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An Improved Result on Stability Analysis of Delayed Load Frequency
Control Power Systems
Shiyu Jiao, Jianwei Xia, Zhen Wang* � , Xiangyong Chen*, Jing Wang, and Hao Shen

Abstract: This paper investigates the stability of power systems with load frequency control considering time delays
(constant and time-varying delays). A new criterion for ensuring the stability of the system is proposed on the basis
of Lyapunov stability theory and a further strengthened inequality. Finally, taking a single-area load frequency
control scheme with the proportional-integral controller as an example, according to the stability criterion obtained,
the relationship between the maximum allowable delay and the gain of proportional-integral controller is discussed.
Besides, in case studies, the effectiveness of our method is also demonstrated.
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1. INTRODUCTION

Load frequency control (LFC), because of its excellent
ability to maintain frequency and power exchange with
neighboring areas at predetermined values, has been used
in power systems for many years and has also laid the
foundation for the development of smart grids [1]. Subse-
quently, with the continuous development of smart grids,
a lot of research emerged [2–4]. The LFC scheme model
with communication channels is usually regarded as a typ-
ical delayed system [5]. In the LFC system, due to the in-
troduction of the communication channel, there will be a
constant delay in the signal transmission process. How-
ever, in most LFC designs and operations, because the
value of the delay is relatively small, this delay is often
ignored. In addition, it is also worth noting that the data
packed dropout and disordering may occur in communi-
cation, which may cause time-varying delays, and the un-
availability of data due to communication failure can also
be equivalent to time-varying delays.

At present, the time delay phenomenon has become one
of the most important unreliable factors, it will weaken the
dynamic performance of the system, and even cause the
instability of the LFC scheme. This means that the con-

trol area does not meet the control standards, resulting in
deviation, which will have a negative impact on the stable
operation of power systems. Therefore, finding the max-
imum allowable delay is of great significance for power
systems with LFC schemes to maintain the stable opera-
tion [6].

There are two common methods for determining the
maximum allowable delay, each of which has advantages
and limitations. First, the critical eigenvalues and eigen-
roots can be obtained according to the characteristic equa-
tion of the system to calculate the accurate maximum al-
lowable delay directly [7]. However, when the scale of the
system increases, this method is very time-consuming and
inefficient. And because it can only deal with constant de-
lays, an indirect method on the basis of Lyapunov stability
theory gradually replaced it as the main method for cal-
culating the maximum allowable delay [8–10]. Because
of the fact that the second method can handle both con-
stant and time-varying delays, it has become a mainstream
method, although this method is somewhat conservative.
In recent years, many excellent methods have been pro-
posed for the stability analysis of systems with time de-
lays [11–16]. However, how to apply these methods to the
stability analysis of power systems with LFC scheme still
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arouses the attention of many scholars. In order to reduce
the limitation and conservatism of the results, a further
strengthened inequality technique that is less conservative
than the Jensen and Wirtinger-based integral inequality is
adopted in this paper [17].

Also a fascinating topic is what control methods should
be adopted when studying LFC schemes, many excel-
lent control strategies have always attracted much atten-
tion [18–21]. Among them, it is worth mentioning that
proportional-integral (PI) control, because of its simplic-
ity and high economic benefits [22–25]. In this paper, time
delays are taken into account during the design phase of
the PI-type controller, which is an issue that has been ig-
nored in many previous literatures. Moreover, the relation-
ship between the maximum allowable delay and the con-
troller gain is analyzed.

In summary, this paper discusses the stability of the de-
layed LFC scheme equipped with a PI-type controller, the
main contributions are divided into the following three
aspects. 1) The single-area LFC scheme is more com-
prehensive by considering the influence of time delays
when designing the PI-type controller. 2) The stability cri-
terion is improved by constructing a suitable Lyapunov-
Krasovskii functional (LKF) and an enhancement inequal-
ity technique. 3) The relation between the controller gain
and the maximum allowable delay is discussed from two
aspects: constant delay and time-varying delay, which pro-
vides auxiliary conditions for the design and adjustment of
the LFC scheme. And by comparison, it not only proves
the effectiveness of our method, but also validates that our
results are less conservative than [9] and [26].

