and outputs the
action a. The actual motion of the robot is then performed
based on g and a. The data set of (s, g, a, rl , s

′
) is stored in

the replay memory Dl of the low-level selector when the
reward rl and the next state s

′
are obtained according to

the result of the motion of the robot. If the robot achieves
g or fails after performing repetitive motions chosen by
the low-level selector, the robot obtains the reward rh, and
the data set of (s0, g, rh, s

′
) is stored in the replay memory

Dh of the high-level selector, where s0 represents the state
used to obtain g in the high-level selector.

When the robot successfully grasps the target object,
the episode is terminated, and the objects are placed at
new locations for the next episode. The parameters of the
Q-network, θh and θl , are updated at each step based on
the temporal difference error presented in (1) using the tar-
get network and a batch sample drawn randomly from Dl

and Dh. As the training proceeds, the criterion for decid-
ing whether to pick up the target object directly or to push
the adjacent objects interfering with grasping is gradually
set in the Q-network of the high-level selector.

The learning process is summarized in Algorithm 1. In
this learning process, the parameters of the target network
are updated by those of the Q-network every 200 steps.
Since an episode is composed of a small number of steps,
the discount factor is set to a relatively small value of 0.7.

3.5. Learning results
Learning in the virtual environment was conducted with

3,000 episodes. As expected, the robot has learned to di-
rectly grasp the target object when it does not need to
arrange the surrounding objects, as shown in Fig. 6(a).
By contrast, when the surrounding objects are regarded
as obstacles, the robot first performs the pushing motion
to remove them, then grasps the target object, as shown
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Algorithm 1: Learning process.
Initialize Q-networks and target networks {Qθh , Q

θ
′
h
,

Qθl , Q
θ
′
l
}

Initialize reply memories {Dh, Dl}
Initialize exploration probability {eh, el} to 1
for episodes do

Initialize environment
Get and process state s
while not done do

g← EGREEDY (s,eh)
s0← s
while not (g is reached or failed) do

a← EGREEDY (s,g,el)
Execute a and obtain rl

Get and process next state s
′

Store (s, g, a, rl , s
′
) in Dl

s← s
′

Update parameters Qθh and Qθl with random
samples from Dh and Dl

if step % M = 0 then
Q

θ
′
h
← Qθh , Q

θ
′
l
← Qθl

end if
end while
Obtain rh

Store (s0, g, rh, s
′
) in Dh

end while
Update eh and el

end for

Fig. 6. Grasping task after learning: (a) in the case that
the robot can directly grasp the target block and
(b) in the case that the robot needs to remove the
surrounding objects before grasping the target.

in Fig. 6(b). The tasks were executed for evaluation using
the learning results discussed above, and the robot suc-
ceeded in grasping the target object 27 times out of 30

trials, achieving a grasping success rate of 90%. Note that
a trial was considered a failure when the robot was caught
by the object while approaching the ground to perform
the selected motion. Furthermore, 68 meaningful motions
were performed out of a total of 80 motions during the
30 grasping tasks, thereby achieving a motion efficiency
of 85%. Note that a meaningful motion is a motion that
is necessary for the robot to grasp the target object. For
example, if the robot can grasp the target object despite
the surrounding objects, the motion of grasping the target
is considered to be a meaningful motion, but the motion
of removing the surroundings is considered meaningless.
Thus, the motion efficiency indicates how well the robot
learned as intended.

In order to confirm the learning process, the robot was
evaluated using the parameter sets of the Q-networks
stored every 100 episodes during the learning. For each
stored parameter set, the tasks was repeated 30 times to
measure the success rate of grasping. Furthermore, to in-
vestigate the effect of the proposed method on the learning
process, additional learning processes were performed un-
der different conditions (cases 1 and 2), and the same eval-
uation processes were conducted. In case 1, the proposed
preprocessing method was partially applied to the image
(converted to the grayscale image and focused on the tar-
get object), and in case 2, the image was not preprocessed
but just converted to grayscale.

