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Obstacle Avoidance Path Planning based on Output Constrained Model
Predictive Control
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Abstract: Image processing and control technologies have been widely studied and autonomous vehicles have
become an active research area. For autonomous driving, it is essential to generate a safe obstacle avoidance path
considering the surrounding environment. This paper devised an algorithm based on a real-time output constrained
model predictive control for obstacle avoidance path planning in high speed driving situations. The proposed
algorithm was compared with the normal model predictive control algorithm by simulation, including operation
times to verify robustness for high speed driving situations. We used the ISO 2631-1 comfort level standard to
quantify driver comfort fo r both cases.
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1. INTRODUCTION

Ongoing development of image processing technolo-
gies, vehicle-to-vehicle communication and control tech-
nologies have strongly supported advanced driver assis-
tance system (ADAS) and autonomous driving system
(ADS) research. Consequently, various lane keeping as-
sistance, active cruise control and autonomous emergency
braking are in ADAS related technologies. ADAS and
ADS provide users with convenience and comfort while
enhancing user safety and efficiency. The most impor-
tant ADAS and ADS consideration is safety. Therefore,
this paper discusses obstacle avoidance path planning for
autonomous driving situations and evaluates safety assur-
ance for generated obstacle avoidance paths.

An autonomous driving vehicle must recognize obsta-
cle vehicles or pedestrians on the global path and either
steer or brake to generate a safe path to the final target
point. Thus, ADAS and ADS algorithms that can con-
trol vehicle steering and braking are essential. Many path
planning algorithms have been proposed for ADASs and
ADSs, with the A-star and potential field algorithms being
the most common currently employed.

Carroll et al. [1] proposed an A-star theory based path
planning algorithm to avoid obstacles such as reefs in the
water. Wang et al. [2] proposed a path planning algorithm
incorporating an improved A-star technique for automated
guided vehicles (AGV). They suggested to remove the

edge of the global map to improve performance. Conse-
quently, the proposed algorithm generated obstacle avoid-
ance paths much faster than the normal A-star algorithm
for multiple AGVs. However, the A-star algorithm has
the disadvantage that a complete new path is generated
for each dynamic obstacle avoidance.

Hwang et al. [3] proposed a potential field approach to
generate an obstacle avoidance path by assigning an elec-
trostatic potential to each obstacle. The path generated
by potential field algorithm does not reflect the vehicle
dynamics. Rasekhipour et al. [4] incorporated a vehicle
dynamics model into the potential field algorithm. The re-
sultant model predicted vehicle behaviors and obtained an
optimal path considering vehicle dynamics. In contrast to
the potential field algorithm, obstacles and road environ-
ment were considered as constraints. However, potential
field algorithms may fail to generate the whole path due
to local minima problems. When the vehicle drives the
global path and reaches a local minimum, it cannot get out
of that position, misjudges the position as the destination,
and stops control.

Several previous obstacle avoidance path planning stud-
ies have used model predictive control (MPC) to overcome
these disadvantages that occur in A-star and potential field
algorithm. [5–8]. The basic MPC process is as follows.
First, configure the system model to be controlled. Opti-
mized outputs are obtained at each step from previously
defined MPC input and state variables, and then assigned
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Fig. 1. Output constraint box for the host vehicle.

to the system model. Predicted values for the next step are
obtained based on these output values and input and state
values.

By incorporating feedback control, MPC is robust
against time delay [9–11], and has been widely used to
model chemical process plants because it can control mul-
tiple variables and impose variable constraints [12]. Sev-
eral studies have applied MPC to vehicle steering con-
trol, but conventional MPC computation speed is slow in
multi-input multi-output system, such as vehicle models
[13–16]. Slow computation makes it difficult to obtain
timely output values in high speed driving situations, and
hence difficult or impossible to generate timely obstacle
avoidance paths.

To solve conventional MPC disadvantages, this paper
proposes a method that increases computation speed by
imposing constraints on output values and removing paths
that do not satisfy the conditions. An output constraint
box is formed in the host vehicle by applying output lim-
its, as shown in Fig. 1, and input and state values that do
not satisfy the output constraint are not calculated. Thus,
the solver can transform non-convex problems into convex
problems, significantly improving computation speed.

