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Unknown Input Reconstruction via Interval Observer and State and Un-
known Input Compensation Feedback Controller Designs
Fanglai Zhu* � , Wei Zhang, Jiancheng Zhang, and Shenghui Guo

Abstract: In this paper, we investigate the state estimation, unknown input and measurement noise reconstruction
problems and the feedback controller design issues for a linear discrete-time system with both unknown inputs
and measurement noises. First, an augmented system is constructed and the state vector of the augmented system
consists of the original system state and the measurement noise, and the preconditions between the original system
and the augmented system is discussed in detail. Second, for the augmented system, a reduced-order observer
is designed so that the original system state estimates and the measurement noise reconstruction can be obtained.
Third, in order to get the asymptotical unknown input reconstruction, an interval observer for part of the measurable
output is proposed and an unknown input reconstruction method based on the interval observer is developed. Finally,
an observer-based state feedback and unknown input controller is designed and the closed-loop system stability is
analyzed. We point out that the closed-loop system satisfies the so-called separation property. At last, two simulation
examples are given to verify the effectiveness of the proposed methods.

Keywords: Compensation controller, interval observer, UIO, unknown input reconstruction.

1. INTRODUCTION

State feedback control and state estimation are two im-
portant issues in modern control theory and control en-
gineering. Compare to the output feedback control, state
feedback control shows the predominant superiority in
that it can place the poles in any desired places as long as
the system is a controllable linear time-invariant system.
One of the drawbacks of the state feedback is its using of
the system state information which is usually difficult or
even impossible to be measured directly for many prac-
tical systems. To overcome this shortcoming of the sate
feedback control, state estimation concept was first devel-
oped by Luenberger in 1960s [1] and since then the inves-
tigations to the state observers have never been stopped.
For example, much excellent work has been done in de-
signing observers for nonlinear systems especially T-S
fuzzy systems [2, 3].

Since the system uncertain parameters, external distur-
bances and even the actuator faults can be regarded as
system unknown inputs, state observers for systems with
uncertain parameters and external disturbances are called
unknown input observer (UIO) and, soon after the devel-

opment of the Luenberger observer, UIO designs attracted
the researchers’ attentions. Indeed, the early work of the
UIO design can be traced back to the end of the 1960s and
in the early time, researchers focus only on state estima-
tion problems by avoiding the negative influences of the
unknown inputs without considering unknown input esti-
mation issues. For example, Wang et al. [4] give an ob-
server characterization in terms of transfer function matri-
ces and the result is applied to directly decentralized con-
trol systems. In [5], the problems of the estimations of a
linear function of the states are investigated for linear sys-
tems subjected to unknown or disturbance inputs. Even
now, The UIO design for some complex control models
with unknown input still follows this line of thinking [6,7].
For example, Zhang et al. present a systematical reduced-
order observer design method for a class of switched de-
scriptor systems containing unknown inputs in both the
dynamic and the output equations [6].

UIO design with simultaneous state and unknown input
estimation become one of the dominant research points
in the field of observer designs since 1990s. Because of
the fact that the reconstruction of the unknown input can
makes the control designs much more convenient which is
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different from the passive fault tolerant control that usu-
ally eliminates fault by designing a controller which is
robust to fault such as observer-based sliding mode con-
troller designed in [8]. In fact, since then, many signifi-
cant results about state estimation and unknown input re-
construction simultaneously have been reported in [9–22].
For example, for linear discrete-time systems with invari-
ant zeros can be located anywhere in the complex plane,
Marro and Zattoni [9] propose a way to solve the prob-
lems of the simultaneous state estimation and unknown
input reconstruction. Kalsi et al. [16] and Zhu [17] cope
with the simultaneous state and unknown input estimation
problems for linear systems when the so-called observer
matching condition is not satisfied. More recently, in [19],
the UIO designs for a class of switched descriptor sys-
tems are considered and an algebraic unknown input re-
construction method is developed based on an asymptoti-
cal state reduced-order observer. An observer-based fuzzy
adaptive controller for a class of uncertain nonstrict non-
linear systems with unknown control direction and un-
known dead-zone is presented in [22] by using the esti-
mation of unknown nonlinearities approximated by adap-
tive mechanism. Recently, UIO-based control designs are
dealt in [23–25].

The interval observers, which can produces both the up-
per and lower boundary estimates of the system states,
have drawn much attention in literature. To design an in-
terval observer for system with unknown inputs, much in-
formation about the unknown inputs or/and the nonlinear
terms, such as the Lipschitz condition, can be ignored.
So, constructing an interval observer turns out to be much
more convenient than designing a traditional Luenberger-
like unknown input observer. Since the interval observer
design method was first developed by Gouzé et al. [26] in
the year 2000, many excellent results on interval observer
designs have been reported in literature [27–37]. For ex-
ample, an interval observer for a linear parameter-varying
system subject to actuator faults is proposed and the fault-
tolerant control issues are then considered in [31]. Ifqir et
al. [32] investigate the problem of robust state estimation
and unknown input interval reconstruction for uncertain
switched linear systems. [34] proposes a novel interval
observer design method for discrete-time linear systems
with unknown but bounded disturbance and measurement
noise. In a word, interval observer has become one of the
most powerful alternative methods of UIO and nonlinear
observer designs.

