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EMG Based Control of Transhumeral Prosthesis Using Machine Learning
Algorithms
Neelum Yousaf Sattar* � , Zareena Kausar, Syed Ali Usama, Umer Farooq, and Umar Shahbaz Khan

Abstract: This research presents work on control of a prosthetic arm using surface electromyography (sEMG)
signals acquired from triceps and biceps of fifteen healthy and four amputated subjects. Myo armband was used to
acquire sEMG signals corresponding to four different arm motions: elbow extension, elbow flexion, wrist pronation,
and wrist supination. Ten time-domain features were extracted and considered for classification to recognize the
four-arm motions. These features and their various combinations were used to train four different classifiers, in both
offline and real-time settings. It was found that the combination of signal mean and waveform length as a feature
and k-nearest neighbors as classifier performed significantly better (p < 0.05) than all other combinations in both
offline and real-time settings. The offline accuracies of 95.8% and 68.1% and real-time accuracies of 91.9% and
60.1% were obtained for healthy and amputated subjects, respectively. Results obtained using the presented scheme
successfully demonstrate that using suitable features and classifier, classification accuracies can be significantly
improved for transhumeral prosthesis, thereby, providing better, wearable and non-invasive control of prostheses
using sEMG signals.

Keywords: k-nearest neighbors, myo armband, prosthetic arm, real-time classification, surface electromyography,
transhumeral amputation.

1. INTRODUCTION

People suffering from amputation and disability have
difficulties using old rehabilitation devices, therefore,
there is a need to develop more innovative human-machine
interfaces (HMI) for active prosthesis [1]. The active pros-
thetic device is the one which mimics natural human limb
motion by providing external power through motors to
perform greater functionality however, they also represent
the system with the highest complexity. HMI relies on
sensors to detect motions and control the prosthetic de-
vice. Although several prosthetic devices with biosignals
as a control source are developed for below-elbow am-
putation [2], while in literature limited work is done on
prostheses for higher amputation [3]. It is because there
are higher DOF (degrees-of-freedom) to be controlled but
fewer residual upper limb muscles available for biosig-
nals.

Two major types of an active upper-limb prosthesis for
transhumeral amputation are i) body-powered prosthesis
and ii) myoelectric prosthesis [4]. In body-powered pros-
thesis, a harness allows the amputated person to actuate
the prosthetic device by executing some specific shoulder

motions. Whereas in a myoelectric prosthesis, the pros-
thetic arm is controlled with the electrical signals gener-
ated as a result of the movement of the remaining muscles
present on an arm. The obtained signal is sent to the con-
troller, which analyzes and processes the obtained infor-
mation, causes the prosthetic arm to move.

Over the years, researchers have used different biosen-
sors such as surface electromyogram (sEMG), intramus-
cular EMG (iEMG) force myography (FMG), inertial
measurement unit (IMU), functional near-infrared spec-
troscopy (fNIRS) [5,6], electroencephalogram (EEG),
mechanomyogram (MMG) and electrooculography
(EOG) to control human upper limb prosthese [1,7,8].
sEMG signal recorded from the residual upper limb mus-
cles of amputees is a significant source of control input
for powered upper-limb prosthetic devices to restore limb
functionality [9]. As EMG comprises of motor informa-
tion from which limb motion intention could be identified,
this information can be retained from residual muscles of
an amputee as well. EMG signals can be obtained by
both invasive and non-invasive procedures. iEMG elec-
trodes are used for invasive techniques whereas sEMG
electrodes are employed for a non-invasive solution. Ear-
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lier studies have reported similar classification accuracy
for multiple classes of arm movements using iEMG and
sEMG electrodes [10]. The signals are fed to filters for
pre-processing [11]. Therefore, sEMG remains the most
feasible clinical option for acquiring EMG signals from
upper-limb mostly because it is non-invasive and could
still offer related performance with iEMG. An EMG-
based HMI, that can be easily used in daily life, should be
simple, non-invasive and wearable.