We compared operation speed for the proposed and
conventional model predictive control algorithms using
MATLAB R⃝simulation and CarSim. Safety of the gen-
erated path was evaluated by applying ISO 2631-1, which
evaluates comfort level based on vehicle accelerations in
lateral, longitudinal, and vertical directions when driving
the generated path [17, 18].

The remainder of this paper is organized as follows:
Section 2 introduces MPC principles and designing a vehi-
cle model and MPC for path planning. Section 3 presents
the comfort level concept to evaluate safety and time to
collision for decision making. Section 4 presents simula-
tion results from MATLAB R⃝and CarSim. Finally, Sec-
tion 5 summarizes and concludes the paper.

2. MODEL PREDICTIVE CONTROL FOR
OBSTACLE AVOIDANCE

This section introduces MPC concept and basic theory,
as well as revised MPC methods for high speed driving
situations and vehicle modeling to generate an obstacle

Fig. 2. Generalized model predictive control architecture.

Fig. 3. Model predictive control.

avoidance path.

2.1. Model predictive control concept

Model predictive control is relatively robust to time de-
lay and can simultaneously process multiple input and
state values. Thus, MPC has become a standard tech-
nique for multiple variable control and economically con-
trols large scale processes. Plant models for multivariate
processes have mutual variable interferences, which can
significantly limit performance in PID control, a represen-
tative modern control technique. However, MPC allows
variable upper and lower limit to be set as constraint, al-
lowing plant processes to be economically executed.

Basically, MPC aims to generate optimal control inputs
for a vehicle model [19]. Thus, MPC constructs the sys-
tem model, satisfies constraint conditions until the predic-
tion horizon, and then generates a control input that mini-
mizes the weighted objective function [20]. Fig. 3 shows
control input from point k to k+N, calculated to drive to
the destination [21]. We designed the path planning algo-
rithm and vehicle models to obtain the final output value
as the obstacle avoidance path.

The MPC system allocates vehicle velocity, accelera-
tion, and obstacle vehicle position as inputs, and then ob-
tains the host vehicle velocity and position. The obtained
outputs are substituted into the vehicle model to generate
an obstacle avoidance path.



2852 Ji-Chang Kim, Dong-Sung Pae, and Myo-Taeg Lim

Fig. 4. Two degrees of freedom bicycle model.

2.2. Host vehicle modeling
We used a 2 degrees of freedom (2DOF) bicycle model

for the MPC host vehicle system [22–24], with the inten-
tion to develop an obstacle avoidance path for high speed
driving situations. Since linearized models have approx-
imately 2-fold speed advantage over non-linearized mod-
els, without significant differences in the generated path,
we employed a linearized vehicle model to ensure real-
time obstacle avoidance path calculation. The host vehicle
MPC model can be expressed by the state space equation,

Ẋ = AX +BU, (1)

where X = [x, vx, y, vy]
T is state of vehicle and U = [ax

ay]
T is acceleration of vehicle.
Since the host vehicle model must predict lateral and

longitudinal vehicle behavior up to the prediction horizon,
we need to convert the continuous time model into discrete
time state space with sampling time Ts. The discrete time
model is

Xk+1 = AdXk +BdUk, (2)

where Xk is state of vehicle at k-th, Ad =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

,

and Bd =


1
2 T 2

s 0
0 Ts

1
2 T 2

s 0
0 Ts

.

The obtained state space equation is executed in the ve-
hicle model and calculates final outputs from the inputs
obtained from MPC at the given prediction horizon,

Yk =CdXk, (3)

where Yk = [xk, yy]
T is the predicted obstacle avoidance

path from the current point, k, to the prediction horizon,
k+N, and

Cd =

[
1 0 0 0
0 0 1 0

]T

.

Fig. 5. Obstacle vehicle safety margin.

2.3. Obstacle vehicle modeling
An obstacle vehicle model is also required for MPC

when setting collision avoidance path constraints for the
host vehicle. Obstacle vehicle information is assumed to
be acquired through a camera or sensor attached to the
host vehicle, with relative distance and velocity, and obsta-
cle available with no error or disturbance. We constructed
the obstacle vehicle model as a constant speed model.