In the present paper, we are dedicate to develop an
asymptotical unknown input reconstruction method based
on interval observer and then investigate the observer-
based state feedback and unknown input compensation
controller designs for a class of discrete-time systems with
both unknown inputs and measurement noise. Our method
shows some advantages and novelties. 1) In order to esti-
mate the states and measurement noise simultaneously, an

augmented descriptor system is constructed first, and the
augmented descriptor system is then transformed into a
general augmented system. We prove that preconditions,
specifically the minimum phase system condition and the
observer matching condition, can be kept under these two
system transformations. 2) A new unknown input recon-
struction method is developed based on interval observer.
Although the interval estimation of the output is intro-
duced into the reconstruction, the reconstruction turns out
be an asymptotical estimation of its actual unknown input.
Moreover, the design of unknown input reconstruction is
irrelative to the control signal, so it is convenient for us to
design an unknown input compensation controller based
on the reconstruction. 3) Based on the asymptotical state
estimation and the unknown input reconstruction, a state
feedback and unknown input compensation controller is
designed and the stability of the closed-loop system is an-
alyzed. We point out that the designs of the observer-based
closed-loop system satisfy the so-called separation prop-
erty.

The remainder of the paper is organized as follows: In
Section 2, we present some preliminaries including as-
sumptions, definitions and lemmas. In Section 3, a re-
duced-order observer is designed for the augmented sys-
tem so that the state and the measurement noise can be es-
timated asymptotically and simultaneously. In Section 4,
a simple interval observer is proposed first. And then, an
unknown input reconstruction method is developed based
on the interval observer. Moreover, the state feedback and
unknown input compensation controller is given and the
stability of the closed-loop system is analyzed. In Section
5, two simulation examples are given to verify the effec-
tiveness of the proposed methods. Some conclusions are
summarized in Section 6.

2. PRELIMINARIES

In this section, some basic assumptions are made and
under these assumptions, the original discrete-time system
is augmented into a descriptor system, and the augmented
descriptor system is again transformed into a general aug-
mented system. We prove that the preconditions can be
kept under these two system transformations.

Consider a linear system with only unknown input with-
out measurement noise first{

x(k+1) = Ax(k)+Bu(k)+Dd(k),

y(k) =Cx(k),
(1)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp, d(k) ∈ Rq are
system state, control input, measurement output and un-
known input vectors, respectively.

For system (1), we make the following two Assump-
tions.
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Assumption 1:

rank
[

sI−A D
C 0

]
= n+q (2)

holds for any complex number s, |s| ≥ 1.

Assumption 2:

rank(CD) = rank(D) (3)

holds.

Lemma 1: Assumption 2 holds if and only if there
exists a nonsingular matrix T ∈ Rn×n such that the
state equation of system (1) is algebraically equivalent

to {Â, B̂, D̂}, where Â := TAT−1 =

[
Â11 Â12

Â21 Â22

]
, B̂ :=

T B =

[
B̂1

B̂2

]
, D̂ := T D =

[
Iq

0

]
and Â11 ∈ Rq×q, B̂1 ∈

Rq×m, Ĉ22 ∈R(p−q)×(n−q). Besides, there exists a nonsingu-

lar matrix S∈Rp×p such that Ĉ := SCT−1 =

[
Iq 0
0 Ĉ22

]
,

when p > q, and when p = q, we have Ĉ = SCT−1 =[
Ip 0

]
. Moreover, when p > q, Assumption 1 holds

if and only if (Â22,Ĉ22) is detectable, and when p = q,
(Â22, Ip) is detectable.

Proof: Please see Appendix A. �

Remark 1: A similar result to Lemma 1 has been pre-
sented in [38]. Here we still offer the proof of Lemma 1
because the proof given in the present paper is totally dif-
ferent from that of [38] and, moreover, new computation
ways of the transformation matrices T and S are presented.

Definition 1: A nonnegative matrix is a square matrix
in which all its components are nonnegative. A square ma-
trix is called stable matrix or Schur matrix if its eigenval-
ues are all located on inside the unit circle of the complex
plane.

Lemma 2 [39]: Suppose that the matrix A ∈ Rn×n is
a nonnegative and Schur matrix in the following linear
system x(k + 1) = Ax(k) + d(k) , where x(k) ∈ Rn and
d(k) ∈ Rn satisfies d(k) ≥ 0 for all k ≥ 0. If the initial
condition satisfies x(0)≥ 0 , then we have x(k)≥ 0 for all
k ≥ 0 .

Lemma 3 [27]: Suppose that vector variables x̄(t),
x(t), x(t) ∈ Rn satisfies x(t) ≤ x(t) ≤ x̄(t) for all t ≥ 0,
then for any constant matrix M ∈ Rm×n, we have

M+x(t)−M−x̄(t)≤Mx(t)≤M+x̄(t)−M−x(t), (4)

where M+ = max{M,0}, M− = max(0,−M).

It should be declared that all the notations appearing in
the above, including the notations in the proof of Lemma
1, are independent to the notations used in the following
discussions.

The main purpose of the present paper is trying to de-
velop observers which can estimate the system sates, the
unknown inputs and measurement noise, and then design
a controller for the following discrete-time linear system
with both unknown input and measurement noise:{

x(k+1) = Ax(k)+Bu(k)+Dd(k),

y(k) =Cx(k)+Fw(k),
(5)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp, d(k) ∈ Rq and
w(k) ∈ Rr are system state, control input, measurement
output, unknown input and measurement noise vectors, re-
spectively.

For system (5), we make the following Assumptions.

Assumption 3:

rank
[

sI−A 0 D
C F 0

]
= n̄+q (6)

holds for any complex number s with |s| ≥ 1 , where n̄ =
n+ r.

Assumption 4: Matrix C has full row column rank and
both matrices D and F have full column rank.

Assumption 5: For any initial state x(0), there exist
two known vectors x−(0) and x+(0) such that x−(0) ≤
x(0)≤ x+(0). For the unknown input vector d(k), there are
two known vectors d− and d+ such that d− < d(k)< d+.
For the unknown measurement noise w(t) , there are two
known vectors w− and w+ such that w− < w(k)< w+.

