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Distributed-observer-based Fault Tolerant Control Design for Nonlinear
Multi-agent Systems
Jianye Gong, Bin Jiang, and Qikun Shen* ■

Abstract: The problem of distributed adaptive fault tolerant control is investigated for nonlinear multi-agent sys-
tems with sensor faults in this paper. By utilizing radial basis function neural networks to approximate the unknown
continuous nonlinear functions, a distributed-observer-based adaptive neural networks scheme is proposed to esti-
mate each node state, which is unmeasured in the system. Then, a kind of distributed adaptive controller is proposed
for each follower based on the sliding mode design technique and fault tolerant control technique. Based on graph
and Lyapunov stability theory, it is proved that the tracking errors converge to a small neighborhood of the origin
with all signals in the closed-loop system being bounded. Finally, simulation results are given to demonstrate the
effectiveness of the control scheme proposed in this paper.
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1. INTRODUCTION

In the past two decades, the cooperative control prob-
lems of multi-agent systems (MASs) have received exten-
sive attention within the control community. As stated in
[1], due to wide applications in such areas as power sys-
tems, unmanned air vehicles (UAVs) and robot formation,
these abundant results about MASs are especially attrac-
tive in modern intelligent control. Generally speaking, the
research problem of the MASs can be divided into two
main categories: the leaderless consensus problem and the
leader-following consensus problem. For the former, it is
called the cooperative problem, which aims to guarantee
all nodes converge to a common value through construct-
ing distributed controllers. For the latter, distributed con-
trol scheme is designed to guarantee that all the follow-
ing nodes follow the leader. Current works on consensus
problems can be found in [2–6].

In recent years, the fuzzy logic systems and the neural
network (NN) have played an important role to solve the
problem of adaptive tracking control for uncertain nonlin-
ear systems, and a variety of adaptive control approaches
have been proposed in [7–9]. However, the aforemen-
tioned schemes require that the system state variables are
assumed to be measured. If the system states are im-
measurable, these approaches cannot be applied to non-
linear systems. Up to now, abundant results have been

developed by using the observer design for nonlinear sys-
tems [10–12]. In [10], a fuzzy adaptive control method
was proposed for a class of SISO strict-feedback nonlin-
ear systems with unmeasured states. In [11], the prob-
lem of adaptive fuzzy output feedback control was studied
for a class of uncertain switched nonlinear systems, and a
switched fuzzy state observer was introduced to estimate
the immeasurable states. In [12], an adaptive backstep-
ping neural-network control approach was investigated for
a class of large-scale nonlinear output-feedback systems
with completely unknown interconnections and unmea-
sured states. However, the above mentioned results cannot
directly control those MASs.

In practical application, some common actuators and
sensor faults inevitably occur in the components of the
practical production systems, which result in performance
degradation and process instability, or even catastrophic
accidents. Therefore, it is a crucial step to develop effec-
tive fault tolerant control (FTC) methods to compensate
for the faults and further maintain the acceptable system
performance. Much attention has been paid to FTC and a
bank of effective results have been achieved [13–16]. In
[13], a novel fault diagnosis algorithm was proposed to de-
tect and estimate the time-varying actuator fault in fuzzy
systems. In [14], backstepping-based adaptive fuzzy FTC
schemes were proposed for a class of nonlinear strict feed-
back systems with actuator faults. Although the above
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mentioned FTC results have solved the problem of actua-
tor or sensor faults occurred in single systems, they cannot
be directly applied to nonlinear multiagent systems. To
solve the cooperative fault tolerant control problem, some
effective fault tolerant control schemes have been pro-
posed in [17–19]. In [17], a robust fault-tolerant consen-
sus problem was studied for a class of nonlinear second-
order leader-following multi-agent systems with multiple
actuator faults and time-varying system uncertainties. In
[18], an optimal fault tolerant control approach was pro-
posed for multi-agent systems. In [19], the robust adaptive
fault tolerant protocol was addressed for multi-agent sys-
tems with actuator failure and external disturbance. Al-
though there are some achievements of the research on
fault tolerant cooperative control for multi-agent systems,
there still are some FTC problems of MASs with sensor
faults that will be solved for the demands.

In this paper, based on the previous works, for a class
of nonlinear multi-agent systems with sensor faults, we
investigate the problem of adaptive FTC. Compared with
the existing papers, the main contributions of the proposed
solution should be emphasized:

1) A distributed-observer-based adaptive fault tolerant
control scheme is proposed for multiagent systems with
unmeasured states and sensor faults. A kind of adaptive
distributed observer is constructed for each node to solve
the state unmeasured problem;

2) The proposed control scheme combines the dis-
tributed observer design method and sliding-mode control,
and the cooperative fault tolerant tracking control problem
is solved.