With the advancements in wearable sensors technolo-
gies, sEMG data can also now be acquired using wear-
able armbands. These armbands usually include multiple
EMG sensors that are positioned radially around the cir-
cumference of a flexible band, allowing ease of wearing.
Arguably the most widely used sEMG armband is Myo
armband by Thalmic Labs. It is a low-cost consumer-
grade EMG device that integrates an ARM Cortex-M4-
based microcontroller unit and a set of eight dry EMG
electrodes.its application is not limited to prosthesis alone,
it has been used for: formation control using interpreters,
stroke rehabilitation [12], physiotherapy training, and sev-
eral other applications. The biggest challenge, however,
is to gather helpful data from raw electromyographic sig-
nals to detect human muscle intention and generate a con-
trol command for the transhumeral prosthesis [13]. For
this study, sEMG signals acquired from Myo armband are
processed in the subsequent steps: signal feature extrac-
tion, signal classification, and to generate control com-
mands for arm movement. The feature extraction tech-
nique is used to gather useful information for classifica-
tion of sEMG signals [14]. Then, the extracted features
and their different combinations are classified through ma-
chine learning classifiers. Ultimately, the trained classifier
is used for control commands generation of arm move-
ments [23].

Numerous preceding studies have successfully shown
the feasibility of using pattern recognition algorithms to
classify upper limb motions [1,15,16]. However, very few
of them have applied these pattern recognition algorithms
to control a prosthetic arm fixed on transhumeral amputees
[3,17], indicating a significant weakness as its is a fact that
the obtained sEMG signals from the remaining limb are
different from the signals gather from a healthy subject
limb [18]. This is because, in most of the upper extrem-
ity amputations, there are not enough muscles present that
could be easily used by the amputees. Pullian et al. evalu-
ated the feasibility of predicting dynamic arm movements
(both flexion/extension and pronation/supination) based
on iEMG signals using Optotrak Certus motion capture
system (Northern Digital Inc; Waterloo, Canada intramus-
cular electrodes for five transhumeral subjects [19]. An of-
fline training of Artificial Neural Network was performed
to anticipate arm trajectory of sEMG signals. In another
study, Pasquina et al. demonstrated that implantable my-
oelectric sensors can be used for wireless transmission of

EMG signals and they aid in capturing complex human
hand motions too [20]. Geethanjali added that only soft
computing or offline signal processing techniques are cur-
rently addressed and very fewer studies reflect hardware
systems and hence there exist a need for real-time imple-
mentation of these soft computing techniques [21]. Fifer
et al. objective was to obtain simultaneous neural control
of reach and grasp movement of a dexterous prosthetic
arm developed at Johns Hopkins University. [22]. The
achieved classification accuracy for reach and grasp move-
ments was about to 86%. Bandara et al. proposed to use
EEG signals for motion intention prediction of two major
upper limb functions: arm lifting and the hand reaching.
Four different features provided input to the neural net-
work and kNN based classifiers and claimed to achieve
maximum accuracy of 72.5% [23]. In another research,
Sittiwanchai et al. presented a 3D printed prototype of
a transhumeral prosthetic arm and its elbow joint con-
trol through sEMG. Signals were acquired from individual
biceps and triceps using sEMG sensors ID2PADW pro-
duced by Oisaka Electronic Equipment Ltd [24]. A rota-
tion speed command was generated for the servomotors
based on the extracted feature values to identify and sep-
arate muscle contraction and relaxation. It is evident from
literature, the performance of multiple transradial pros-
thetic arms have been tested using Myo armband but cer-
tainly, no non-invaisve solution using Myo armband has
been presented previously to control a transhumeral pros-
thetic arm [25].

For this research, we seek to estimate the achieved ac-
curacy of different sEMG features and classification al-
gorithms for transhumeral prosthesis. The authors focus
is on the effectiveness of the selected features and classi-
fiers for transhumeral amputees, as the populace of tran-
shumeral amputee institutes approximately one-third of
the total upper extremity amputation. This will develop
a recommendation for the utility of the selected features
and algorithm in the useful manoeuvring of a myoelec-
tric transhumeral prosthesis. sEMG signal acquisition and
processing were done for four different arm motions: El-
bow Extension (EE), Elbow Flexion (EF), Wrist Prona-
tion (WP) and Wrist Supination (WS) using Myo arm-
band. Fifteen healthy and four amputated subjects par-
ticipated in this study. Four different classifiers, namely
LDA, SVM, quadratic discriminant analysis (QDA) and
k-nearest neighbors (kNN), were analyzed for the acquisi-
tion of maximum classification accuracies. Furthermore,
three real-time performance parameters: selection time
(ST), completion time (CT) and real-time accuracy (RA)
were adopted to quantify and compare the performance
of classifiers. A 3D printed transhumeral prosthetic arm
prototype was tested for real-time analysis and it was able
to control 2 DOF to provide elbow flexion-extension and
wrist supination-pronation. For offline setting, among all
the features combination of signal mean and wavelength
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Table 1. Demographic characteristics of four amputees.