If we make up an augmented state vector of xe(k), and
introduce the notations Ee, Ae, Ce as follows:

xe(k) =
[
xT (k) wT (k)

]TCe =
[
C F

]
∈ Rp×n̄,

Ae =
[
A 0n×r

]
∈ Rn×n̄, Ee =

[
In 0n×r

]
∈ Rn×n̄

an augmented system can be obtained as{
Eexe(k+1) = Aexe(k)+Bu(k)+Dd(k),

y(k) =Cexe(k).
(7)

Lemma 4: For matrices Ee and Ce, there exist two ma-
trices Λ ∈ Rn̄×p and G ∈ Rn̄×n such that

GEe +ΛCe = In̄. (8)

Proof: First, (8) can be rewritten as
[
G Λ

][Ee

Ce

]
= In̄

Since R :=
[

Ee

Ce

]
=

[
In 0n×r

C F

]
∈R(n+p)×n̄ is a matrix with

full column rank, so M := (RT R)−1 ∈ Rn̄×n̄ exists. Obvi-
ously,[

G Λ
]
= MRT = M

[
In CT

0r×n FT

]
is a solution of

[
G Λ

][Ee

Ce

]
= In̄. So, G = M

[
In

0r×n

]
and

Λ = M
[

CT

FT

]
are solutions of (8). �
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Now based on (8), the augmented system (7) can be
transformed into

xe(k+1) = GAexe(k)+GBu(k)+Λy(k+1)

+GDd(k),

y(k) =Cexe(k).

(9)

If we furthermore make a state shift transformation z(k) =
xe(k)−Λy(k) and denote ys(k) = (Ip−CeΛ)y(k), then (9)
becomes

z(k+1) = GAez(k)+GBu(k)+GAeΛy(k)

+GDd(k),

ys(k) =Cez(k).

(10)

Lemma 5: Under the Assumption 3, we have

rank
[

sIn̄−GAe GD
Ce 0

]
= n̄+q (11)

holds for any complex number s with |s| ≥ 1.

Proof: Please see Appendix B. �

Lemma 6: Under Assumption 4, we have

rank(CeGD) = rank(GD). (12)

Proof: Please see Appendix C. �

Remark 2: Precondition (6) or (11) and condition (12)
in Lemma 6, which is guaranteed by Assumption 3, are
actually necessary and sufficient conditions for designing
an unknown input observer [8]. Precondition (6) is called
minimum phase system condition, while (12) is called the
observer matching condition. In view of practical points,
the two conditions may be a little restrictive. For this rea-
son, many scholars tried to break through the restrictions.
For example, Zhu [17] considered the problems of the si-
multaneous estimation of the system states and the un-
known inputs when the so-called observer matching con-
dition is not satisfied.

3. THE ESTIMATIONS OF THE STATES AND
MEASUREMENT NOISE

In this section, we are dedicated to design a reduced-
order observer for the augmented system (9) under As-
sumptions 3 and 4, such that the asymptotical estimation
of the augmented state can be obtained. In this way, we
can get the estimate of the original system and the recon-
struction of the measurement noise. From the discussions
in previous section, we known that under Assumption 3,
(11) holds for any complex number s with |s| ≥ 1 (Lemma
5). Moreover, (12) holds under Assumption 4 (Lemma
6). So, by Lemma 1, we know that under Assumptions
3 and 4, there exists an equivalent state transformation

z̄(k) = T z(k), where T ∈ Rn̄×n̄ is a nonsingular matrix,
such that the sate equation of (10) is transformed into

z̄1(k+1) = Ā11z̄1(k)+ Ā12z̄2(k)+ B̄1u(k)

+ Π̄1y(k)+d(k),

z̄2(k+1) = Ā22z̄2(k)+ Ā21z̄1(k)+ B̄2u(k)

+ Π̄2y(k),

(13)

and an equivalent output transformation ȳ(k) = Sys(k)
such that the output equation of (10) becomes[

ȳ1(k)
ȳ2(k)

]
=

[
Iq 0
0 C̄22

][
z̄1(k)
z̄2(k)

]
,

when p > q, where Π̄1 =
[
Iq 0q×(n̄−q)

]
T GAeΛ, Π̄2 =[

0(n̄−q)×q In̄−q
]

T GAeΛ, and

Ā = T (GAe)T−1 =

[
Ā11 Ā12

Ā21 Ā22

]
,

B̄ := T (GB) =
[

B̄1

B̄2

]
,

D̄ := T (GD) =

[
Iq

0

]
, C̄=SCeT−1=

[
Iq 0
0 C̄22

]
. (14)

Besides, Ā11 ∈ Rq×q, B̄1 ∈ Rq×m and C̄22 ∈ R(p−q)×(n̄−q).
When p = q, the output equation becomes

ȳ(k) =
[
Ip 0

]
z̄(k) = z̄1(k).

In the following discussions, we only consider the case
when p > q. The case when p = q can be discussed simi-
larly and similar conclusions can also be obtained.

Theorem 1: Under Assumptions 3 and 4, the following
system

ˆ̄z2(k+1) = Ā22 ˆ̄z2(k)+ Ā21ȳ1(k)+ B̄2u(k)

+ Π̄2y(k)− L̄22(ȳ2(k)−C̄22 ˆ̄z2(k)),

x̂e(k) = ẑ(k)+Λy(k) = T−1
[

ȳ1(k)
ˆ̄z2(k)

]
+Λy(k)

(15)

is an asymptotical reduced-order observer of the aug-
mented system (9) in that lim

k→∞

(xe(k)− x̂e(k)) = 0, where

the observer gain matrix is chosen such that Ā22 + L̄22C̄22

is Schur stable.