The rest of this paper is organized as follows: Section
2 introduces some basic graph theory and formulates the
problem. In Section 3, main results are given, which in-
cludes the fault tolerant control scheme and stability anal-
ysis. The simulation result is presented in Section 4. A
conclusion is drawn in Section 5.

2. PROBLEM STATEMENT AND DESCRIPTION
OF NEURAL NETWORKS

2.1. Graph theory and notations
Consider a weighted digraph G = (V,E) with a

nonempty finite set of N nodes V = {v1,v2, . . . ,vN}, a
set of edges or arcs E ⊂ V ×V , and the associated adja-
cency matrix G = [gi j] ∈ RN×N . An edge (v j,vi) denotes
a link between node j and node i, which implies infor-
mation flows from v j to vi. Node j is called a neighbor
of node i if (v j,vi) ∈ E. The set of neighbors of node
i is denoted as Ni = { j | (v j,vi)} ∈ E. Each entry gi j

of adjacency matrix is the weight associated with edge
(v j,vi) and gi j > 0 if (v j,vi) ∈ E. Otherwise, gi j = 0.
Throughout this paper, the digraph is assumed to be time-
invariant, i.e., G is constant. Define the weighted in-
degree matrix as D = diag{di} ∈ RN×N with di = ∑N

j=1 gi j.

The Laplacian matrix L is defined as L = D − G. Let
1 = [1, . . . ,1]T ∈ RN×1 with appropriate dimension, then
L1 = 0. A digraph contains a spanning tree if there is a
node called root such that there exists a directed path from
this node to every other node.

Notations: In ∈ Rn×n is the identity matrix. The Kro-
necker product of matrices X ∈ Rm×n and Y ∈ Rp×q is de-
fined as

X ⊗Y =

 x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY

 ,

which satisfies the following properties:

||X ⊗Y ||= ||X ||||Y ||,
X ⊗Y +X ⊗Z = X ⊗ (Y +Z),

(X ⊗Y )(M⊗N) = (XM)⊗ (Y N).

2.2. Problem formulation
Consider the dynamics of ith node as follows{

ẋi = Axi + fi(xi)+Buui,

yi =Cxi,
(1)

where xi = [xi,1, . . . ,xi,n]
T ∈ Rn, ui ∈ Rm, and yi ∈ Rp, i = 1,

. . ., N denote the state, control input and output of node
i, respectively; fi(xi) = [0, . . . , f (xi)]

T ∈ Rn is unknown
smooth function. It is assumed that (A,Bu,C) is stabiliz-
able and detectable. In this paper, we assume that each
node state xi is immeasurable, and only the output yi can
be measured.

Dynamics of the leader node are described by{
ẋ0 = Ax0 + f0(x0),

y0 =Cx0,
(2)

where x0 = [x0,1, . . . ,x0,n]
T ∈ Rn and y0 ∈ Rp denote the

state and output, respectively. f (x0) is unknown smooth
function and f0(x0) = [0, . . . , f (x0)]

T ∈ Rn. If there is an
edge from node i to the leader, there exists a weight bi > 0.
Define the matrix B as B = diag{bi} ∈ RN×N .

According to the knowledge of Kronecker product, the
presentation of global leader node (2) can be rewritten as{

ẋ0 = (IN ⊗A)x0 + f
0
,

y
0
= (IN ⊗C)x0,

(3)

where x0 = [xT
0 , . . . ,x

T
0 ]

T ∈ RnN , y
0
= [yT

0 , . . . ,y
T
0 ]

T ∈ RpN ,
f

0
= [ f T

0 (x0), . . . , f T
0 (x0)]

T ∈ RnN .
Denote the global state as x = [xT

1 , . . . ,x
T
N ]

T ∈ RnN ,x0 =
1⊗ x0 ∈ RnN . Define the global tracking error as

δ = x− x0 ∈ RnN . (4)
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During the actual operation, the sensor may become
faulty. The model of the sensor fault can be described as

y f
i,k = yi,k + f s

i,k, i = 1, . . . ,N, k = 1, . . . , p, t ≥ t f ,

(5)

where f s
i,k is an unknown constant fault, the failure time t f

is unknown.
The aim of this paper is to design a distributed-

observer-based adaptive fault tolerant control scheme for
(1) such that tracking error δ converges to a small neigh-
borhood of the origin and all signals in the closed-loop
system are bounded.

The following assumptions of graph theory and ob-
server design hold throughout this paper.

Assumption 1: The weighted digraph G contains a
spanning tree. The weights of edges gi j ≥ 0 and there
exists an unknown constant ḡ > 0 such that ḡ ≥ gi j, i = 1,
. . ., N, j = 1, . . ., N.

Assumption 2: There exists an unknown constant
f̄ s
i,k > 0 ∈ R such that | f s

i,k| ≤ f̄ s
i,k, i = 1, . . ., N, k = 1,

. . ., p.