Fig. 5 shows the obstacle vehicle safety margin to en-
sure minimum safe distance in actual driving. The safety
margin is proportional to the obstacle vehicle size.

2.4. Real-time output constraints
Normally, MPC constructs the system model and pre-

dicts future system operation. MPC has advantages for
multiple variable input and output systems and has often
been used for chemical plant systems. To improve con-
troller performance, MPC feeds back the prediction out-
puts to obtain an optimal output, which is relatively robust
to time delay since MPC can relatively easily adjust vari-
able values by setting input and state constraints.

This paper proposes a real-time output constrained
model predictive control (ROCMPC) that imposes output
variable constraints to compensate computation speed, the
main disadvantage of conventional MPC.

The basic ROCMCP theory for operation time enhance-
ment is as follows. When the obstacle avoidance path
algorithm is executed for conventional MPC, the MPC
solver objective function (J) is

min
a={1,··· ,P}

min
u1,··· ,uN

Ja (y,u) =
N

∑
k=1

∥yk − ya,re f ,k∥2
2 +∥uk∥2

2 ,

(4)

where P denotes possible paths of obstacle avoidance
within MPC horizon step N and ya,re f is optimal path of
a-th path. MPC solver objective function is non-convex,
i.e., two or more solutions may exist with suboptimal out-
put.

Fig. 6 shows there are two avoidance paths that MPC
could select for obstacle avoidance on a straight road (the
simulation environment). Thus, the host vehicle calculates
both paths in its entirety and selects one (usually the short-
est path) to proceed.
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Fig. 6. Host vehicle non-convex problem.

We propose an additional output constraint to convert
the problem to convex. Hence a single control input is
produced when solving the MPC objective function. After
the solution is put into the model of the host vehicle, the
position and velocity of the host vehicle for the collision
avoidance up to the prediction horizon are calculated as
the output values.

min
u1,··· ,uN

J (y,u) =
N

∑
k=1

∥yk − yre f ,k∥2
2 +∥uk∥2

2 . (5)

Various vehicle constraints can be applied, including max-
imum acceleration or deceleration, maximum or minimum
velocities, i.e.,

umin≤uk+i≤umax, (6)

and

∆umin≤∆uk+i≤∆umax, (7)

respectively, depending on the actual driving situation.
Adding the constraint condition increases the required

level of MPC solver calculation to solve the objective
function. However, the output constraints can exclude
possible driving paths, hence reducing the required com-
putation.

This is the main ROCMPC concept to improve MPC
operation time. Host vehicle output constraints are added
every step depending on the obstacle vehicle position and
velocity. Upper and lower lateral and longitudinal direc-
tion limits are applied to the real-time feedback from the
MPC, hence the output constraint box is constructed ac-
cording to the host vehicle position and velocity. Thus,
host vehicle position remains within the output constraint
box at every step.

Ymin,k =

[
xk −Cmin,x

yk −Cmin,y

]
, Ymax,k =

[
xk +Cmax,x

yk +Cmax,y

]
,

(8)

where Cmin and Cmaxare constrained conditions. The pro-
cess to construct the output constraint box is shown in
Fig. 7. The initial box size only considers the host vehi-
cle size, setting initial output constraint box to 2.5× host
vehicle width and 3.5× length. The host vehicle then fol-
lows the reference path generated previously. the obstacle

Fig. 7. Host vehicle real-time output constraints on avoid-
ance path.

vehicle enters the prediction horizon, the host vehicle ex-
ecutes the obstacle avoidance path algorithm by changing
longitudinal and lateral velocities.

The constraint box size can change depending on the
obstacle vehicle position and velocity. Conventional MPC
would calculate both obstacle avoidance paths from the
solver. However, the proposed ROCMPC considers the
obstacle vehicle location and modifies the output con-
straint box, which excludes paths from calculation within
the ROCMPC solver unless the constraints are satisfied.

The other paths are not calculated since it would re-
quire the host vehicle to violate the constraint conditions.
Therefore, the output constraint box converts the non-
convex problem to a convex problem, considerably reduc-
ing the required MPC solver computation to obtain the
host vehicle control input. The proposed method adds
constrained conditions to the result of the conventional
MPC, and does not hinder the inherent stability of MPC
and determines solution. The ROCMPC output comprises
control input for the previously established vehicle model
to obtain control outputs for the host vehicle, i.e., host ve-
hicle lateral and longitudinal velocity and position to avoid
the obstacle vehicle.