Proof: The reduced-order observer error dynamic sys-
tem can be obtained by subtracting the first equation of
(15) from second equation of (13) and it is

˜̄z2(k+1) = (Ā22 + L̄22C̄22) ˜̄z2(k), (16)

where ˜̄z2(k) = z̄2(k)− ˆ̄z2(k). If the observer gain ma-
trix L̄22 is chosen such that Ā22 + L̄22C̄22 is Schur sta-
ble, then we have lim

k→∞

z̃2(k) = 0. On the other hand,

xe(k) = z(k)+Λy(k) = T−1
[

ȳ1(k)
z̄2(k)

]
+Λy(k), so we have
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x̃e(k) = T−1
[

0
˜̄z2(k)

]
and this gives lim

k→∞

x̃e(k) = 0, where

x̃e(k) = xe(k)− x̂e(k). �

After we have got the estimation of the augmented
sate xe(k), i.e., x̂e(k), the state estimate of the original
system and the reconstruction of the measurement noise
can be obtained as x̂(k) =

[
In 0n×r

]
x̂e(k) and ŵ(t) =[

0r×n Ir
]

x̂e(k), respectively.

4. UNKNOWN INPUT RECONSTRUCTION AND
COMPENSATION CONTROLLER DESIGN

In this section, a new asymptotical unknown input re-
construction based on an interval observer is developed.
And based on the reconstructed information of unknown
input, an observer-based state feedback and unknown in-
put compensation controller is designed as well. For these
purposes, an interval observer which can produce the up-
per and lower boundary estimations for the output variable
ȳ1(k) is constructed. It should be emphasized in advance
that the reconstruction is an asymptotical one although the
interval estimation of the ȳ1(k) is introduced into the re-
construction. Moreover, the unknown input reconstruction
is irrelative to the control signal of u(k).

4.1. Interval observer design for ȳ1(k)
Notice the fact that z̄1(k) = ȳ1(k) and from the first

equation of (13), we know that the dynamic system of the
output variable ȳ1(k) is actually governed by

ȳ1(k+1) =Ā11ȳ1(k)+ Ā12z̄2(k)+ B̄1u(k)

+ Π̄1y(k)+d(k). (17)

Theorem 2: Consider following system
ˆ̄y+1 (k+1) = Ā11 ˆ̄y+1 (k)+ Ā12 ˆ̄z2(k)+ B̄1u(k)

+ Π̄1y(k)+Ls(ȳ1(k)− ˆ̄y+1 (k))+d+,

ˆ̄y−1 (k+1) = Ā11 ˆ̄y−1 (k)+ Ā12 ˆ̄z2(k)+ B̄1u(k)

+ Π̄1y(k)+Ls(ȳ1(k)− ˆ̄y−1 (k))+d−.
(18)

Suppose Γ ∈ Rq×q is a Schur stable and nonnegative ma-
trix which is chosen arbitrarily in advance, and determine
the observer gain matrix Ls by Ls = Ā11−Γ, and moreover
set the initial state of (18) as{

ȳ+1 (0) = Q+
e x+e (0)−Q−e x−e (0),

ȳ−1 (0) = Q+
e x−e (0)−Q−e x+e (0),

(19)

where Q+
e = max{Qe,0}, Q−e = max(0,−Qe), Qe =[

Iq 0q×(n̄−q)
]

T (In̄ −ΛCe) ∈ Rq×n̄, x+e (0) =
[

x+(0)
w+

]
and

x−e (0) =
[

x−(0)
w−

]
, then system (18) is an interval observer

of system (17) in the sense of: there exists a constant
K0 ≥ 0 such that ˆ̄y−1 (k)≤ ȳ(k)≤ ˆ̄y+1 (k) for all k ≥ K0.

Proof: Please see Appendix D. �

It should be emphasized that all the following results
are given under the condition of k ≥ K0.

4.2. The reconstruction of the unknown input d(t)
Denote

ˆ̄y−1 (k) =

 ˆ̄y−1,1(k)
...

ˆ̄y−1,q(k)

 , ȳ1(k) =

 ȳ1,1(k)
...

ȳ1,q(k)

 ,

ˆ̄y+1 (k) =

 ˆ̄y+1,1(k)
...

ˆ̄y+1,q(k)

 .
We then have ˆ̄y−1,i(k) ≤ ȳ1,i(k) ≤ ˆ̄y+1,i(k) (i = 1, · · · , q).
So, there must exist 0 ≤ αi(k) ≤ 1 such that ȳ1,i(k) =
αi(k) ˆ̄y+1,i(k) + (1 − αi(k))ȳ−1,i(k), (i = 1, · · · ,q) holds.
Moreover, based on above equations, if we introduce
notation of Φ(k) = diag(αi(k)), we will have

ȳ1(k) = Φ(k) ˆ̄y+1 (k)+(Iq−Φ(k)) ˆ̄y−1 (k), (20)

or

ȳ1(k+1) =Φ(k+1) ˆ̄y+1 (k+1)

+(Ip−Φ(k+1)) ˆ̄y−1 (k+1). (21)

Substituting (18) into (21) gives

ȳ1(k+1) =Φ(k+1)(Ā11−Ls) ˆ̄y+1 (k)

+(Iq−Φ(k+1))(Ā11−Ls) ˆ̄y−1 (k)

+ Ā12 ˆ̄z2(k)+ B̄1u(k)+ Π̄1y(k)+Lsȳ1(k)

+Φ(k+1)d++(Iq−Φ(k+1))d−. (22)