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider time delays in the LFC scheme, as shown in
Fig. 1 [1]. The LFC system model of a single-area can be
expressed as follows:{ ·

x̃(t) = Ãx̃(t)+ B̃u(t)+ D̃ww(t),

ỹ(t) = C̃x̃(t),
(1)

where

x̃T (t) =
[
∆ f ∆Pm ∆Pv

]
,

+
-

+

-

Fig. 1. The LFC scheme of the single-area.

Table 1. The explanation of terminologies.

Terminology Meaning
∆Pd deviation of load
∆Pm deviation of generator mechanical output
∆Pv deviation of valve position
∆ f deviation of frequency
D damping coefficient of generator
M moment of inertia of generator
R speed droop
Tg time constant of governor
Tch time constant of turbine
β frequency bias factor

ACE area control error

ỹ(t) = ACE, Ã =

 − D
M

1
M 0

0 − 1
Tch

1
Tch

− 1
RTg

0 − 1
Tg

 ,
B̃ =

 0
0
1
Tg

 , D̃w =

− 1
M

0
0

 ,C̃ =

β

0
0

T

.

And explanations of some terms are shown in Table 1.
Since the power exchange phenomenon of the network

tie-line does not occur in the LFC scheme of a single-area,
the ACE can be expressed as

ỹ(t) = ACE = β∆ f , (2)

in which, β > 0.
Considering ACE as the input if the controller, the form

of PI-type LFC is as follows:

u(t) =−KPACE−KI

∫
ACE, (3)

where KP and KI represent the proportional gain and
the integral gain of the controller respectively. Defining
y(t) ∆

=
[

ỹ(t)
∫

ỹ(t)
]T ,K ∆

=
[
KP KI

]
, so expression

(3) can be converted into

u(t) =−Ky(t).

However, it is not difficult to find from Fig. 1 that there
are time delays in the transmission of the control signal, so
time delays need to be taken into account in the controller,
naturally

u(t) =−Ky(t−h(t)), (4)

where h(t) represents time delays, and 0< h(t)< h̄, ḣ(t)≤
µ ≤ 1.

Define the new state variable as x(t) ∆
= [ ∆ f ∆Pm ∆Pv∫

ACE ]T . For ease of understanding, the PI-type control
problem can be translated into output feedback control
problem. By introducing the controller (4) into system (1),
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the closed-loop system in the following form can be ob-
tained

ẋ(t) =Ax(t)+Adx(t−h(t))+Dww(t),

y(t) = Cx(t),

x(t) = φ(t), t ∈ [−h̄,0],

(5)

where

A=


− D

M
1
M 0 0

0 − 1
Tch

1
Tch

0
− 1

RTg
0 − 1

Tg
0

β 0 0 0

 , Dw =


− 1

M
0
0
0

 ,

Ad =


0 0 0 0
0 0 0 0
−Kpβ

Tg
0 0 −KI

Tg

0 0 0 0

 , C =


β 0
0 0
0 0
0 1


T

.

Remark 1: When dealing with unknown external load
disturbances in power systems, it can be modeled as a non-
linear perturbation in the current and delayed state vectors
[26].

Dww(t) = g(x(t),x(t−h(t))), (6)

meeting the following condition

||g(·)|| ≤ ε||x(t)||+θ ||x(t−h(t))||, (7)

in which ε and θ are known non-negative scalars. A more
generalized form of the condition is adopted, as follows:

g(·)T g(·)≤ε
2xT (t)ET Ex(t)

+θ
2xT (t−h(t))FT Fx(t−h(t)), (8)

where E along with F are both known constant matrices
with appropriate dimensions. The non-negative scalars ε ,
θ and the matrices E, F can be used to quantify the impact
of load disturbances on power systems.

Lemma 1 [17]: Given a matrix Z(∈Rn×n)> 0, if there
exists any matrix Hi ∈Rn×m (i = 0, 1, 2, · · · , N) and a vec-
tor δ ∈Rm, for any continuous and differentiable function
x(·) from [a,b] to Rn, and integer N ∈ N, the following
inequality holds

−
∫ b

a
ẋT (s)Zẋ(s)ds

≤
N

∑
k=0

[2σ
T
N η

T
N (k)Hkδ +

b−a
(2k+1)

δ
T HT

k Z−1Hkδ ], (9)

where

σN ,



[
xT (b) xT (a)

]T
, N = 0,[

xT (b) xT (a)
1

b−a
∆

T
0 · · ·

1
b−a

∆
T
N−1

]T

,

N > 0,

ηN(k),

{
[ I − I ] , N = 0,[

I (−1)k+1I τ
0
NkI · · · τ

N−1
Nk I

]
, N > 0,

τ
i
Nk ,

{
− (2i+1)(1− (−1)k+i), i≤ k,

0, i≥ k+1,

∆k ,
∫ b

a
Yk(s)x(s)ds,

Yk(s), (−1)k
k

∑
e=0

[
(−1)e

(
k
e

)(
k+ e

e

)](
s−a
b−a

)e

.