We developed an algorithm to implement ROCMPC
based obstacle avoidance for high speed driving situations.
Section 4 compares performance for the proposed algo-
rithms with normal MPC algorithms.

3. DETERMINING AVOIDANCE PATH SAFETY

The primary purpose of ISO 2631 is to define meth-
ods of quantifying whole-body vibration in relation to hu-
man comfort. Vibration is often complicated, containing
many frequencies, occurring in several directions simul-
taneously, and changing over time [26, 27]. The primary
quantity of vibration magnitude is acceleration.

3.1. Comfort level

Frequency is first evaluated to define the comfort
level. Vibration measurement includes weighted root-
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Table 1. Comfort level based on ISO 2631-1.

Overall acceleration (m/s2) Perception
aw < 0.315 Comfortable

0.315 < aw < 0.63 A little uncomfortable
0.5 < aw < 1 Fairly uncomfortable
0.8 < aw < 1.6 Uncomfortable

1.25 < aw < 2.5 Very uncomfortable
2.5 < aw Extremely uncomfortable

mean-square (RMS) acceleration (ak) of k-aixs,

a2
wk =

1
T

∫ T

0
a2

k (t)dt, (9)

where T is the measurement duration in seconds.
We used the frequency weighted curve obtained from

the experiment. Two frequency weightings, Wk (z direc-
tion) and Wd (x and y directions) relate to comfort. Fre-
quencies in all directions are combined once the weights
are obtained to provide the total vibration of weighted rms
acceleration,

aw =
√

W 2
d a2

wx +W 2
d a2

wy +W 2
k a2

wz, (10)

where awx, awy, and awz are the weighted RMS accelera-
tion; and Wd , and Wk are constants for the (orthogonal) x,
y, and z directions, respectively [18].

The frequency weightings are applied for seated per-
sons since we are simulating driver situations. Thus,

• x axis: Wd = 1.4.

• y axis: Wd = 1.4.

• z axis: Wk = 1.0.

Table 1 shows the corresponding comfort levels for var-
ious aw, indicating likely driver reactions to total vibration
following ISO 2631-1 [18].

Although the avoidance path can be generated such that
the host vehicle can avoid the obstacle, path safety is also
extremely important. It is not easy to judge path safety ob-
jectively. In actual driving situations, the driver smoothly
avoids the obstacle as much as possible when steering, i.e.,
they do not feel discomfort when steering. If a sharp steer-
ing change was made, the driver senses the acceleration
and is able to mitigate the effect. However, this does not
apply for ADAS or ADS.

Therefore, we assessed the safety of generated obstacle
avoidance paths (from the proposed ROCMPC or conven-
tional MPC algorithm) using the ISO 263-1 based comfort
level index (see Table 1). Thus, the obstacle avoidance
path stability was determined using the driver’s comfort
level index.

Table 2. ISO 2631-1 quantification.

Overall acceleration (m/s2) Perception Score
aw < 0.315 Comfortable 10

0.315 < aw < 0.63 A little uncomfortable 8
0.5 < aw < 1 Fairly uncomfortable 6
0.8 < aw < 1.6 Uncomfortable 4

1.25 < aw < 2.5 Very uncomfortable 2
2.5 < aw Extremely uncomfortable 0

3.2. Comfort Level Quantification

The comfort level discussed in Section 3.1 used quanti-
tative aw, but the comfort indexes are defined qualitatively.
Therefore, scores were assigned to the comfort index, as
shown in Table 2. The score difference of each section
was set at two points since we want the weighting for each
section to be the same.

In Section 4, we apply this scoring to the simulation.
The comfort level score was assessed for each simulation
step, e.g., 120 comfort level scores were obtained if the
simulation ran for 120 steps. The comfort level score for
a simulation case was taken as the mean score, and we
compared average comfort level for the whole avoidance
path using the normal MPC and proposed ROCMPC algo-
rithms.