Fig. 7 compares the grasping success rates achieved af-
ter the evaluation. As shown in the graph, during 3000
episodes, the success rate of grasping achieved with the
parameter sets trained using the proposed method in-
creases rapidly. However, in the results of case 1, the in-
crease rate is significantly low, and the success rate only
reaches about the half of the proposed method’s results af-
ter 3000 episodes of training. In the results of case 2, the
success rate hardly increases, which means that without
the preprocessing of the image, the current structures of
the Q-networks may take a very long time or may not be
able to produce satisfactory results. This indicates that the
proposed preprocessing method effectively enhances the
learning speed and improves the learning efficiency.

Fig. 7. Comparison of the learning results.
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4. TRANSFER TO REAL WORLD

In a virtual environment, since the pose information of
the object is provided by a simulator, learning can be per-
formed without the need for object detection. However, in
a real environment, in order to grasp the target object, it
is necessary to first detect the target and acquire its pose
information. Moreover, to apply the learning result earned
in the virtual environment to the real environment without
any additional learning, a method for minimizing the dif-
ference between the two environments is needed. In this
section, the preprocessing method for reducing the differ-
ence is discussed, and the experimental results in the real
environment are presented.

4.1. Image preprocessing
In this study, the Mask R-CNN algorithm [19] is used to

perform the grasping tasks in the real environment since it
offers both the position and shape information of the de-
tected object. With the shape information, the image ob-
tained from the real environment can be made to be similar
to the state used in the virtual environment. Fig. 8 shows
the process of converting the RGB image obtained from
the camera into the input state for the Q-network. First, the
Mask R-CNN algorithm receives the RGB image as input
(as shown in the first row of Fig. 8) and creates the position
and shape information of the objects as output (as shown
in the second row of Fig. 8). Note that each object is seg-
mented independently. After the color of the shape image
of the target object is set to red and that of the surrounding
objects is set to green, they are integrated into one image.
Then, the color of the background is set to gray, which
makes the image similar to the camera image obtained in
the virtual environment, as shown in the third row of Fig.
8. Finally, as was the case in the preprocessing used in the
learning stage, the image converted to grayscale is rotated
so that the major axis of the target object is in the verti-
cal direction, and only the image around the target object
is taken for the input state. The major axis of the target
is obtained by applying the principal component analysis
(PCA) scheme [20] to the shape image.

The state obtained through this process is very similar
to the state used in learning in the virtual environment, as
can be confirmed by comparing Figs. 5 and 8. By prepro-
cessing the images, the difference between the virtual and
the real environments can be minimized, and the learn-
ing result in the virtual environment can be applied to the
real environment without any additional learning. Further-
more, this method can be applied regardless of the back-
ground since the detailed textures of the surroundings ex-
cept the objects are ignored and set to grayscale during the
preprocessing

It takes about 0.2 s to calculate the Mask R-CNN al-
gorithm and about 0.8 s for preprocessing using the PC
with GTX-1080. Since this process is carried out before

Fig. 8. Preprocessing of input state in the real world.

the robot performs the selected motion, the computation
time does not affect the operation of the robot.

4.2. Experiments
The experiments were conducted in the real world using

the learning results from the virtual environment without
additional training. Since only an image, which is inde-
pendent of the robot, was used as a state in learning, it is
not necessary to use the same robot that was used in the
learning stage. Therefore, in the experiments, the learn-
ing results in the virtual environment were applied to a 6
DOF robot developed in the laboratory. The Robotiq 2F-
85 gripper and the Intel RealSense D-415 camera were
also used in the experiments.

First, in order to verify the effectiveness of the pro-
posed image preprocessing method, experiments were
conducted using the blocks similar to those used in the vir-
tual environment. During the experiments, the robot con-
ducted 30 grasping tasks with the blocks closely placed, as
shown in Fig. 9. A trial was regarded as a failure when the
robot was blocked by the objects while approaching the
ground to perform the selected motion. As a result of ex-
periments, a grasping success rate of 86.7% and a motion
efficiency of 82.1% were achieved, which were consistent
with the results obtained in the virtual environment in Sec-
tion 3.5. This result indicates that the proposed method
can transfer the learning results directly to the real envi-
ronment.