Assumption 3: There exists a constant M f0 > 0 ∈ R
such that || f0(x0)|| ≤ M f0 .

Lemma 1 [12]: Define q= [q21, . . . ,q2N ] = (L+B)−11,
P2 = diag{p2i} = diag{1/q2i}, Q2 = P2(L + B) + (L +
B)T P2, then P2 > 0 and Q2 > 0.

Lemma 2 [12]: ||δ || ≤ ||z||/σ(L+B), where σ(L+B)
is a minimum singular value of matrix L+B.

2.3. Description of neural networks
Neural Networks (NNs) have been widely used in mod-

eling and controlling of nonlinear systems because of their
capabilities of nonlinear function approximation, learning
and fault tolerance. In this paper, we choose the RBF neu-
ral networks [20] as the approximation NNs which is de-
fined as follows:

h(Z) =W T φ(Z), (6)

where Z = [z1, · · · ,zq]
T ∈ Ωz ∈ Rq is the input vector with

q being the NN input dimension, W = [w1, · · · ,wl ]
T ∈ Rl

is the weight vector and l is the number of the neural net-
works nodes, φ(Z) = [φ1(Z), . . . ,φl(Z)]T ∈ Rl denotes the
radial basis function with φi(Z) being chosen as follows

φi(Z) = exp(−||z−µi||2

d2
i

), (7)

where di > 0 and µi = [µi1, . . . ,µiq]
T , i = 1, . . . , l are the

width and center of the radial basis function, respectively.
Let

W ∗ = arg min
W∈Rl

[ sup
Z∈ΩZ

|h(Z)−W T φ(Z)|], (8)

where W ∗ denotes the ideal weight vector, Ωz is a suffi-
ciently large compact set.

For a continuous function h(Z), it can be obtained

h(Z) =W ∗T φ(Z)+ ε(Z),∀Z ∈ ΩZ , (9)

where ε(Z) denotes the optimal approximation error.

Assumption 4: There exists an unknown constant ε∗ >
0 ∈ R such that |ε| ≤ ε∗ in a compact set.

3. MAIN RESULTS

3.1. Observer design
Since the states of system (1) are immeasurable, a neu-

ral network state observer will be designed. From (9), de-
fine the ideal parameter vector W ∗

i as

W ∗
i = arg min

Ŵi∈Ωi

[sup | f̂i(x̂i|Ŵi)− f (xi)|], (10)

where xi ∈ Ui, x̂i ∈ U
′

i , Ωi,Ui and U
′

i are compact sets for
Ŵi,xi and x̂i, respectively.

Define the neural networks minimum approximation er-
ror as

εi = f (xi)− f̂i(x̂i|W ∗
i ), (11)

where x̂i = [x̂i,1, . . . , x̂i,n]
T is the estimation of the state xi.

Assume that there exists a constant ε∗
i such that |εi| ≤

ε∗
i , i = 1, . . .N.

Rewrite (1) into the following form:{
ẋi = Āxi +Myi +Buui +W ∗T

i φi(x̂i)+ εi,

yi =Cxi,
(12)

where W ∗T
i φi(x̂i)= [0, . . . ,0,W ∗

i φ(x̂i)]
T ∈Rn, εi ∈Rn, M ∈

Rn×p, Ā = A − MC. Choose matrix M such that Ā is a
Hurwitz matrix.

According to the knowledge of Kronecker product, the
presentation of global MASs (12) is described by

ẋ =(IN ⊗ Ā)x+(IN ⊗M)y+(IN ⊗Bu)u

+W ∗T φ(x̂)+ ε,
y =(IN ⊗C)x,

(13)

where x = [xT
1 , . . . ,x

T
N ]

T ∈ RnN , u = [uT
1 , . . . ,u

T
N ]

T ∈ RmN ,
W ∗T φ(x̂) = [W ∗T

1 φ1(x̂1),W ∗T
2 φ2(x̂2) . . . ,W ∗T

N φN(x̂N)]
T ∈

RnN , ε = [εT
1 , . . . ,εT

N ]
T ∈ RnN , y = [yT

1 , . . . ,y
T
N ] ∈ RpN .

To estimate the system states, the distributed observer
is constructed as

˙̂xi =Āx̂i +Myi +Buui +Ŵ T
i φi(x̂i)+ sgn(e f T

yi FT
i )ε̂i

+Kζi +N ˆ̄gkKp(y
f
i − ŷ f

i ),

ŷ f
i =Cx̂i,

(14)

where x̂i = [x̂i,1, . . . x̂i,n]
T ∈ Rn, Ŵi and ε̂i denote the esti-

mate of state xi, W ∗
i and ε∗

i of the ith node, respectively;
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K ∈ Rn×p and Kp ∈ Rn×p denote the observer gain; N ∈ R
is the number of nodes; ḡk = ḡk̄ is an unknown positive
constant, ˆ̄gk is the estimate of ḡk, which is an unknown
constant and will be defined later, ζi is a neighborhood
output estimation error of node i, which is defined as