Compare (22) with (17), we obtain

d(k) =Φ(k+1)(Ā11−Ls) ˆ̄y+1 (k)

+(Iq−Φ(k+1))(Ā11−Ls) ˆ̄y−1 (k)

+(Ls− Ā11)ȳ1(k)− Ā12 ˜̄z2(k)

+(Iq−Φ(k+1))d−+Φ(k+1)d+. (23)

Now, based on (23), an unknown input reconstruction for
d(k) is given by

d̂(k) =Φ(k+1)(Ā11−Ls) ˆ̄y+1 (k)

+(Iq−Φ(k+1))(Ā11−Ls) ˆ̄y−1 (k)

+(Ls− Ā11)ȳ1(k)

+(Iq−Φ(k+1))d−+Φ(k+1)d+. (24)

Obviously, we have

lim
k→∞

(d(k)− d̂(k)) =−Ā12 lim
k→∞

˜̄z2(k) = 0.
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Next, we are going to give the computation of Φ(k) or
α(k). First, (20) can be rewritten as Φ(k)[ ˆ̄y+1 (k)− ˆ̄y−1 (k)] =
ȳ1(k)− ˆ̄y−1 (k) and it is equivalent to Ω(k)α(k) = ȳ1(k)−
ˆ̄y−1 (k) if we introduce the notation of Ω(k) = diag( ˆ̄y+1 (k)−
ˆ̄y−1 (k)). So, we have

α(k) = Ω
−1(k)[ȳ1(k)− ˆ̄y−1 (k)], (25)

noticing the fact that Ω(k) is nonsingular for all k ≥ 0
because of ˆ̄y+1 (k) 6= ˆ̄y−1 (k) for all k ≥ 0. Then Φ(k) =
diag{Ω−1(k)[ȳ1(k)− ˆ̄y−1 (k)]}.

Remark 3: It should be pointed out that although there
are some papers dealing with the unknown reconstruction
problems based on interval observers, the existing meth-
ods provide only interval estimations of the unknown in-
puts rather than asymptotic ones [40,41]. Moreover, in our
method the unknown input reconstruction decouples from
the control input u(t) and this feature is significant be-
cause it will be convenient for us to design an unknown
input compensation controller by introducing the recon-
struction into the controller directly and this advantage
will be tested in next section.

4.3. Observer-based unknown input compensation
controller design

Based on the reduced-order observer (15) given in sec-
tion 3 and the unknown input reconstruction (24) de-
veloped in Section 4.2, we are dedicated to investigate
observer-based state feedback and unknown input com-
pensation controller design problems. For this purpose,
we assume that B = D and (A,B) is controllable. The
observer-based state feedback and unknown input com-
pensation controller is designed as

u(k) = Kx̂(k)− d̂(k). (26)

Substituting the controller (26) into the original system (5)
gives

x(k+1) =(A+BK)x(k)−BKx̃(k)+Bd̃(k)

=(A+BK)x(k)−BK
[
In 0n×r

]
x̃e(k)+Bd̃(k)

=(A+BK)x(k)+Bd̃(k)

−BK
[
In 0n×r

]
T−1

[
0

˜̄z2(k)

]
,

where x̃(t) = x(t) − x̂(t). Now decompose the matrix

T−1 into a block matrix T−1 =

[
∗ T ∗12
∗ ∗

]
, where T ∗12 ∈

Rn×(n−q), we can get

x(k+1) = (A+BK)x(k)+Ψ ˜̄z2(k)+Bd̃(k), (27)

where Ψ = −BKT ∗12 and d̃(k) = d(k)− d̂(k). Combining
(16) and (27) leads to the dynamic closed-loop system un-
der the observer-based state feedback and unknown input

compensation controller:

ξ (k+1) =Aξ (k)+Bd̃(k), (28)

where ξ (k) =
[

xT (k) ˜̄zT
2 (k+1)

]T and

A=

[
A+BK −Ψ2

0 Ā22 + L̄22C̄22

]
, B =

[
B
0

]
.

From the discussions in the previous sections, we know
that, on the one hand, the unknown input reconstruction
determined by (24) depends only on the reduced-order ob-
server (15) and the interval observer (18). In fact, if the
reduced-order observer (15) can guarantee that the asymp-
totical estimation of z̄2(k) is successful, the interval ob-
server (18) can insure that the interval estimation of ȳ1(k)
is successful and this further guarantees that the asymp-
totical reconstruction of the unknown input d(k) can be
reached by (24). So, if we choose the reduced-order ob-
server gain matrix L̄22 such that matrix Ā22 + L̄22C̄22 is
asymptotical stable, the asymptotical reconstruction of the
unknown input d(k) can be guaranteed. Moreover, if we
further design the state feedback gain matrix K such that
A + BK is asymptotical stable, then we know that A is
asymptotical stable. So, based on (28), we can conclude
that the closed-loop system (28) is asymptotical stable.
Now based on the above discussions, we can drew a con-
clusion which called separation property as follows:

Theorem 3: If we choose the state feedback gain ma-
trix K and the reduced-order observer gain matrix L̄22 such
that the eigenvalues of A+BK and Ā22 + L̄22C̄22 are all
located on inside the unit circle, then the unknown in-
put reconstruction d̂(k) determined by (24) can approach
to the actual unknown input d(k) asymptotically, and the
closed-loop system (28) is asymptotically stable. More-
over, the inserting of the unknown input compensation and
the reduced-order observer (15) does not affect the eigen-
value of the original state feedback, nor are the eigenvalue
of the reduced-order observer affected by the connection.
Thus, the designs of the state feedback and unknown input
compensation controller, the unknown input reconstruc-
tion and the reduced-order observer can be carried out in-
dependently.