Patient ID A1 A2 A3 A4
Gender Male Male Male Male

Age 23 27 32 45
Amputated

side
Right Left Right Right

Residual
length

15 cm 17 cm 10cm 18cm

Cause of
amputation

Accident Accident Accident Diabetes

features performed the best and kNN showed greater sta-
tistical significance (p < 0.05) in comparison with other
machine learning classifiers. The experimental outcomes
are presented to exhibit the usefulness and outcome per-
formance of proposed research with obtained classifica-
tion accuracy, features and their different combinations for
different arm motions. The proposed scheme has provided
a user-friendly and non-invasive solution to enhance the
real-time accuracy of the prosthetic arm for transhumeral
amputees.

2. SIGNAL ACQUISITION AND PROCESSING

2.1. Subject information and experimental protocol
Fifteen healthy subjects (aged 20∼35, denoted as S1∼

S15) and four transhumeral amputees were recruited for
this study; the demographic characteristics of the four am-
putees (denoted as A1, A2, A3 and A4) are given in Ta-
ble 1. Air University Human Research Ethics Commit-
tee (AUHREC) approved the study. All subjects were in-
formed about the experimental procedure in detail, and
they provided their written consent before the start of ex-
periments. Prior to commence of experiments, all the sub-
jects were requested have an initial 10 s rest followed by
a 80s task period [26,27]. This task period consisted of
the four arm motions, EE, EF, WP and WS. Each repeated
seven times at a self-paced frequency of approximately 1
Hz. This experiment was performed on all fifteen healthy
subjects right arms and four amputees. A healthy subject
is shown in Fig. 1(a). during experiment. Detailed experi-
mental paradigm is illustrated in Fig. 1(b).

2.2. Signal acquisition
Myo armband by Thalmic Labs was used to acquire

sEMG signals. It is a wearable and resizable device which
allows the freedom to acquire sEMG signals from differ-
ent arm sizes (thin or thick). It includes eight sEMG sen-
sors and a 9-axis inertial measurement unit which have an
accelerometer, a magnetometer, and a gyroscope with all
having three axes. The Myo armband has a sampling fre-
quency of 200 Hz.

sEMG signal strength is affected by different muscle
positions, such as for sitting or standing, and human body

(a)

(b)

Fig. 1. (a) Myo armband placed on the bicep of a healthy
and amputee subject’s right arm to acquire EMG
signals, and calibration of four different motions
including EE, EF, WP and WS. (b) Experimental
paradigm.

temperature. Myo armband was placed on the biceps of
the subjects while they were standing. After sensor place-
ment, the Myo armband was connected to a laptop via
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Fig. 2. Flow diagram of sEMG signal acquisition and pro-
cessing.

a USB Bluetooth adapter. Myo diagnostics software was
used to display signals in graphical form for each elec-
trode. The signals on this graphical display can be visu-
ally inspected to see which electrodes are active during
a specific task. The signals were captured during the ex-
periments using the Myo Capture tool of the software.
Myo Capture stored the time-series of all the numerical
values of voltages obtained from the sensors, in an auto-
generated Microsoft excelr sheet. This excel sheet con-
tained nine columns, eight containing data for eight elec-
trodes and one containing time points. Fig. 2 represents
flow diagram of sEMG signal acquistion and processing.