3.3. Braking control using time to collision and over-
lap

We also simulated obstacle collision prevention through
braking as well as avoidance by steering [28]. The host ve-
hicle control system must decide whether to steer or brake
to avoid collision when it detects an obstacle, i.e., decision
making. The most frequently used indicator for decision
making is time to collision (TTC) [29, 30], which is the
expected collision time considering the relative speed and
distance between the host and obstacle vehicles. Small
TTC means the collision will occur soon, and if the obsta-
cle vehicle velocity exceeds the host vehicle, TTC= −∞
since no collision would occur.

We also considered overlap in the decision making pro-
cess. Overlap with the obstacle vehicle is an important
value for steering avoidance. If the overlap range is wide,
steering avoidance will be difficult in situations where col-
lision is imminent. However, if TTC and overlap range are
both small, steering avoidance may be possible.

Section 4.4.3 discusses TTC and overlap research, to
determine if the host vehicle should steer or brake to avoid
collision. Obstacle avoidance by steering is prioritized
and braking control is implemented only if that is not pos-
sible. Table 3 shows a simple truth table.
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Table 3. Decision making table.

Narrow overlap Wide overlap
Greater than TTC Steering Steering

Less than TTC Steering Braking

4. SIMULATION RESULTS

We implemented the proposed algorithm in
MATLAB R⃝, and simulations were performed on an
Intel R⃝ CoreTM i7-4770 CPU @ 3.40GHz, 4 GB RAM.
The road environment was straight, 1 km long, 6 m wide
two-lane. Obstacle vehicle behavior followed four rep-
resentative scenarios similar to actual road driving situa-
tions.

4.1. Simulation environment setup and scenarios
The host vehicle model followed the 2DOF bicycle

model (see Fig. 4). The linearized and non-linearized
2DOF bicycle model showed no significant differences
between obstacle avoidance paths, hence we used the lin-
earized model to generate the obstacle avoidance path for
high speed driving situations, minimizing operation time
for control input obtained from the MPC solver. Output
values are the obstacle vehicle lateral and longitudinal ve-
locity, and position. We used three vehicle size categories
for the simulation, as shown in Fig. 8: passenger car, lux-
ury sedan, and commercial van. Vehicle size details were
modeled by assigning values extracted from CarSim.

We modelled the obstacle as constant velocity or sta-
tionary, with behavior for moving vehicles set as straight
forward, cut in, or cut out. This reflected typical real ob-
stacle vehicle behavior on a straight road. Thus, we con-
sidered four obstacle vehicle behavior scenarios, as shown
in Fig. 9.

Fig. 8. Obstacle vehicle types considered.

Fig. 9. Obstacle vehicle behavior patterns considered.

We also considered a curved road situation to test pro-
posed ROCMPC algorithm robustness. We compared sim-
ulation operation time required to generate the obstacle
avoidance path and comfort level scores for each scenario
for conventional MPC and ROCMPC algorithms.

4.2. Operation time comparison
All simulation conditions were kept the same between

the proposed ROCMPC and conventional MPC algo-
rithms, to ensure a fair assessment of validity and perfor-
mance. We implemented both algorithms in MATLAB R⃝.
Host vehicle, obstacle vehicle, and road environment were
the same. We performed simulations for the four scenar-
ios discussed above (see Fig. 9), first assuming a single
obstacle vehicle, and Section 4.4 reports additional sim-
ulations with increased number of obstacle vehicles. All
data, such as obstacle vehicle position and velocity, and
road environment information details, were accurately ob-
tained using equipment installed in the host vehicle, e.g.,
lidar or radar.

4.2.1 Scenario 1: stationary obstacle
Scenario 1 considers the case of a stationary obstacle

in 1 km straight road. The MPC generates a control input
for obstacle avoidance steering, which is input to the host
vehicle model to obtain the obstacle avoidance path.

Fig. 10 shows that since ROCMPC uses a real-time out-
put constraint box, it avoids relatively wide turns com-
pared with conventional MPC, generating a path closer to
the center line of the first lane when avoiding the station-
ary obstacle vehicle.

Lateral acceleration was limited to 1.98 m/s2 for both
MPC and ROCMPC algorithms, and the two path profiles
are shown in Figs. 11 and 12. In the proposed method,
there is no significant difference in the path that is created
by adding the constrained conditions to the conventional
MPC. However, when the obstacle is closed to the host ve-
hicle, the proposed method generates the path faster than
the conventional MPC due to the fast operation. Thus, the
results also show a slightly quicker response path.