ζi = ∑
j∈Ni

gi j((y
f
i − ŷ f

i )− (y f
j − ŷ f

j )), (15)

where gi j is the element of the adjacency matrix G.
From (14) and (15), we can further obtain

˙̂xi =Āx̂i +Myi +Buui +Ŵ T
i φi(x̂i)+ sgn(e f T

yi FT
i )ε̂i

+(gi1 + . . .+giNi)K(y f
i − ŷ f

i )−gi1K(y f
1 − ŷ f

1)

− . . .−giNi K(y f
Ni
− ŷ f

Ni
)+N ˆ̄gkKp(y

f
i − ŷ f

i ). (16)

Similar to (13), the global observer is
˙̂x = (IN ⊗ Ā)x̂+(IN ⊗M)y+(IN ⊗Bu)u+Ŵ T φ(x̂)

+ sgn(e f T
y FT )ε̂ +(L⊗K)(y f − ŷ f )

+N ˆ̄gkKP(y f − ŷ f ),

ŷ f = (IN ⊗C)x̂,

(17)

where x̂ = [x̂T
1 , . . . , x̂

T
N ]

T , Ŵ T = diag{Ŵ T
1 , . . . ,Ŵ T

N }, Ŵ T
i ,

i = 1, . . . ,N are the estimates of W ∗T
i , ε̂ = [ε̂T

1 , . . . , ε̂T
N ]

T ,
sgn(e f T

y FT ) = diag{sgn(e f T
y1 FT

1 ), . . . ,sgn(e f T
yN FT

N )}, u =

[uT
1 , . . . ,u

T
N ]

T , KP = IN ⊗Kp, y = [yT
1 , . . . ,y

T
N ]

T .
Thus, given a positive definite matrix Q1, there exist

real matrices K,P1i = PT
1i > 0 such that

[IN ⊗ Ā−D⊗KC]T P1 +P1[IN ⊗ Ā−D⊗KC]

≤−Q1, (18)

P1 = (FCm)
T , (19)

where P1 = diag{P11, . . . ,P1N}, F = diag{F1, . . . ,FN} ∈
RnN×pN , Cm = (IN ⊗C) ∈ RpN×nN .

Define the observer error of the ith node exi = xi − x̂i,
eyi = yi − ŷi. Then, let us define ex, ey and e f

y as

ex = [eT
x1, . . . ,e

T
xN ]

T , ey = [eT
y1, . . . ,e

T
yN ]

T ,

e f
y = [e f T

y1 , . . . ,e
f T
yN ]

T . (20)

From (13) and (17), we obtain the observer error dynamics
ėx =(IN ⊗ Ā)ex +W̃ T φ(x̂)+ ε − sgn(e f T

y FT )ε̂

− (L⊗K)(y f − ŷ f )−N ˆ̄gkKP(y f − ŷ f ),

ėy =(IN ⊗C)ex,

(21)

where W̃ =W ∗−Ŵ .

3.2. Controller design and stability analysis
For node i, the neighborhood synchronization error is

given by

zi = ∑
j∈Ni

gi j(x̂ j − x̂i)+bi(x0 − x̂i). (22)

Define z = [z1, . . . ,zN ]
T ∈ Rn×N , one has

z =−(L+B)(x̂− x0). (23)

The dynamic of global tracking error z is

ż =− (L+B)[(IN ⊗A)x̂+Ŵ T φ(x̂)+ ε̂
+(IN ⊗Bu)u− (IN ⊗A)x0 − f

0
]. (24)

Define the error si for node i as

si = Hizi −
∫ t

0
Hi(A+BuE)zi(τ)dτ, (25)

where si ∈ R, Hi ∈ R1×ni , let Hi = BT
u /||Bu||2, result in

HiBu = 1, i.e., Hi = B+
u , E ∈ R1×ni satisfy max(Re[λ (A+

BuE)]) < 0, here Re[λ (∗)] denotes the real part of λ , and
λ (∗) expresses the eigenvalue of matrix ∗. From (25), we
have

ṡi = Hiżi(t)−Hi(A+BuE)zi(t). (26)

Now, define S(t) = [s1(t),s2(t), . . . ,sN(t)]T . Then, from
(26), the dynamic of S is

Ṡ =−H(L+B)[Ŵ T φ(x̂)+ ε̂ +(IN ⊗Bu)u− f
0
]− γ,

(27)

where H = diag{H1, . . . ,HN} ∈ Rn×nN , γ = (IN ⊗E)z.
Define the Lyapunov function as