To confirm that the difference between the two environ-
ments is effectively reduced by the proposed method, the
robot performed 30 additional grasping tasks using par-
tially preprocessed images, in which the segmentation was
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Fig. 9. Grasping procedure in cluttered environments
when the target object is a red block: (a) in the case
that the robot should clear both sides and (b) in the
case that the robot can grasp the target object after
clearing only the left side.

not conducted, as states. Fig. 10 compares the states used
in the learning process and experiments. Experiments us-
ing partially preprocessed images showed poor results of a
grasping success rate of 13.3% and a motion efficiency of
40.2%. Since the robot, in many cases, repeated the push-
ing motion over and over, it was regarded as a failure when
the robot could not grasp the target after carrying out 5
motions. Table 1 lists the evaluation results in the virtual
and real environments. These results demonstrate that the
proposed method successfully reduces the environmental
difference between the simulator and the real world.

Further experiments were conducted with 20 objects
in home environments that were not used in learning, as
shown in Fig. 11, to confirm the generalization of the

learning results. The robot performed 20 grasping tasks
for each object with various combinations of surrounding
objects. The average success rate of grasping was 81.8%
and the average motion efficiency was 76.9%. Although
the success rate and motion efficiency decreased slightly
compared to the first experiment, the robot tended to per-
form the appropriate motions in each situation. Moreover,
most failures occurred when the robot could not grasp the
target object even after appropriately performing the push-
ing motions to arrange the surroundings. For example, the
robot failed 8 times to grasp the SPAM due to the grip-
per size when the grasping pose was given diagonally as

Fig. 10. Comparison of images used as states: (a) a state
used during learning in the virtual environment,
(b) a fully preprocessed state in the real environ-
ment, and (c) a partially preprocessed state in the
real environment.

Table 1. Experimental results with simple objects.

Experimental conditions Success rate
of grasping

Motion
efficiency

Virtual env. with state in Fig. 10(a) 90.0% 85.0%
Real env. with state in Fig. 10(b) 86.7% 82.1%
Real env. with state in Fig. 10(c) 13.3% 40.2%

Fig. 11. Real-world experiments with various objects in
home environments: (a) Objects used for experi-
ments (b) grasping task when the target is a green
plastic pear, and (c) grasping task when the target
is a padlock.
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a result of PCA. If these cases are excluded, the grasping
success rate of 83.8% and the motion efficiency of 78.4%
can be achieved. This indicates that the decision-making
ability learned using simple blocks can be generalized and
is thus applicable to various objects as well.

5. CONCLUSION AND FUTURE WORK

In this study, Q-learning based reinforcement learning,
which has a hierarchical structure, is employed to learn
the decision-making ability to grasp a target object in a
cluttered environment. Learning was performed on sim-
ple objects in a virtual environment, and the learning re-
sults show a grasping success rate of 90% and 85% mo-
tion efficiency. The learning results were applied to an ac-
tual robot without any additional learning through the pro-
posed preprocessing method, and a grasping success rate
of 86.7% along with a motion efficiency of 82.1% were
obtained as a result of the experiment using objects simi-
lar to those used in the virtual environment. Furthermore,
it was confirmed that the robot properly determined the or-
der of motions to use for grasping the target object, even
when various objects were used. The experiment obtained
a grasping success rate of 83.8% and a motion efficiency
of 78.4%. These results show that the difference between
the virtual and real environments can be overcome and
that the learning results can be generalized by using the
proposed method.

The grasping pose used in this study was fixed in the
direction of the minor axis of the object. In such a grasp-
ing method, the robot could fail to grasp the target object
even if the surrounding objects were well arranged. In or-
der to overcome these limitations, we are planning to ap-
ply a grasping method which includes a way of estimating
a more suitable grasping pose for objects of various shapes
using depth information.
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