Table 4 compares computation times for the MPC and
ROCMPC. Three replicate simulations were performed,
and the presented data is the mean.

Operation speed for ROCMPC was approximately 27%
improved over MPC. Solver operation speed to obtain the
control input was halved by transforming the non-convex

Fig. 10. Stationary obstacle vehicle.
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Fig. 11. Obstacle avoidance paths for scenario 1: station-
ary obstacle vehicle.

Fig. 12. Lateral velocity for scenario 1: stationary obsta-
cle vehicle.

Table 4. Operation time for scenario 1: stationary obstacle
vehicle.

Passenger car Sedan Van
MPC 19.17 ms 18.78 ms 18.21 ms

ROCMPC 13.97 ms 13.55 ms 13.47 ms

problem for the ROCMPC algorithm, but the additional
real-time output constraints required for that transforma-
tion meant the overall gain was ∼27%.

We also investigated different host vehicle sizes (data
not shown). Computation time for the avoidance path was
independent of host vehicle size and did not significantly
affect the avoidance path. Only the safety margin changed

Fig. 13. Scenarios 2-4, dynamic obstacle vehicle.

Table 5. Operation time for scenario 2: dynamic obstacle
vehicle.

Passenger car Sedan Van
MPC(50 km/h) 16.17 ms 15.75 ms 15.49 ms

ROCMPC(50 km/h) 10.41 ms 10.30 ms 10.96 ms
MPC(60 km/h) 17.34 ms 17.19 ms 16.99 ms

ROCMPC(60 km/h) 11.62 ms 11.52 ms 11.58 ms
MPC(80 km/h) 18.10 ms 18.94 ms 18.01 ms

ROCMPC(80 km/h) 13.05 ms 12.81 ms 12.94 ms

with changing host vehicle size.
Thus, the proposed ROCMPC algorithm was signifi-

cantly superior to MPC for scenario 1: stationary obstacle
vehicle.

4.2.2 Scenarios 2-4: dynamic obstacle vehicle
Similar to scenario 1, only the algorithms provid-

ing control inputs were changed between MPC and
ROCMPC, all other details remained constant. In these
scenarios, the obstacle avoidance path considers obstacle
vehicle to be at constant 50, 60 and 80 km/h. Table 5 sum-
marizes computation speed to produce an avoidance path,
as shown in Fig. 13, for these scenarios.

Both MPC and ROCMPC exhibited longer computation
time than for scenario 1, but ROCMPC is approximately
30% superior to MPC. Thus, ROCMPC is more efficient
in dynamic vehicle obstacle situations.

Thus, the proposed ROCMPC algorithm was signifi-
cantly superior to MPC for scenario 2: dynamic obsta-
cle. Furthermore, ROCMPC produced an avoidance path
closer to the lane center.

Section 4.4 extends this evaluation to the case of several
obstacle vehicles. An experiment to increase the number
of obstacle vehicles and an experiment on curved roads
rather than on straight roads will be conducted in the Sec-
tion 4.4.

4.3. Comfort level comparison
As discussed in Section 3, we considered passenger

comfort level for the scenarios shown in Fig. 9.

4.3.1 MATLAB simulation results
The static obstacle avoidance path (scenario 1) simu-

lation was set to 120 steps whereas the dynamic obsta-
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Table 6. Comfort level score in MATLAB.

Scenario 1 Scenario 2
Comfort Level

(score)
NMPC ROCMPC NMPC ROCMPC

Comfortable
(10)

46.67% 49.64% 60.00% 69.59%

A little
uncomfortable

(8)
8.89% 8.76% 4.50% 4.64%

Fairly
uncomfortable

(6)
15.56% 13.87% 10.50% 6.70%

Uncomfortable
(4)

9.63% 13.14% 9.50% 7.33%

Very
uncomfortable

(2)
5.93% 6.57% 7.50% 4.64%

Extremely
uncomfortable

(0)
13.33% 8.03% 8.00% 6.70%

Average comfort
level score

6.81 7.15 7.52 8.13

cle scenarios (2, 3, and 4) included 180 steps with 250
ms time length. Table 6 compares comfort level score
between MPC and ROCMPC algorithm avoidance paths.
Vertical acceleration, one of the inputs to derive aw, could
not be measured in the simulation. Therefore, we assumed
zero acceleration in the vertical direction. The average
comfort level score is calculated as the summation of each
product of the comfort level score and the ratio shown dur-
ing the simulation. The path generated by the ROCMPC
has many comfortable moments and that the moment of
extremely uncomfortable is less than that of the compared
algorithm, as shown in Table 6. Also, the generated path
is stable even at the average value.