V =V1 +V2 +V3, (28)

where V1 = eT
x P1ex, V2 = ST P2S, V3 =

1
2ηgk

˜̄g2
k +

1
2η f

f̃ sT f̃ s +
1

2ηw
tr{W̃ TW̃}+ 1

2ηε
ε̃T ε̃ + 1

2η f 0
M̃T

f
0
M̃ f

0
, ηgk > 0 ∈ R, η f >

0 ∈ R, ηw > 0 ∈ R, etaε > 0 ∈ R, η f
0
> 0 ∈ R are design

parameters.
From (18), (21) and (28), differentiating V1 with respect

to time t, one has

V̇1 ≤− eT
x Q1ex +2eT

x P1(G⊗K)ey +2eT
x P1(G⊗K) f̃ s

−2eT
x P1(D⊗K) f̃ s +2eT

x P1[W̃ T φ(x̂)+ ε
− sgn(e f T

y FT )ε̂]−2eT
x P1N ˆ̄gkKPe f

y . (29)

Now, let us consider the second and third term in (29),
since e f

y = ey + f̃ s, one has

2eT
x P1(G⊗K)ey +2eT

x P1(G⊗K) f̃ s

= 2eT
x P1(G⊗K)e f

y . (30)

From the Kronecker product properties, we can obtain

2eT
x P1(G⊗K)e f

y =2eT
x P1(G⊗KG)KPe f

y , (31)

where KG ∈ Rn×n, KP = IN ⊗Kp. Since P1 = PT
1 > 0, we

further have

2eT
x P1(G⊗K)KPe f

y ≤ 2eT
x P1||G⊗KG||KPe f

y . (32)
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From Assumption 1 and the Kronecker property: ||G⊗

KG||= ||G||||KG|| and ||G||=
√

tr(GT G) =

√
N
∑

i=1

N
∑
j=1

g2
i j ≤

Nḡ. Since the matrix K is satisfied with (18), there exists
a real unknown constant k̄ such that ||KG|| ≤ k̄. We can
further obtain 0 ≤ ||G||||KG|| ≤ Nḡk̄ = Nḡk, where ḡk =
ḡk̄.

Hence, from (32), it follows that

2eT
x P1(G⊗K)e f

y ≤ 2eT
x P1NḡkKPe f

y . (33)

Substituting (33) into (29), one has

V̇1 ≤− eT
x Q1ex +2eT

x P1N ˜̄gkKPe f
y −2eT

x P1(D⊗K) f̃ s

+2eT
x P1[W̃ T φ(x̂)+ ε − sgn(e f T

y FT )ε̂]. (34)

Consider the second term in (34), since P1 = (FCm)
T and

ey = e f
y − f̃ s, we have

2eT
x P1N ˜̄gkKPe f

y

= 2(e f T
y − f̃ sT )FT N ˜̄gkKPe f

y

= 2e f T
y FT N ˜̄gkKPe f

y −2e f T
y KT

P N ˜̄gkF f̃ s. (35)

Then, using Young’s inequality, one has

2eT
x P1N ˜̄gkKPe f

y ≤2e f T
y FT N ˜̄gkKPe f

y

+ e f T
y KT

P N2 ˜̄g2
kKPe f

y + f̃ sT FT F f̃ s.

(36)

Similar to (35) and (36), it follows that

2eT
x P1[W̃ T φ(x̂)+ ε − sgn(e f T

y FT )ε̂]

≤ 2e f T
y FTW̃ T φ(x̂)+ f̃ sT FT F f̃ s +φTW̃W̃ T φ

+2e f T
y FT sgn(e f T

y FT )ε̃ + f̃ sT FT F f̃ s + ||ε∗||2

+ f̃ sT FT F f̃ s + sgn(e f T
y FT )ε̂T sgn(e f T

y FT )ε̂. (37)

Now, consider the third term in (35), one has

−2eT
x P1(D⊗K) f̃ s

=−2(e f T
y − f̃ sT )FT (D⊗K) f̃ s

=−2 f̃ sT (D⊗K)T Fe f
y +2 f̃ sT FT (D⊗K) f̃ s. (38)

Furthermore, from (36), (37) and (38), we can obtain

V̇1 ≤− eT
x Q1ex +2e f T

y FT N ˜̄gkKPe f
y +2e f T

y FTW̃ T φ(x̂)

+2e f T
y FT sgn(e f T

y FT )ε̃ −2 f̃ sT (D⊗K)T Fe f
y

+ e f T
y KT

P N2 ˜̄g2
kKPe f

y +4 f̃ sT FT F f̃ s

+2 f̃ sT FT (D⊗K) f̃ s +µe, (39)

where µe = φTW̃W̃ T φ + ||ε∗||2 + ε̂T ε̂ .
Now, differentiating V2 with respect to t, one has

V̇2 =−2ST P2H(L+B)[Ŵ T φ(x̂)+sgn(e f T
y FT )ε̂− f

0
]

−2ST P2H(L+B)(IN ⊗Bu)u−2ST P2γ. (40)