5. SIMULATION

In this section, two simulation examples are given to
test the effectiveness of the proposed methods. One is used
to verify the effects of the state asymptotical estimation
with reduced-order observer and interval estimation of the
interval observer, and the performance of the unknown in-
put reconstruction. The other one is used to test the per-
formance of the closed-loop system under the observer-
based state feedback and unknown input compensation
controller.
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5.1. Example 1
Consider a system in form (5) with

A =


0.25 0 0 0 0.25
0.05 0.35 0.05 0.05 0.05
0.1 0.2 0.35 0.1 −0.15

0.05 0.1 0.05 0.3 −0.2
0 0 0 0 0.5

 ,

B = D =


3 1
1 0
0 0
0 0
0 0

 , F =

1
0
1

 ,

C =

1 1 1 0 0
0 1 1 0 0
0 0 1 0 0

 .
We assume w(k) = 0.5sin(k) and

u(k) =
[

sin(k)
cos(k)

]
, d(k) =

[
2sin(0.8k+2)
0.5cos(k+1)

]
.

First, the augmented matrices Ee, Ae and Ce can be con-
structed easily and then the solution to (8) can be com-
puted out as

G =


0.72727 −0.18182 0.090909 0 0
−0.18182 0.54545 −0.27273 0 0
0.090909 −0.27273 0.63636 0 0

0 0 0 1 0
0 0 0 0 1

−0.36364 0.090909 −0.54545 0 0

 ,

Λ =


0.27273 −0.090909 −0.27273
0.18182 0.27273 −0.18182
−0.090909 0.36364 0.090909

0 0 0
0 0 0

0.36364 −0.45455 0.63636

 .

Based on Lemma 1, the transformation matrices T and S
which can transform the system (10) into the canonical
form (14) are

T =


0.5 3.5 3 0 0 0
0 −11 −11 0 0 0
0 0.44721 0.89443 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0.44721 0 0 0 0 0.89443

 ,

S =

 0.5 3 −0.5
0 −11 0

0.70711 0 0.70711

 ,
and furthermore,we have

Ā11 =

[
0.3 0.045455
−0.6 −0.022727

]
,

Ā12 =

[
0 0.15 −0.1 0
0 −0.55 0.7 0

]
,

Ā21 =


0.089443 0.030492

0.1 0.022727
0 0

−0.089443 −0.030492

 ,

Ā22 =


0.25 0.044721 −0.067082 0

0 0.3 −0.2 0
0 0 0.5 0

−0.25 −0.044721 0.067082 0

 ,
and C̄22 =

[
1.5811 0 0 1.5811

]
. Since the matrix Ā22

is a Schur stable matrix with eigenvalues of 0, 0.25, 0.3
and 0.5, so the reduced-order observer gain matrix can be
choose as L̄22 = 04×1. Now the reduced-order observer,
which can produce the asymptotical state estimates of the
original system and the asymptotical reconstruction of the
measurement noise, can be constructed by (15), and the
estimating performances are shown in Figs. 1 and 2.
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Fig. 1. The state estimation for x1− x3.
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Fig. 2. The state estimation for x4, x5 and w.
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Fig. 3. The interval estimation for variable ȳ1(k).

To design the interval observer, we need to compute out
Π̄1 and Π̄2 and they are

Π̄1 =

[
0.10455 0.28182 −0.10455
−0.27727 −1.0409 0.27727

]
,

Π̄2 =


0.01423 0.077246 −0.01423

0.027273 0.040909 −0.027273
0 0 0

−0.01423 −0.077246 0.01423

 .
Choose Γ=

[
0.25 0

0 0.2

]
as the nonnegative and Schur sta-

ble matrix and then the gain matrix Ls can be obtained by

Ls = Ā11−Γ and it is Ls =

[
0.05 0.045455
−0.7 −0.22273

]
.

Now based on (18) we can design the interval observer
for variable ȳ1(k) to produce the upper and lower bound-
ary estimations. The interval estimation for variable ȳ1(k)
is plotted in Fig. 3.

In order to get the reconstruction of the unknown input,
we need to compute the α1(k) and α2(k) based on (25)
first and they are reflected in Fig. 4 and from the figure,
we find that calculations to them are as our expectation in
that 0 ≤ αi(k) ≤ 1 (i = 1, 2). Now we can offer the un-
known input reconstruction by (24) and the two unknown
input reconstructions are plotted in Figs. 5(a) and 5(b),
respectively. From the figures, we find that the unknown
input reconstruction performances are satisfactory.

5.2. Example 2
Consider system in form (5) with

A =
0.81472 0.09754 0.15761 0.14189 0.65574
0.90579 0.2785 0.97059 0.42176 0.035712
0.12699 0.54688 0.95717 0.91574 0.84913
0.91338 0.95751 0.48538 0.79221 0.93399
0.63236 0.96489 0.80028 0.95949 0.67874

,
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Fig. 4. The signals of α1(k) and α2(k).
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Fig. 5. The unknown input reconstruction of d(k).

B = D =


0.75774 0.70605
0.74313 0.031833
0.39223 0.27692
0.65548 0.046171
0.17119 0.097132

 , F =

0.27603
0.6797
0.6551

 ,

C=

0.82346 0.95022 0.38156 0.18687 0.64631
0.69483 0.034446 0.76552 0.48976 0.70936
0.3171 0.43874 0.7952 0.44559 0.75469

.
We assume d(k) =

[
2sin(0.8k+2)
0.5cos(k+1)

]
and w(k) =

0.5sin(k).
First, we should emphasize that the open-loop system is

unstable because the matrix A contains an unstable eigen-
value of 3.2037. So, we are going to design a state feed-
back and unknown input compensation controller in form
(26) such that the closed-loop system is asymptotical sta-
ble. To do so, we need to get the asymptotical state esti-
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Fig. 6. The state estimation for x1− x3.
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Fig. 7. The state estimation for x4, x5 and w.

mation x̂(k) via the reduced-order observer of (15) and the
asymptotical unknown input reconstruction d̂(k) based on
(24). The state estimations are reflected in Figs. 6 and 7.