ROCMPC avoidance paths exhibited significantly
higher comfort level score than MPC paths. This arises
for two main reasons:

1) ROCMPC output constraint box limits possible paths;
whereas for MPC, steering starts rapidly when the ob-
stacle vehicle is in the control horizon. Thus, the
ROCMPC output constraint box ensures a smoother
obstacle avoidance path, reducing lateral acceleration,
which is highly weighted in the ISO 2631-1 calculation
for comfort level.

2) Improved operation speed provides faster predictive
values within the prediction horizon. Hence the path
can be constructed faster to the same range, reducing
deviation from the optimal path in the simulation.

Comfort level is also related to passenger safety. Higher
comfort scores imply less rapid steering changes to avoid
the obstacle.

Thus, the proposed ROCMPC algorithm produced
higher comfort avoidance paths and hence safer paths than

(a) Road environment.

(b) Vehicle model.

Fig. 14. Simulation environment of CarSim.

the MPC algorithm

4.3.2 CarSim results
In Section 4.3.1, we assumed vertical acceleration was

zero to obtain the comfort level score, since vertical ac-
celeration is not measured. Therefore, we used Car-
Sim to estimate vertical acceleration from vehicle position
and velocity obtained from the MATLAB R⃝simulations,
and hence estimate a more realistic comfort score as
shown in Fig. 14. The road environment and vehicle
models were constructed in the same way as for the
MATLAB R⃝simulations.

CarSim has 25 ms step length, producing 10 times the
number of steps from MATLAB R⃝simulations. Horizon-
tal and vertical accelerations were obtained for each step,
and aw was derived subsequently. Comfort level score for
the total obstacle avoidance path was then obtained from
aw for each step, as shown in Table 7.

4.4. Additional scenarios
This section considers curved road environments and

several obstacle vehicles.
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Table 7. Comfort level score from CarSim.

Scenario 1 Scenario 2
Comfort Level

(score)
MPC ROCMPC NMPC ROCMPC

Comfortable
(10)

69.85% 70.71% 77.09% 73.16%

A little
uncomfortable

(8)
4.90% 4.35% 2.88% 8.76%

Fairly
uncomfortable

(6)
6.16% 6.45% 2.93% 5.10%

Uncomfortable
(4)

9.17% 9.56% 4.64% 3.09%

Very
uncomfortable

(2)
6.60% 6.06% 8.90% 9.69%

Extremely
uncomfortable

(0)
3.34% 2.87% 3.57% 0.21%

Average comfort
level score

8.24 8.31 8.48 8.63

Fig. 15. Curved road environment.

4.4.1 Curved road

Similar to the straight road, road width= 6 m and the
road was two lanes. Road curvature was set at 1/300, and
obstacle vehicle behavior was straight-ahead, cut-in, and
cut-out, similar to scenarios 2-4 for straight road.

Fig. 15 shows the curved road environment picture. Ob-
stacle vehicle speed is 50km/h, and we considered the ob-
stacle vehicle to be the commercial van.

Fig. 16 shows the generated avoidance paths, and Table
8 shows the computation speeds for MPC and ROCMPC.
ROCMPC improved computation speed by 24.75% on av-
erage.

Table 9 shows the comfort level score based on the gen-
erated obstacle avoidance path.

Thus, the proposed ROCMPC algorithm was signifi-
cantly superior to the MPC algorithm for both computa-
tion time and passenger comfort for all considered behav-
ior scenarios for curved road.

(a) (b)

Fig. 16. Curved road obstacle avoidance path for (a) MPC
and (b) ROCMPC.

Table 8. Operation time for curved road obstacle path.