2.3. Signal processing
The armband has an integrated operational amplifier for

sEMG signal amplification within the sEMG electrodes.
Myo armband extracts data as an analog voltage in milli-
volts (mV) and uses its built-in filters to remove noise(s)
and yields a noise-free 8-bit data [28]. The output voltages
vary between -30 mV to +80 mV. These voltages are dig-
itized in the range from -128 to 127 and later normalized
between -1 and +1 for data processing in MATLABr.
Fig. 3 shows the averaged raw signal obtained from eight
electrodes of the armband for each arm motion.

3. FEATURE EXTRACTION

The process of feature extraction plays a vital role in
defining the discriminatory information carried by signals.
Based on this information, the signals are differentiated
from each other [5,29]. In this study, ten different features
namely signal mean (SM), variance (σ ), skewness (SSK),
kurtosis (SK), slope (SS), waveform length (WL), mean
absolute value (MAV), root mean square (RMS), Willi-
son amplitude (WAMP), and Zero Crossing (ZC), were
calculated. These features were calculated from only se-
lected electrodes that showed significant activation using
250ms window. Table 2 shows the significantly activated
electrodes for each motion.

(a)

(b)

(c)

(d)

Fig. 3. Extracted raw sEMG signal of a healthy subject
through Myo armband: (a) EE (b) EF (c) WP and
(d) WS.

Table 2. Activated electrodes of Myo armband.

Electrodes EE EF WS WP
1 XXX XXX XXX

2 XXX XXX

3 XXX XXX XXX

4 XXX

5 XXX

6 XXX XXX

7 XXX XXX XXX

8 XXX XXX
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To ensure activation, the threshold value was set to 55
at an offset of 10 values. This value was selected because
it was observed that during the rest positions, the values
obtained were in the ranges of 40∼45. The details of each
extracted feature are given below:

SM was calculated as (1).

SM =
1
N

N

∑
i=1

Xi, (1)

where N denotes the length of the data points within a
segment and Xi represents the EMG signal values. SV is
the mean value of the square of the deviation of the EMG
signal values at variable. It can be calculated by (2).

SV =
1

N−1

N

∑
i=1

X2
i . (2)

SSK is defined as a measure of the asymmetry of obtained
signal around its mean. It can be a positive or negative
value and was computed as (3).

SSK = E

[(
X−µ

σ

)3
]
, (3)

where σ is the standard deviation of X and E is the ex-
pected value of X.
SK describes the shape of a distribution’s tail relative to
its complete shape. Mathematically, it is given in (4).

SK = E

[(
X−µ

σ

)4
]
. (4)

SS was calculated using the polyfit function in
MATLABr which fits a line to all data points within
a segment.

MAV was found by taking the average of the absolute
value of the EMG signal. It is usually used for detection
of muscle contraction and calculated as in (5).

MAV =
1
N

N

∑
i=1
|Xi|. (5)

WAMP is defined by the change in EMG signals am-
plitude among two adjacent segments which surpasses a
predefined threshold to reduce noise. It is given by (6).

WAMP =
N

∑
i=1

f(|Xi−Xi+1|), (6)

whereas

f (x)=

{
1, if x≥threshold,

0, otherwise.

WL is a cumulative variation that represents the varia-
tion of EMG signals. It is given by (7).

WL =
N

∑
i=1

(|Xi−Xi+1|). (7)

ZC is the number of times the amplitude value of the
EMG signal crosses the zero y-axis. As mentioned the
threshold value previously for signal activation was set to
55. ZC can be formulated as (8).

ZC =
N

∑
i=1

[sgn(Xi×Xi+1)∩|Xi−Xi+1|≥threshold].

(8)

RMS, also known as the quadratic mean, is closely re-
lated to the standard deviation as both are equal when the
mean of the signal is zero. it can be expressed as (9).

RMS =

√
1
N

N

∑
i=1

X2
i . (9)

Different combinations of above-mentioned features
were also used for classification. It will be shown in the
next section that how appropriate selection of features
greatly affects the classification performance.

4. CLASSIFICATION

To comprehensively evaluate the performance of fea-
tures and their combinations, four widely used classifiers
in EMG pattern recognition were employed namely, LDA,
SVM, QDA, and kNN.