The control law is given by

u =− (IN ⊗Bu)
+[Ŵ T φ(x̂)+ sgn(e f T

y FT )ε̂]

+ (IN ⊗Bu)
+sgn(ST P2H(D+B))M̂ f

0

− (IN ⊗Bu)
+(D+B)−1H+γ+h(IN ⊗Bu)

+S, (41)

where Ŵ T = diag{Ŵ T
1 ,Ŵ T

2 , . . . ,Ŵ T
N }, ε̂ = [ε̂T

1 , . . . , ε̂T
N ]

T ,
sgn(e f T

y FT ) = diag{sgn(e f T
y1 FT

1 ), . . . ,sgn(e f T
yN FT

N )}, φ(x̂)
= [φT

1 (x̂1), . . . ,φT
N (x̂N)]

T , M̂ f
0
= [M̂ f0 , . . . ,M̂ f0 ]

T is an esti-
mate of M f

0
= [M f0 , . . . ,M f0 ]

T , h > 0 is represented as

hλmin(HQ2HT )−6σ̄(GGT )σ̄ 2(P2)rλmin(HHT )

−λmin(HD)/2r > 0.

Substituting (41) into (40), we have

V̇2 ≤−2hST P2H(L+B)S

+2ST P2H(D+B)sgn(ST P2H(D+B))M̃ f
0

+2ST P2HGsgn(ST P2H(D+B))M̂ f
0

−2ST P2HG f
0
−2ST P2HG(D+B)−1H+γ, (42)

where M̃ f
0
= M f

0
− M̂ f

0
.

From Young’s inequality, it follows that

2ST P2HGsgn(ST P2H(D+B))M̂ f
0

≤ 2σ̄(GGT )σ̄ 2(P2)rST HHT S+ M̂T
f

0
M̂ f

0
/2r, (43)

−2ST P2HG f
0
≤ 2σ̄(GGT )σ̄ 2(P2)rST HHT S

+MT
f

0
M f

0
/2r, (44)

−2ST P2HG(D+B)−1H+γ
≤ 2σ̄(GGT )σ̄ 2(P2)rST HHT S

+ γT (H+)T (D+B)−2H+γ/2r, (45)

where r > 0 is a design parameter, σ̄ is the maximum sin-
gular value of the matrix.

Substituting (43)-(45) into (42), one has

V̇2 ≤−2hST P2H(L+B)S

+2ST P2H(D+B)sgn(ST P2H(D+B))M̃ f
0

+6σ̄(GGT )σ̄ 2(P2)rST HHT S

+µsγT (H+)T (D+B)−2H+γ/2r, (46)

where µs = (M̂T
f

0
M̂ f

0
+MT

f
0
M f

0
)/2r.

From Assumption 4, M f
0

is bounded. The adaptive law
(52) ensures that M̂ f

0
is also bounded. Because M f

0
and

M̂ f
0

are bounded, r > 0 ∈ R is a design parameter, then µs

is bounded.
Since

γT (H+)T (D+B)−2H+γ/2r ≤ ST HDS/2r, (47)
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where

HD = (H+)T (IN ⊗E)T (H+)T (D+B)−2H+(IN ⊗E)H+.

Then, (46) can be rewritten as

V̇2 ≤−2hST P2H(L+B)S

+2ST P2H(D+B)sgn(ST P2H(D+B))M̃ f
0

+6σ̄(GGT )σ̄ 2(P2)rST HHT S+ST HDS/2r+µs.
(48)

From (28), the derivative of V3 is

V̇3 =− 1
ηgk

˜̄gk
˙̄̂gk −

1
η f

f̃ sT ˙̂f s − 1
ηw

tr{W̃ T ˙̂W}

− 1
ηε

ε̃T ˙̂ε − 1
η f

0

M̃T
f

0

˙̂M f
0
. (49)

Define the adaptive laws as follows:

˙̄̂gk = 2ηgNe f T
y FT KPe f

y − rgk
ˆ̄gk, (50)

˙̂f s =−2η f (D⊗K)T Fe f
y − r f f̂ s, (51)

˙̂W = 2ηwφFe f
y − rwŴ , (52)

˙̂ε = 2ηε Fe f
y sgn(e f T

y FT )− rε ε̂, (53)
˙̂M f

0
= 2η f

0
ST P2H(D+B)sgn(ST P2H(D+B))

− r f
0
M̂ f

0
. (54)

Theorem 1: Consider system (1) and (2), Assumptions
1-4, control law (41) and adaptive laws (50)-(54), if there
exist appropriate parameters h, r, ηgk , η f , ηw, ηε , η f

0
, then

all nodes in graph G synchronize to the leader node 0, the
global tracking error δ and all signals in the closed-loop
system belong to a small adjustable set Ω defined as

Ω

=



(ex,S, ˜̄gk, f̃ s,W̃ , ε̃,M̃ f
0
,δ ) | ||ex||≤

√
α/λmin(P1),

||S||≤
√

α/λmin(P2), ||M̃ f
0
||≤

√
2η f

0
α,

||W̃ ||≤
√

2ηwα, ||ε̃||≤
√

2ηε α, | ˜̄gk|≤
√

2ηgk α,

|| f̃ s||≤
√

2η f α,δ ≤
√

α/λmin(P2)/σ(L+B)


.