In order to get the asymptotical unknown input recon-
struction d̂(k), we have to design an interval observer for
the variable ȳ1(k) and this need us to compute out α1(k)
and α2(k) in advance. The interval estimation for vari-
able ȳ1(k)=

[
ȳ1,1(k) ȳ1,2(k)

]T is given in Fig. 8, where
Fig. 8 (a) is for ȳ1,1(k) and Fig. 8 (b) for ȳ1,2(k). The curves
of α1(k) and α2(k) are plotted in Fig. 9 (Fig. 9(a) shows
the α1(k) and Fig. 9(b) the α2(k)).

Now, with the interval estimation for ȳ1(k) at hand and
the calculation of α(k) being completed, the unknown in-
put reconstruction can be implemented base on (24) and
the reconstruction performances are shown in Figs. 10(a)
and 10(b). After we have obtained the x̂(k) and d̂(k), we
can carry out the state feedback and unknown input com-
pensation controller design. The feedback gain matrix is
designed as
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Fig. 8. The interval estimation for variable ȳ1(k).
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Fig. 9. The signals of α1(k) and α2(k).
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Fig. 10. The unknown input reconstruction of d(k).
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K=

[
−1.5421 −1.9352 −1.8365 −1.9659 −1.4987
0.6901 2.7953 1.7956 2.6059 1.6167

]
such that the eigenvalues of A+BK are placed to 0, 0.2,
0.4, −0.2, −0.4 which are all on the inside the unit circle.
Again, from Fig. 6 and Fig. 7, we can see that all the states
are driven to zero asymptotically under the deigned state
feedback and unknown input compensation controller.

6. CONCLUSIONS

In this paper, two major issues, specifically, the un-
known or unmeasured information estimations and feed-
back controller constructed using the estimations, are in-
vestigated for a class of discrete-time systems. In order
to estimate the unmeasured states and the unknown mea-
surement noises, an augmented descriptor system is con-
structed and a reduced-order observer is designed for it.
We prove that the preconditions can be kept under the
construction. In order to estimate the unknown inputs, an
interval observer for parts of the outputs is designed and
then a new unknown input reconstruction method is devel-
oped by using the interval estimation. The unknown input
reconstruction can approach to its actual values asymptot-
ically although it is given based on interval observation.
Besides, the unknown input reconstruction is irrelative to
the known control input and this is a kind of benefit to the
controller designed by introducing the reconstruction into
the controller. Finally, we design a state and unknown in-
put feedback controller based on the state estimation and
the unknown input reconstruction. Moreover, we analyze
the stability of the closed-loop system and point out that
the closed-loop system satisfies the so-called separation
property. How to apply the proposed methods to FDI and
FTC designs will be our next considerations.

APPENDIX A

First, (3) implies that p≥ q. Since rank(D) = q, so

T−1
0 =

[(
DT D

)−1DT

D⊥

]
∈ Rn×n

exists and is nonsingular, and obviously T−1
0 D =

[
Iq

0

]
.

Now denote CT0 =
[
Ĉ1 Ĉ2

]
, where Ĉ1 ∈ Rp×q and Ĉ2 ∈

Rp×(n−q), we have CD =CT0T−1
0 D =

[
Ĉ1 Ĉ2

][Iq

0

]
= Ĉ1.

When p> q, since rank(Ĉ1)= rank(CD)= q which means
that Ĉ1 has full column rank, so we know that

S =

((Ĉ1
)T

Ĉ1

)−1(
Ĉ1
)T(

Ĉ1
)⊥

 ∈ Rp×p

exists and is nonsingular and SĈ1 =

[
Iq

0

]
∈ Rp×q. Denote

SĈ2 =

[
Ĉ21

Ĉ22

]
∈ Rp×(n−q), where Ĉ21 ∈ Rq×(n−q) and Ĉ22 ∈

R(p−q)×(n−q), then

SCT0 = S
[
Ĉ1 Ĉ2

]
=
[
SĈ1 SĈ2

]
=

[
Iq Ĉ21

0 Ĉ22

]
.

If we set T =

[
Iq Ĉ21

0 In−q

]
T−1

0 , we will have

Ĉ := SCT−1 = SCT0

[
Iq −Ĉ21

0 In−q

]
=

[
Iq Ĉ21

0 Ĉ22

][
Iq −Ĉ21

0 In−q

]
=

[
Iq 0
0 Ĉ22

]
,

D̂ := T D =

[
Iq Ĉ21

0 In−q

]
T−1

0 D

=

[
Iq Ĉ21

0 In−q

][
Iq

0

]
=

[
Iq

0

]
.

Obviously, when p = q, Ĉ is reduced to Ĉ =
[
Ip 0

]
. Be-

sides, when p > q, because for any complex s, we have

rank
[

sIn−A D
C 0

]
= rank

[
T 0
0 S

][
sIn−A D

C 0

][
T−1 0

0 Iq

]
= rank

[
sIn−TAT−1 T D

SCT−1 0

]

= rank


sIq− Â11 −Â12 Iq

−Â21 sIn−q− Â22 0
Iq 0 0
0 Ĉ22 0



= rank


0 0 Iq

0 sIn−q− Â22 0
Iq 0 0
0 Ĉ22 0



= rank


0 Iq 0
Iq 0 0
0 0 sIn−q− Â22

0 0 Ĉ22


= 2q+ rank

[
sIn−q− Â22

Ĉ22

]
.