4.1. LDA
It is on of the most commonly used classifier in machine

learning for both online and offline applications. In LDA,
all the data points are projected on a line in a way that
each class can be separated smoothly. it also decreases the
intra- class variance and tend to increase the inter-class
mean. This techniques helps to separate different class
from each other, and which brings their data points closer
to each other so they wont mix with other classes data
points [30–33]. LDA algorithm maximizes the Fisher’s
criterion given in (10).

J(v)=
vtSBv
vtSwv

. (10)

Between classes scatter matrix SB is defined as (11).

SB=
c

∑
xi

ni (µi−µ)(µi−µ)t, (11)

where ni represents several samples that belong to class i,
within class scatter matrix Sw is represented as in (12).

Sw=
c

∑
xi

Si=
c

∑
xi

∑
xk∈Classi

(xk−µi)(xk−µi)
t. (12)

Generalized eigenvector problem can be represented as in
(13).

SBv =λSwv. (13)
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The optimal v is the eigenvector corresponding to the
largest eigenvalue can be represented as in (14).

v = S−1
W (µi−µ), (14)

provided that Sw is nonsingular.
10-fold cross-validation was performed to estimate

LDA classifier performance. It means that the entire data
was mixed randomly into ten groups, out of which nine
were used for training and one was used for testing. This
process was repeated ten times until all groups were tested
against each other.

4.2. SVM
It is commonly used to control prosthetic and rehabili-

tation devices. It usually constructs a hyperplane or set of
hyperplanes in a high dimensional space, which is used
for classification, regression, or outliers detection [34].
The hyperplanes maximize the margins between different
classes which help to accomplish high classification ac-
curacy. Intuitively, a good separation is achieved by the
hyperplane that has the most significant distance to the
nearest training data point of any class, since in general
the more significant the margin, the lower the error of the
classifier.

The optimal solution r* was obtained by minimizing the
following cost function [35]:

Minimize

1
2
‖w‖2+C

n

∑
i=1

ξi,

subject to

yi
(
wTxi+b

)3≥1−ξi, ξi≥0, (15)

where wT , xi ε R2and b ε R1, ‖w‖2=wTw, C is the trade-
off parameter between margin and error, ξi is the measure
of training data, and yi is the class label for the ith sam-
ple. A third-degree polynomial kernel function was used
with C = 0.5. 10-fold cross-validation was then applied to
obtain classification accuracies. Due to dependency upon
support vectors, equality is introduced in the constraint.

4.3. kNN
It is a non-parametric technique used for classification

or regression in pattern recognition. It predicts test sam-
ple through k training samples, and after that classifies it
based on largest category probability. Assume that there
are j training categories, C1, C2, C3. . . . C j and N represent
an entire number of training samples. Class Z represents
the feature vector for all training samples. Di is another
neighbor existents in the training set, y(Di, C j) represents
whether Di belongs to class C j. Sim(Z, Di) denotes simi-
larity function for Di and Z. Thus, the probability density

function for feature data Z, class C j can be presented as in
(16).

P(Z,Cj)=∑DiεkNN Sim (Z, Di) . y(Di,Cj), (16)

where Sim (Z, Di) was calculated using the Euclidean dis-
tance methods. The value of K is independent of number
of classes. It means that K can be selected as any odd value
like 3, 5, 7 and so on independent of how many classes
need to be separated. The number of nearest neighbour
was set to 5. For closest training data of class, the parame-
ter k was considered 10 while 10-fold crossvalidation was
performed for estimation of accuracies.

4.4. QDA
Quadratic discriminant analysis is similarly a robust

classification method. It is a nonlinear technique for pat-
tern classification. QDA models the likelihood of each
class as a Gaussian distribution then use the posterior dis-
tributions to estimate the class for a given test point. The
Gaussian parameters for each class can be estimated from
training points using maximum likelihood estimation [36].

5. RESULTS

The experiment included two separate parts. The first
part was an offline evaluation of EMG signals using Myo
armband. In the second part, the subjects real-time perfor-
mance was acessed to control a prosthetic arm. To achieve
optimal accuracy, we compared four different classifiers
as described in the previous section. At first, the classi-
fication accuracies of four classifiers were obtained us-
ing four features namely SM, σ , SSK, SK and their dif-
ferent combinations. These resulted in a maximum accu-
racy of 74.8% for healthy subjects and 50.2% for amputee
subjects. These outcomes are not acceptable for control
command generation so another set of six features namely
RMS, WL, WAMP, SS, ZC, and MAV were used to check
the classifier performance along with the signal mean. The
obtained offline classification accuracy of each classifier
for all healthy subjects and amputees using these six fea-
tures are provided in Tables 3 and 4, respectively.