Proof: Choose the Lyapunov function as

V =eT
x P1ex +ST P2S+

1
2ηgk

˜̄g2
k +

1
2η f

f̃ sT f̃ s

+
1

2ηw
tr{W̃ TW̃}+ 1

2ηε
ε̃T ε̃+

1
2η f

0

M̃T
f

0
M̃ f

0
. (55)

Differentiating V with respect to time t and from (41),

(50)-(54), one has

V̇ ≤− eT
x Q1ex + e f T

y KT
P N2 ˜̄g2

kKPe f
y +4 f̃ sT FT F f̃ s

+2 f̃ sT FT (D⊗K) f̃ s +µe −hST HQ2HT S

+6σ̄(GGT )σ̄ 2(P2)rST HHT S+ST HDS/2r+µs

+
rgk

ηgk

˜̄gk ˆ̄gk +
r f

η f
f̃ sT f̂ s +

rw

ηw
tr{W̃ TŴ}+ rε

ηε
ε̃T ε̂

+
r f

0

η f
0

M̃T
f

0
M̂ f

0
. (56)

From Young’s inequality, one has

rgk

ηgk

˜̄gk ˆ̄gk ≤− rgk

2ηgk

˜̄g2
k +

rgk

2ηgk

ḡ2
k , (57)

r f

η f
f̃ sT f̂ s ≤−

r f

2η f
f̃ sT f̃ s +

r f

2η f
f̄ sT f̄ s, (58)

rw

ηw
tr{W̃ TŴ}

≤ − rw

2ηw
tr{W̃ TW̃}+ rw

2ηw
tr{W ∗TW ∗}, (59)

rε

ηε
ε̃T ε̂ ≤− rε

2ηε
ε̃T ε̃ +

rε

2ηε
||ε∗||2, (60)

r f
0

η f
0

M̃T
f

0
M̂ f

0
≤−

r f
0

2η f
0

M̃T
f

0
M̃ f

0
+

r f
0

2η f
0

||M f
0
||2, (61)

where f̄ s = [ f̄ s
1 , . . . , f̄ s

N ]
T , f̄ s

i = [ f̄ s
i,1, . . . , f̄ s

i,p]
T ∈ Rp, i = 1,

. . ., N.
Then, (56) can be rewritten as

V̇ ≤− eT
x Q1ex −hST HQ2HT S

+6σ̄(GGT )σ̄ 2(P2)rST HHT S+ST HDS/2r

+ f̃ sT [4FT F +2FT (D⊗K)−
r f

2η f
IN ] f̃ s

+[N2e f T
y KT

P KPe f
y −

rgk

2ηgk

] ˜̄g2
k −

rw

2ηw
tr{W̃ TW̃}

− rε

2ηε
ε̃T ε̃ −

r f
0

2η f
0

M̃T
f

0
M̃ f

0
+µ, (62)

where µ = µe + µs +
rgk

2ηgk
ḡ2

k +
r f

2η f
f̄ sT f̄ s +

r f 0
2η f 0

||M f
0
||2 +

rw
2ηw

tr{W ∗TW ∗}+ rε
2ηε

||ε∗||2.

Let rgk = 1 + 2ηgk N
2e f T

y KT
P KPe f

y , rw = rε = r f
0
= 1,

r f IN = IN +8η f FT F +4η f FT (D⊗K), we have

V̇ ≤− eT
x Q1ex −hST HQ2HT S

+6σ̄(GGT )σ̄ 2(P2)rST HHT S+ST HDS/2r

− 1
2ηgk

˜̄g2
k −

1
2η f

f̃ sT f̃ s − 1
2ηw

tr{W̃ TW̃}

− 1
2ηε

ε̃T ε̃ − 1
2η f

0

M̃T
f

0
M̃ f

0
+µ. (63)

Therefore, (63) can be further obtained

V̇ ≤−κV +µ, (64)
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where κ = min{1,λmin(Q1)/λmax(P1), [hλmin(HQ2HT )−
6σ̄(GGT )σ̄ 2(P2)rλmin(HHT )−λmin(HD)/2r]/λmax(P2)}.