Remark 2: The stability of the LFC scheme is ex-
tremely important for the normal operation of power sys-
tems. When analyzing the stability of the LFC scheme
with time delays, advanced inequality technology plays
an important role. Compared with common inequalities,
Jensen inequality and Wirtinger-based integral inequal-
ity, in order to effectively reduce the conservatism, a low-
conservative inequality is applied this paper. Interestingly,
as δ introduces more state variables, the less conservative
it is.

3. MAIN RESULTS

To simplify the following calculation process, some rel-
evant explanations are given here.

Ω =

 In −In 0 0
In In −2In 0
In −In 0 −6In

 ,
ϖ(t) =

[
ϖT

1 (t) ϖT
2 (t) ϖT

3 (t)
]T

,

ϖ1(t) =


x(t)

x(t−h(t))
x(t− h̄)

g(·)

 , P =

P11 P12 P13

∗ P22 P23

∗ ∗ P33

 ,
ϖ2(t) =

[
1

h(t)

∫ t
t−h(t) x(s)ds

1
h(t)

∫ t
t−h(t)(2

s−t+h(t)
h(t) −1)x(s)ds

]
,

ϖ3(t) =

[
1

h̄−h(t)

∫ t−h(t)
t−h̄ x(s)ds

1
h̄−h(t)

∫ t−h(t)
t−h̄ (2 s−t+h̄

d̄−h(t) −1)x(s)ds

]
,

Zn = diag{Z,3Z,5Z},
ci =

[
0n×(i−1)n In 0n×(9−i)n

]
, i = 1,2, . . . ,9,

li =
[

0n×(i−1)n In 0n×(8−i)n
]
, i = 1,2, . . . ,8.

Theorem 1: For given scalars ε ≥ 0, θ ≥ 0, λ ≥ 0,
assuming Q2 > 0, Q1 > 0, P > 0, Z > 0, and any matrices
M̃3×9

1 , M̃3×9
2 , the system (5) is asymptotically stable if the

following conditions hold

Θ1 =

[
Γ̃(0) M̃T

2
∗ −Zn

]
12×12

< 0, (10)

Θ2 =

[
Γ̃(h̄) M̃T

1
∗ −Zn

]
12×12

< 0, (11)



1636 Shiyu Jiao, Jianwei Xia, Zhen Wang, Xiangyong Chen, Jing Wang, and Hao Shen

where

Γ̃ =
8

∑
i=1

Γ̃i,

Γ̃1 = sym{cT
1 P11Ac1 + cT

1 P11Adc2 + cT
1 P11c4,

+ cT
1 P12c1− cT

1 P12c3 + cT
1 P13c1}− εcT

4 Ic4,

Γ̃2 = sym{(h̄−h(t))cT
7 PT

12(Ac1 +Adc2 + c4)

+h(t)cT
5 PT

12(Ac1 +Adc2 + c4)}+ εε
2cT

1 ET Ec1,

Γ̃3 = sym{(h̄−h(t))cT
8 PT

13(Ac1 +Adc2 + c4),

+h(t)cT
6 PT

13(Ac1 +Adc2 + c4)}+ εθ
2cT

2 FT Fc2,

Γ̃4 = sym{[h(t)cT
5 +(h̄−h(t))cT

7 ]P22(c1− c3)},
Γ̃5 = sym{[h(t)cT

6 +(h̄−h(t))cT
8 ]P

T
23(c1− c3)},

Γ̃6 = sym{(h̄−h(t))cT
7 P23c1 +h(t)cT

5 P23c1

+(h̄−h(t))cT
8 P33c1 +h(t)cT

6 P33c1},
Γ̃7 = cT

1 (Q1 +Q2)c1− (1−µ)cT
2 Q1c2

− cT
3 Q2c3 + sym{h̄Π̃

T
1 Ω

T M1 + h̄Π̃
T
2 Ω

T M2},
Γ̃8 = h̄cT

1AT Zc9 + h̄cT
2AT

d Zc9 + h̄cT
4 Zc9 + cT

9 Zc9.

Proof: Choose the appropriate LKF

V(t) = V1(t)+V2(t)+V3(t), (12)