5.1. Real-time performance
The real-time classification was performed using kNN

classifier and SM and WL features since this combination
performed significantly better than others in an offline test.
Performance parameters of real-time were measured us-
ing ST, CT and RA. ST represents the time required to
produce the first correct prediction. It could also be seen
as a response indicator for prosthesis control [37]. CT is
the cumulative time to achieve ten correct predictions. RA
represents the prediction accuracy from the first correct
prediction until the end of the task. Fig. 4 shows the real-
time performance metrics of fifteen healthy subjects.
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Table 3. Offline classification accuracies of fifteen subjects using the second set of features namely RMS, WL, ZC,
WAMP, MAV, and SS for four classifiers with the SM.

WL MAV WAMP
Subjects LDA SVM QDA kNN LDA SVM QDA kNN LDA SVM QDA kNN

S1 87.06 91.12 80.93 92.5 83.7 85.93 84.97 87.93 91.22 80.92 84.06 88.86
S2 93.92 88.22 84.86 93.9 85.06 79.86 85.06 89.1 88.42 80.92 83.22 83.33
S3 87.76 85.29 83.9 91.5 86.9 88.9 86.9 88.7 79.86 82.9 81.39 80.92
S4 95.2 93.7 95.12 95.8 91.22 91.9 91.22 81.63 88.9 80.92 83.22 79.94
S5 85.89 84.06 81.9 94.2 88.86 86.9 88.86 83.8 79.11 78.9 88.9 82.81
S6 80.86 83.9 79.37 94.6 84.06 84.37 84.06 90.12 86.9 88.9 85.93 85.66
S7 92 84.82 77.9 89.3 80.92 82.9 80.92 91.45 84.37 85.63 84.37 84.6
S8 76.63 74.92 76.39 85.7 83.22 81.39 83.22 88.54 82.9 88.9 85.93 82
S9 82.82 85.89 80.63 86 88.9 85.63 88.9 80.01 84.06 83.2 87.23 86.66

S10 86.9 80.98 79.37 85 85.93 84.37 85.93 82.89 80.92 77.91 88.34 84.59
S11 88.1 86.6 79.6 88 91.7 84.6 91.7 91.9 83.22 82.08 83.45 87.77
S12 88 89.6 86.9 89.45 86.5 91.9 86.5 78.73 81.85 83.76 79.67 81.99
S13 88.2 85.2 87.2 88.98 86.9 92.2 86.9 84.08 85.93 77.83 84.44 82.81
S14 82 80 93 91.98 86 88 86 86.81 79.99 85 86.31 85.93
S15 92 80.63 74.92 93.7 90 79.92 91.9 81.86 82.67 86.55 81.67 88.99

ZC RMS SS
LDA SVM QDA kNN LDA SVM QDA kNN LDA SVM QDA kNN

S1 80.86 87.65 78.76 88 92 88.49 93 91.98 84.99 88.04 85.31 86.93
S2 83.9 92 72.83 88.2 90.14 88.8 90.36 94.67 86 86.21 87 89.02
S3 79.37 84.82 88.04 92 83.42 75.92 78.22 78.33 94.7 94.43 93.7 88.81
S4 94.6 77.9 86.21 92 74.86 77.9 76.39 75.92 92.7 93.43 90.7 88.92
S5 81.9 89.3 87 92.31 93.9 88.92 89.22 93.94 93.31 93.7 94.02 94.88
S6 83.9 79.37 89.02 89.76 74.11 73.9 83.9 77.81 85.89 84.06 81.9 94.2
S7 80.93 80.63 83.34 83.11 81.9 83.9 80.93 80.66 80.86 83.9 79.37 94.6
S8 80.66 79.37 78.45 81.98 79.37 80.63 79.37 79.6 92 84.82 77.9 89.3
S9 89.91 79.6 74.67 85.44 87.9 86.9 88.86 89.76 76.63 74.92 76.39 85.7