So, (2) holds for any complex s with |s| ≥ 1 if and only if

rank
[

sIn−q− Â22

Ĉ22

]
= n−q (A.1)

holds for any complex s with |s| ≥ 1, that is the pair
(Â22, Ĉ22) is detectable. When p = q, (A.1) is reduced to
rank

[
sIn−q− Â22

]
= n−q and it is equivalent to

rank
[

sIn−p− Â22

Ip

]
= n− p,
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which means that (Â22, Ip) is detectable.

APPENDIX B

rank
[

sIn̄−GAe GD
Ce 0p×q

]

= rank

sIn̄−M
[

In

0r×n

]
Ae M

[
In

0r×n

]
D

Ce 0p×q


= rank

sIn̄−M
[

Ae

0r×n̄

]
M
[

D
0r×q

]
Ce 0p×q


= rank

[
M 0n̄×p

0p×n̄ Ip

]sM−1−
[

Ae

0r×n̄

] [
D

0r×q

]
Ce 0p×q


= rank

sM−1−
[

Ae

0r×n̄

] [
D

0r×q

]
Ce 0p×q

 ,
It should be noticed that

M−1 =RT R =

[
In CT

0r×n FT

][
In 0n×r

C F

]
=

[
In +CTC CT F

FTC FT F

]
.

So,

rank
[

sIn̄−GAe GD
Ce 0p×q

]

= rank


[

s(In +CTC) sCT F
sFTC sFT F

]
−
[

A 0n×r

0r×n 0r×r

] [
D

0r×q

]
C̄ 0p×q


= rank

s(In +CTC)−A sCT F D
sFTC sFT F 0r×q

C F 0p×q


= rank

 In 0n×r −sCT

0r×n Ir −sFT

0p×n 0p×r Ip


×

s(In +CTC)−A sCT F D
sFTC sFT F 0r×q

C F 0p×q


= rank

sIn−A 0n×r D
0r×n 0r×r 0r×q

C F 0p×q


= rank

[
sIn−A 0n×r D

C F 0p×q

]
.

The above equation means that (6) in Assumption 3 holds
for any complex s with |s| ≥ 1 if and only if (11) in Lemma
5 holds for any complex s with |s| ≥ 1.

APPENDIX C

Notice that
[

G 0
0p×n Ip

]
has full column rank n+ p, so

we have

n̄+q =rank
[

Ee D
Ce 0p×q

]
=rank

[
G 0

0p×n Ip

][
Ee D
Ce 0p×q

]
=rank

[
GEe GD
Ce 0p×q

]
=rank

[
In̄ Λ

0p×n̄ Ip

][
GEe GD
Ce 0p×q

]
=rank

[
GEe +ΛCe GD

Ce 0p×q

]
=rank

[
In̄ GD
Ce 0p×q

]
=rank

{[
In̄ 0n̄×p

−Ce Ip

][
In̄ GD
Ce 0p×q

]}
=rank

[
In̄ 0
0 CeGD

]
= n̄+ rank(CeGD).

This gives rank(CeGD) = q = rank(D) = rank(GD), that
is (12) holds.

APPENDIX D[
˜̄y+1 (k+1)
˜̄y−1 (k+1)

]
=

[
Γ 0
0 Γ

][
˜̄y+1 (k)
˜̄y−1 (k)

]
+

[
−Ā12

Ā12

]
˜̄z2(k)+

[
d+−d(k)
d(k)−d−

]
,

where ˜̄y+1 (k) = ˆ̄y+1 (k)− ȳ1(k) and ˜̄y−1 (k) = ȳ1(k)− ˆ̄y−1 (k).
On the one hand, since[

d+−d(k)
d(k)−d−

]
> 0,

[
−Ā12

Ā12

]
˜̄z2(k)→ 0,

so there exists a constant K0 ≥ 0 such that[
−Ā12

Ā12

]
˜̄z2(k)+

[
d+−d(k)
d(k)−d−

]
> 0,

for all k ≥ K0. On the other hand, we know that

ȳ1(k) =z̄1(k) =
[
Iq 0q×(n̄−q) |!

]
z̄(k)

=
[
Iq 0q×(n̄−q)

]
T z(k)

=
[
Iq 0q×(n̄−q)

]
T (xe(k)−Λy(k))

=
[
Iq 0q×(n̄−q)

]
T (xe(k)−ΛCexe(k))

=
[
Iq 0q×(n̄−q)

]
T (In̄−ΛCe)xe(k) = Qexe(k),

which means ȳ1(0) = Qexe(0). We have

Q+
e x−e (0)−Q−e x+e (0)≤ ȳ1(0) = Qexe(0)
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≤ Q+
e x+e (0)−Q−e x−e (0),

because of (4). So, if the initial state of system (18) is set
as by (19), then ȳ−1 (0)≤ ȳ1(0)≤ ȳ+1 (0) which means that
both ˜̄y+1 (0)≥ 0 and ˜̄y−1 (0)≥ 0. Consider the fact that Γ is
a not only nonnegative but also Schur stable matrix, we
conclude by Lemma 2 that both ˜̄y+1 (0)≥ 0 and ˜̄y−1 (0)≥ 0
holds for all k≥K0 and this equivalent to say that ˆ̄y−1 (k)≤
ȳ1(k)≤ ˆ̄y+1 (k) for all k ≥ K0.
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