V1(t) = ρ
T (t)Pρ(t), (13)

V2(t) =
∫ t

t−h(t)
xT (s)Q1x(s)ds

+
∫ t

t−h̄
xT (s)Q2x(s)ds, (14)

V3(t) = h̄
∫ 0

−h̄

∫ t

t+γ

ẋT (s)Zẋ(s)dsdγ, (15)

where

ρ(t)

=
[

xT (t)
∫ t

t−h̄ xT (s)ds
∫ t

t−h̄(2
s−t+h̄

h̄ −1)xT (s)ds
]T

.

Take the derivative of the above functional, and the fol-
lowing expressions hold

V̇1(t) = sym{ρT (t)Pρ̇(t)}, (16)

V̇2(t)≤ xT (t)Q1x(t)+ xT (t)Q2x(t)

− xT (t− h̄)Q2x(t− h̄)

− (1−µ)xT (t−h(t))Q1x(t−h(t)), (17)

V̇3(t) = h̄2ẋT (t)Zẋ(t)− h̄
∫ t

t−h̄
ẋT (s)Zẋ(s)ds. (18)

Setting N = 2, and according to Lemma 1, the following
expressions hold

− h̄
∫ t

t−h̄
ẋT (s)Zẋ(s)ds

=−h̄
∫ t−h(t)

t−h̄
ẋT (s)Zẋ(s)ds− h̄

∫ t

t−h(t)
ẋT (s)Zẋ(s)ds,

(19)

− h̄
∫ t

t−h(t)
ẋT (s)Zẋ(s)ds

≤ ϖ
T (t)[h̄(sym{ΠT

1 Ω
T M1}+h(t)MT

1 Z−1
n M1)]ϖ(t),

(20)

− h̄
∫ t−h(t)

t−h̄
ẋT (s)Zẋ(s)ds

≤ ϖ
T (t)[h̄(sym{ΠT

2 Ω
T M2}

+(h̄−h(t))MT
2 Z−1

n M2)]ϖ(t), (21)

where M1 and M2 are matrices with suitable dimensions,
and

M̃1 =
[
M1 03×1

]
, M̃2 =

[
M2 03×1

]
,

Π1 =
[
lT
1 lT

2 lT
5 lT

6

]T
, Π2 =

[
lT
2 lT

3 lT
7 lT

8

]T
,

Π̃1 =
[
cT

1 cT
2 cT

5 cT
6

]T
, Π̃2 =

[
cT

2 cT
3 cT

7 cT
8

]T
.

For any ε > 0, the inequality hold

− εgT (·)g(·)+ εε
2xT (t)ET Ex(t)

+ εθ
2xT (t−h(t))FT Fx(t−h(t))≥ 0. (22)

By summarizing the above calculation, it is not difficult to
get the following inequality

V̇(t)≤ϖ
T (t){

7

∑
i=1

Γi(h(t))+ h̄[h(t)MT
1 Z−1

n M1

+(h̄−h(t))MT
2 Z−1

n M2]}ϖ(t)+h̄2ẋT (t)Zẋ(t),
(23)

where

Γ1 = sym{lT
1 P11Al1 + lT

1 P11Ad l2 + lT
1 P11l4

+ lT
1 P12l1− lT

1 P12l3 + lT
1 P13l1}− εlT

4 Il4,

Γ2 = sym{(h̄−h(t))lT
7 PT

12(Al1 +Ad l2 + l4)

+h(t)lT
5 PT

12(Al1 +Ad l2 + l4)}+ εε
2lT

1 ET El1,

Γ3 = sym{(h̄−h(t))lT
8 PT

13(Al1 +Ad l2 + l4)

+h(t)lT
6 PT

13(Al1 +Ad l2 + l4)}+ εθ
2lT

2 FT Fl2,

Γ4 = sym{[h(t)lT
5 +(h̄−h(t))lT

7 ]P22(l1− l3)},
Γ5 = sym{[h(t)lT

6 +(h̄−h(t))lT
8 ]P

T
23(l1− l3)},

Γ6 = sym{(h̄−h(t))lT
7 P23l1 +h(t)lT

5 P23l1
+(h̄−h(t))lT

8 P33l1 +h(t)lT
6 P33l1},

Γ7 = lT
1 (Q1 +Q2)l1− (1−µ)lT

2 Q1l2− lT
3 Q2l3

+ sym{h̄Π̃
T
1 Ω

T M1 + h̄Π̃
T
2 Ω

T M2}.