S10 84.37 85 79.44 80.65 89.91 84.37 84.06 83.11 82.82 85.89 80.63 86
S11 78.7 82.9 85.31 86.28 85 82.9 80.92 81.98 86.9 80.98 79.37 85
S12 80.06 80.92 76.67 83.93 85.67 81.39 83.22 85.44 88.1 86.6 79.6 88
S13 86.9 81.98 88.9 91.9 90.94 85.63 88.9 80.65 93.86 91.9 93.86 92.7
S14 86.5 81.9 86.5 90.94 88.93 84.37 85.93 86.28 89.06 89.37 89.06 89.6
S15 86.9 92.2 86.9 86.98 81.7 84.6 84.01 83.93 85.06 79.86 85.06 83.57

Table 4. Offline classification accuracies of amputee subjects using RMS, WL, ZC, WAMP, MAV, and SS features.

Features A1 A2
LDA SVM QDA kNN LDA SVM QDA kNN

RMS 60.5 57.14 44.68 66.18 48.2 50.5 41.97 50.61
WL 55.75 67.3 56.3 56.87 50.97 47.77 54.89 54.49
ZC 42.45 51.65 53.14 56.65 56.18 53.21 40.45 52.94

WAMP 57.1 50.18 39.26 47.85 39.18 51.65 51.65 51.88
MAV 47.2 48.67 48.91 57.98 56.18 53.21 50.18 49.28

SS 46.88 52.91 55.1 58.28 49.03 51.52 40.05 42.65
A3 A4

LDA SVM QDA kNN LDA SVM QDA kNN
RMS 67 59.18 70.71 72.6 68.2 51.65 67.15 74.62
WL 65.5 56.18 64.62 70.07 69.5 50.18 63.4 59.6
ZC 68 49.03 64.71 68.6 69 40.05 58.8 69.6

WAMP 69.5 44.95 64.76 61.1 67 47.05 72.97 74.8
MAV 65 53.67 69.56 68.89 70 47.72 66.77 72.5

SS 72.7 44.18 70.61 63.84 68 51.93 60.69 74
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(a)

(b)

(c)

Fig. 4. Online performance metrics across ten healthy sub-
jects for ten trails (a) ST (selection time), (b) CT
(completion time), (c) RA (real-time accuracy).

5.2. Statistical analysis
Student’s t-test was performed to establish the statis-

tical significance of the obtained results. The confidence
interval was set to 95% (p < 0.05). The quantitative com-
parison between healthy subjects and amputees was not
possible due to a limited number of amputees. The p-value
computed for the feature SM and WL was 0.0337 consid-
ering a 95% of a confidence interval. The results show that
the features combination SM and WL with kNN classifier
is statistically significant and performing better than the
other features and classifiers.

6. DISCUSSION

The ultimate goal of this research is to develop a non-
invasive and wearable transhumeral prosthetic arm. This
arm is anticipated to be able to control at least six motions
which are necessary to maintain minimum functionality of
arms such as EE, EF, WP, WS, Hand Open (HO) and Hand
Close (HC). Through this study, it has been confirmed that
it is possible to obtain high classification accuracy for four
different arm motion using a non-invasive and wearable
sEMG armband. The prosthetic arm had an active elbow
and wrist joint while the hand was a dummy version. The
design and development of an under actuated three DoF
prosthetic hand have been completed and is in integration
phase with the current prosthetic arm. sEMG data from
bicep and triceps of healthy and amputated subjects was
also acquired for HO and HC motion. Due to the lack of
available muscle in case of a transhumeral amputee, qual-
ity EMG muscles cannot be obtained for HO and HC mo-
tion. The obtained accuracy for the above-mentioned mo-
tion was around 50% which is not acceptable. In a pre-
vious study, the focus was to calculate the classification
accuracy of eight arm motions and no motion class using
sEMG data of transhumeral subjects. Five amputees took
part in the experiment. Participants used mirror move-
ments of their intact limb to aid in attempting movements
with their residual limb. Ten different time-domain fea-
tures were extracted from segmented raw sEMG signals.
Mean Absolute Value (MAV), zero crossings (ZC), slope
sign changes (SSC), Waveform length (WL), root mean
square (RMS), mean absolute value slope (MAVS), Willi-
son amplitude (WAMP), sample entropy (SampEn), 4th
order auto-regressive model (AR) and 4th order cepstral
analysis (CC). The highest classification accuracy for all
DoF was obtained (93.0%) which is greater than the cur-
rent literature as illustrated in Table 5, while the low-
est (60.9%). The main reason for such deviated result is
that one participant was subjected to amputation recently
while the others had been amputated for over a year. The
response of residual muscle gradually decreased and it be-
came numb as more time passed. Indeed, the classification
accuracy is 67.4%, 72.5%, 74.5%, and 76.3% respectively
for a set of one, two, three and four time-domain features.
The optimal feature set, which used MAV, CC, SampEn
and WAMP, produced a classification accuracy (76.3%)
that is almost equivalent to the accuracy using all ten time-