MPC ROCMPC Improvement
Curved

scenario 2
15.06 ms 10.88 ms 27.78%

Curved
scenario 3

14.58 ms 11.61 ms 20.35%

Curved
scenario 4

14.84 ms 10.96 ms 26.14%

Table 9. Comfort level score for curved road obstacle
path.

MPC ROCMPC
Curved scenario 2 15.06 ms 10.88 ms
Curved scenario 3 14.58 ms 11.61 ms
Curved scenario 4 14.84 ms 10.96 ms

Fig. 17. Multiple obstacle vehicle scenarios.

4.4.2 Multiple obstacle vehicle scenarios
We considered the case of three obstacles vehicles

rather than a single vehicle. As with the previous sim-
ulations conducted earlier, the road was 1 km long, 6 m
wide, and two-lane.

Fig. 17 shows the 4 scenarios considered and Table 10
shows the operation time for each scenario.

Thus, the proposed ROCMPC algorithm exhibited sig-
nificantly superior computation speed to the MPC algo-
rithm considering several obstacle vehicles.

We also measured the comfort level for the various gen-
erated paths in MATLAB and CarSim.
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Table 10. Operation times for multiple obstacle vehicles.

MPC ROCMPC Improvement
Scenario 1 36.38 ms 28.98 ms 21.7%
Scenario 2 37.82 ms 26.37 ms 30.3%
Scenario 3 37.71 ms 25.93 ms 31.2%
Scenario 4 29.08 ms 19.58 ms 32.7%

Table 11. Decision making simulations.

Control
type

Host vehicle
speed

Obstacle vehicle
speed

Decision

MPC 80 km/h 70 km/h Steering
ROCMPC 80 km/h 70 km/h Steering

MPC 80 km/h 60 km/h Braking
ROCMPC 80 km/h 60 km/h Steering

4.4.3 Braking control
This section considers simulations to prevent obstacle

collision through braking. The host vehicle must deter-
mine steering or braking when it detects the obstacle using
Table 11. Host vehicle velocity was 80 km/h, TTC= 1.00
s, and overlap threshold= 50%. Obstacle behavior was
straight ahead, and obstacle vehicle initial position was
adjusted to determine collision avoidance by steering or
braking. If a steering avoidance strategy was not possi-
ble, the host vehicle should choose a strategy to minimize
damage through braking.

Simulations confirmed that collision prevention us-
ing braking was chosen when the speed difference was
large, since obstacle avoidance paths are difficult at faster
relative speeds. However, at the same relative speed,
ROCMPC tended to select collision avoidance using steer-
ing whereas MPC selected braking. This was because
ROCMPC begins steering earlier than MPC due to the
constraint box, enhancing steering avoidance opportuni-
ties.

5. CONCLUSIONS

This paper proposed the ROCMPC algorithm to avoid
obstacles using MPC in high-speed driving situations. The
proposed ROCMPC algorithm considers real-time output
constraints regarding relative distance and velocity be-
tween the host and obstacle vehicle. The non-convex prob-
lem was transformed into a convex problem, significantly
reducing operation time. ROCMPC sets a real-time out-
put constraint box on the host vehicle to enhance com-
putation speed and avoid sharp steering changes, conse-
quently generating more comfortable and safer avoidance
paths than conventional MPC.

We performed a number of simulations covering var-
ious scenarios, comparing the proposed ROCMPC and

conventional MPC algorithms for operation time and com-
fort level, indispensable indicators for high speed au-
tonomous driving situations.

Since vertical acceleration was not available from the
MATLAB R⃝simulations, we also evaluated comfort and
safety for generated avoidance paths using CarSim. Sim-
ulations considered straight and curved roads, several ob-
structing vehicle behavior scenarios, several obstructing
vehicle types, single and multiple obstacle vehicle cases,
and two and three lane roads.

In all cases, the proposed ROCMPC algorithm exhib-
ited significantly enhanced computation speed than MPC,
and significantly improved passenger comfort, and hence
safety.

This paper considered a relatively small number of
limited scenarios evaluated in MATLAB R⃝and CarSim
simulations, rather than actual vehicles or road condi-
tions. Therefore, further study will be pursued to verify
ROCMPC for actual autonomous driving situations.
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