According to Schur complement, the expressions Θ1 and
Θ2 hold, since the condition Γ̃(0) + h̄2MT

2 Z−1
n M2 < 0

and the condition Γ̃(h̄) + h̄2MT
1 Z−1

n M1 < 0 can guar-
antee the establishment of the condition Γ̃(h(t)) +
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Table 2. Parameters of single-area LFC system.

Parameter β R D M(s) Tch(s) Tg(s)
Area1 21 0.05 1.0 1.0 0.3 0.1

Table 3. The maximum allowable delay h̄ for LFC system
when µ = 0.

Methods µ = 0
KP KI Theorem1 [9] [26]
0 0.2 11.70 7.33 6.69
0 0.4 6.15 3.38 3.12
0 0.6 4.17 2.04 1.91

0.1 0.2 10.96 7.79 6.94
0.1 0.4 5.83 3.61 3.29
0.1 0.6 4.05 2.19 2.02

Table 4. The maximum allowable delay h̄ for LFC system
when µ = 0.9.

Methods µ = 0.9
KP KI Theorem1 [9] [26]
0 0.2 9.98 6.43 6.25
0 0.4 4.44 2.91 2.85
0 0.6 2.80 1.71 1.68

0.1 0.2 9.17 6.59 5.93
0.1 0.4 4.31 3.11 2.87
0.1 0.6 2.83 1.84 1.75

h̄[h(t)MT
1 Z−1

n M1 +(h̄− h(t))MT
2 Z−1

n M2] < 0 for ∀ h(t) ∈
[0, h̄]. Based on Schur complement, inequalities (10) and
(11) can be derived. This completes the proof of Theo-
rem 1. �

4. CASE STUDIES

In this section, taking a single-area LFC system as an
example, the superiority of our results is proved by com-
parison with the previous literature [9] and [26]. The pa-
rameters of the system are shown in Table 2.

Suppose time delays h(t) as two cases : constant or
time-varying delays (µ = 0/0.9). In these two cases, ana-
lyze the maximum allowable delay for the normal opera-
tion of the system. Consider the load disturbance Dww(t)
as formula (8) and set the parameters ε = 0, θ = 0, E =
F = 0.1I4. With the help of Matlab, the maximum allow-
able delay under diverse values of controller gains (KP,
KI) can be solved. The specific data are shown in Table 3
and Table 4.

It can be found from Table 3 that when considering h(t)
as constant delay (µ = 0), under the same controller gain,
the maximum allowable delay calculated by our method
is greater than than the values in [9] and [26]. And Fig.

0 10 20 30 40 50

t(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

S
ta

te
 r

es
p

o
n

se

Fig. 2. The state response trajectory of LFC system.

2 shows the state response of the single-area LFC sys-
tem at KP = 0, KI = 0.2 when µ = 0. It is proved that
the system finally achieves asymptotic stability. Table 4
shows the maximum allowable delay obtained under dif-
ferent controller gains when h(t) is time-varying delay
(µ = 0.9). By comparing Table 3 and Table 4 longitudi-
nally, it is not difficult to see that under the premise of
ensuring the same controller gain, the maximum allowable
upper bound of constant delay is generally higher than that
of time-varying delay.

In addition, according to Table 3 and Table 4, it is obvi-
ous that compared with literature [9] and [26], whether
h(t) is constant delay (µ = 0) or time-varying delay
(µ = 0.9), the maximum allowable delay obtained by our
method is larger. This proves that our results are less con-
servative than those in [9] and [26], and the effectiveness
and superiority of our method are also confirmed, directly.

5. CONCLUSIONS

In this paper, the stability of frequency load control
scheme with time delays has been studied. By Lyapunov
stability theory and an improved inequality technology,
the stability criterion has been further optimized. In ad-
dition, the maximum allowable delay under different con-
troller gain values has been calculated, and the relation-
ship between the two has been discussed. By comparing
the examples, the validity and excellence of our method
have been fully confirmed whether under the constant de-
lay or time-varying delay.
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