Table 5. Analysis of recent studies for upper limb prosthesis.

Year Invasive/
Non-invasive

Features Classifier Accuracy No. of Classes

2018 [3] Non-invasive 10 DNN 93% 8
2020 [38] Non-invasive NA RNN 79.7% 8
2018 [39] Non-invasive 4 LDA 86.4 8
2018 [23] Non invaisve 4 kNN,DNN 80.9 4
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domain features (76.6%). Improvements in term of accu-
racy have been achieved while using one feature hence
less computational time. The maximum accuracy and av-
erage accuracy of amputee subjects are higher than those
reported by Gaudet et al. [3].

This research aimed to utilize an optimal feature and
classifier in order to achieve the maximum classification
accuracy for sEMG data and to control a prosthetic arm
using non-invaisve sEMG signals acquired from biceps
and triceps of healthy and amputated subjects. Unlike
forearm; the arm, which is the part of the upper limb
between the shoulder joint and the elbow joint, has mi-
nor muscle activity, and motions of the elbow joint and
forearm twist cannot be predicted very easily from there.
Therefore, non-invasive signal processing is a big chal-
lenge for above elbow amputation, but more experimen-
tation and better feature and classifier selection may help
in resolving such problems. Myo armband was used to ac-
quire EMG signals. Experiments were performed both on
healthy and amputated subjects. In case of amputated sub-
jects, no partial elbow was present and actual wrist rota-
tion was not performed. Instead, they just tried to move
the residual limb that they thought could rotate wrist. Ten
different features and their combinations were used with
four classifiers LDA, QDA, SVM, and kNN. At first, clas-
sification accuracies of healthy and amputee subjects were
obtained using SS, SV, SSK, and SK features and their
combinations. The accuracies were mostly on the lower
side. Then again classification accuracies for healthy and
amputated subjects were obtained using RMS, WL, ZC,
WAMP, MAV, and SS features. The classification accu-
racies of amputee subjects are lower than the acceptable
range of 70%. This is because some added factors affect
the classification accuracy for amputees such as a lesser
available residual limb, condition of remnant arm mus-
cles, fitting of prosthesis socket and time since the am-
putation. Also, the limitation of the sensor, some infor-
mation is lost, as the operating frequency of the sensor
is smaller than that of bandwidth of the electromyogram.
The results can be implemented to a exoskeleton for real-
time settings [40]. For future work, it is intended to use
Brain-Computer Interface (BCI) to recognize hand open
and hand close motions. As the key objective of this re-
search is to provide a non-invaisve and wearable solution
for transhumeral amputees, fNIRS or EEG might be con-
sidered for acquiring hand data.

7. CONCLUSION

The proposed research can be utilized for rehabilita-
tion and training of transhumeral amputated subjects us-
ing EMG signals. It was found that feature WL performed
significantly better (p < 0.05) than the other features and
their combinations when fed to kNN classifier resulted in
offline classification accuracies of 95.8% and 68.1%, and

real-time classification accuracies of 91.9% and 60.11%
for healthy and amputated subjects, respectively. The ob-
tained results show that using appropriate features and
classifier improves classification accuracies for control
of prosthetic arm using EMG. Possible extension of this
work could be to increase the number of classes, explo-
ration of arm movement pattern for different age group
and an increase in the number of amputated subjects.
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