From (64), it follows that

0 ≤V (t)≤ µ
κ
+(V (0)− µ

κ
)e−κt ≤ µ

κ
+V (0). (65)

Let α = µ/κ+V (0), one has ||ex|| ≤
√

α/λmin(P1), ||S|| ≤√
α/λmin(P2), | ˜̄gk| ≤

√
2ηgk α, || f̃ s|| ≤

√
2η f α, ||W̃ || ≤

√
2ηwα, ||ε̃|| ≤

√
2ηε α, ||M̃ f

0
|| ≤

√
2η f

0
α , which im-

plies the boundedness of all signals in the closed-loop
system. Further, from (23), the synchronization error z is
bounded.

From Lemma 2, we have

δ ≤
√

α/λmin(P2)/σ(L+B). (66)

Thus, the consensus error δ is uniform ultimate bounded-
ness, and all signals in the closed-loop system belong to
the adjustable set Ω. □

3.3. Simulation results
To demonstrate the effectiveness of the proposed ap-

proach, a power system with 4 buses is used in the sim-
ulation study. Power systems can be seen as an example
of multi-agent systems, where each bus denotes a node in
the system. For i = 1, . . . ,N, the behavior of node i can be
represented by the swing equation

miδ̈i(t)+diδ̇i(t)−Pmi(t) =− ∑
j∈Ni

Pi j(t),

where δi is the phase angle of node i, mi is the inertia coef-
ficients of motors, di is the damping coefficients of gener-
ators, Pmi denotes the mechanical input power, Pi j denotes
the active power flow from vi to v j, and Ni is the neigh-
borhood set of node i where node j and i share a common
route.

Now, let ξi(t) = δi(t) and ζi(t) = δ̇i(t), the dynamics of
node i can be rewritten as

ξ̇i(t) = ζi(t),

ζ̇i(t) =− di

mi
ζi(t)−

1
mi

∑
j∈Ni

[ω1
i j cos(ξi(t)−ξ j(t))

+ω2
i j sin(ξi(t)−ξ j(t))]+

Pmi(t)
mi

.

Consider the system in this paper, the leader is represented
by (2), and the following nodes are represented by second-
order systems in the shape of (1), where the state x =
[xi,1,xi,2]

T = [ξi,ζi]
T , the input ui ∈ R, fi(xi) = [0, fi(xi)]

T ,
and

A =

[
−2 −1
2 1

]
, B =

[
0
1

]
, C =

[
2 0
0 4

]
.

Fig. 1. Communication topology.

These variables’ specification is given as follows: ξi and
ζi denote the phase and frequency of the ith node, respec-
tively; fi(xi) denotes the power flow of the ith node.

Consider a 4-node digraph G and a leader node, the
communication topology is described in Fig. 1. As shown
in Fig. 1, we know that the matrix B = diag{1,0,0,0}.
We choose the following value: f0(x0) = −x0,1 − 2x0,2 −
(x0,1 + x0,2)(x0,1 + 4x0,2)+ 0.5sin(2t), f1(x1) = −x1,1 +
0.5x1,2 − x2

1,1x1,2, f2(x2) = −0.5x2,1 + 0.5x2,2 − x2
2,1x2,2,

f3(x3) = x3,1 + 0.25x3,2 − x2
3,1x3,2, f (x4) = x4,1 + x4,2 −

0.5x2
4,1x4,2. The values for initial conditions are x1,1(0) =

−0.1, x1,2(0) = −0.05, x2,1(0) = 0.15, x2,2(0) = −0.01,
x3,1(0) = 0.05, x3,2(0) = −0.15, x4,1(0) = 0.1,x4,2(0) =
0.2. The parameter values of the neural networks are se-
lected as q = 10, µi, j = 0.1×( j−5), di, j = 1, j = 1, 2, . . .,
q, i = 1. We assume that only node 2 becomes faulty, and
the sensor fault is described as y f

2 = y2 +0.1sin(t).

The simulation results are given in Figs. 2-6. In fault-
free case, the observer error is shown in Fig. 2, which im-
plies that the observers designed in this paper have good
performance. In Fig. 3, it is seen that the observer error
significantly deviates from the origin without fault com-
pensation. From Fig. 4, in faulty case, the tracking errors
asymptotically converge to a small adjustable neighbor-
hood of the origin with the proposed fault tolerant control
design method. In addition, the boundedness of control
signals are shown in Fig. 5. Fig. 6 shows the trajectories
of ||Ŵi||2, i = 1, 2, 3, 4.
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Fig. 2. The observer error in the fault-free case.
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Fig. 3. The observer error in the fault case.
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Fig. 4. Tracking errors.

4. CONCLUSIONS

In this paper, the adaptive fault tolerant control problem
is investigated for a class of nonlinear multi-agent sys-
tems. Based on the distributed observer design method
and sliding mode control technique, a novel adaptive neu-
ral networks control scheme is proposed. By graph and
Lyapunov theory analysis, the cooperative tracking error
converges exponentially to a small adjustable neighbor-
hood of the origin with all signals in the closed-loop sys-
tem being bounded.
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