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Observer-based Finite-time Control of Stochastic Non-strict-feedback
Nonlinear Systems
Yan Zhang and Fang Wang* �

Abstract: This paper investigates the observer-based adaptive finite-time neural control issue of stochastic non-
strict-feedback nonlinear systems. By establishing a state observer and utilizing the approximation property of
the neural network, an adaptive neural network output-feedback controller is constructed. The controller solves the
issue that the states of stochastic nonlinear system cannot be measured, and assures that all signals in the closed-loop
system are bounded. Different from the existing adaptive control researches of stochastic nonlinear systems with
unmeasured states, the proposed control scheme can guarantee the finite-time stability of the stochastic nonlinear
systems. Furthermore, the effectiveness of the proposed control approach is verified by the simulation results.

Keywords: Adaptive neural control, finite-time control, non-strict-feedback form, state observer, stochastic nonlin-
ear systems.

1. INTRODUCTION

In the past few decades, the adaptive control of the
nonlinear systems has been paid considerable attention,
and some significant results have been published in ref-
erences [1–6]. The main idea of such control schemes is
to model the unknown nonlinear functions by utilizing the
function approximation ability of the fuzzy logic systems
or neural networks. It should be pointed out that all the
control results in [1–6] are applicable to the determinis-
tic systems, but the stability of practical systems is in-
fluenced by uncertainties and random disturbances. Be-
cause the random differential of stochastic nonlinear sys-
tems designed by Lyapunov includes higher order Hes-
sian terms, the control of stochastic nonlinear systems is
more difficult than that of deterministic nonlinear systems.
Therefore, the study on the control design for the stochas-
tic nonlinear systems has important theoretical and practi-
cal significance, and more and more scholars pay atten-
tion to it. In particular, for deterministic nonlinear sys-
tems [1–6], the control design approaches have been suc-
cessfully extended to stochastic nonlinear systems [7–10].
Among them, references [7,8] concerned the control de-
sign for stochastic nonlinear systems with strict-feedback
form, Namadchian et al. [9] addressed the issue of adap-
tive fuzzy control for a kind of stochastic pure-feedback
nonlinear systems, and Zhao et al. [10] developed the
adaptive neural control scheme for a category of stochas-
tic non-strict-feedback nonlinear systems. However, for a

class of stochastic nonlinear systems with unmeasurable
state variables, the above control strategies [1–10] may not
be available.

In practical systems, the state variables are usually un-
measurable or just partly measurable, and some control
plans may not be well implemented. The observer can es-
timate those unmeasurable state variables, it overcomes
the difficulties caused by lack of accurate state informa-
tion. In particular, observer-based neural/fuzzy control has
received a lot of attentions in [11–19]. For the nonlin-
ear systems [11,12] whose unknown functions only con-
tain the output term, the issue of adaptive neural/fuzzy
output feedback control was solved in [11,12]. Li et al.
[13] developed the controller design scheme for the non-
linear networked control systems, in which the premise
variables are unmeasurable. For a category of nonlinear
systems with unknown virtual control coefficients, ro-
bust observers were designed in [14,15], and two adap-
tive control programs based on backstepping were de-
veloped in [14,15]. Furthermore, in view of the fact that
state variables are unmeasurable and only the system out-
put is available, the adaptive control issue for non-strict-
feedback nonlinear systems was addressed in [16]. These
design methods of observer-based adaptive fuzzy/neural
control in [11–16] have been extended to stochastic non-
linear systems in [17–19]. Despite these developments
have been made, it must be acknowledged that these con-
trol strategies in [1–19] can only ensure the infinite-time
stability of nonlinear systems or stochastic nonlinear sys-
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tems. However, in the practical application, the finite-time
stability of the system is more significant than the infinite-
time stability.

Recently, the finite-time control has caused extensive
attention. Compared with the infinite-time control, the
main characteristic of the finite-time control is that the
state of the system reaches equilibrium in finite-time and
stay there then after. The finite-time control can achieve
transient performance rapidly, which is of great signifi-
cance in the practical application. There are many out-
standing investigations on the finite-time stabilization in
[20–29]. It must be clarified that literatures [20,21] need
to satisfy the linearly parametrization conditions of non-
linearities, references [22,23] assume that the nonlinear
terms are completely unknown, and articles [22–24] re-
quire the systems to be in a strict-feedback or pure-
feedback form. Due to there are obvious differences be-
tween the strict-feedback or pure-feedback systems and
non-strict-feedback ones, the control methods in [22–24]
cannot be employed to non-strict-feedback versions di-
rectly. Different from papers [22–24], references [25–27]
studied adaptive finite-time control problem of non-strict-
feedback nonlinear systems. In addition, the most finite-
time control researches [20–27] are based on the fact that
the state variables can be measured directly. In reference
[28], the finite-time control method for nonlinear systems
with unmeasurable state variables was proposed. It should
be mentioned that the controllers are designed in [20–28]
only for deterministic systems, while deterministic sys-
tems ignore the influence of random disturbances. The
stochastic disturbances are unavoidable and even bring
about the instability of the systems. Hence, the finite-time
stability of the stochastic nonlinear systems was investi-
gated in [29]. However, the results in [29] require the state
variables to be measurable. So far as is known to authors,
no studies have been reported as to the finite-time control
for stochastic non-strict-feedback nonlinear systems with
unmeasurable state variables due to its complexity, which
is an interesting yet challenging issue.

Motivated by the aforementioned findings, this paper
investigates the observer-based finite-time neural control
problem for stochastic nonlinear systems, where the con-
trolled system is in a non-strict-feedback form and the
state variables of system are unmeasurable. To this end,
Lemma 6 is applied to solve the difficulties arising from
the non-strict-feedback structure, neural networks are in-
troduced to approximate the unknown nonlinear func-
tions, the state observer is employed to estimate the un-
available state variables, and Lemma 5 is used to prove the
finite-time stability of stochastic nonlinear systems. And
then observer-based adaptive finite-time control scheme
is developed for stochastic nonlinear systems. Compared
with the existing literatures, the main features of this paper
are listed as follows:
• The existing adaptive fuzzy or neural network con-

trol strategies in [1–19] can only guarantee the stability of
the system in infinite time. In addition, references [20–28]
designed the finite-time controllers for deterministic sys-
tems. By applying Lemma 5, the proposed control strategy
can guarantee the finite-time stability of stochastic nonlin-
ear systems. Therefore, the finite-time investigation in this
article is more interesting than the results in [1–28].
• In the studies of finite-time control for determinis-

tic systems [20–27] and stochastic systems [29], the state
variables of system need to be known by the designer.
In this paper, the unmeasurable state variables make the
control strategies in [20–27,29] unavailable. Therefore,
this paper forms a novel adaptive output-feedback control
strategy by establishing a state observer.
• The proposed control scheme can assure that the state

variables are located in a small neighbourhood of the ori-
gin in finite-time and that all signals are bounded. As we
know, there are no other finite-time control schemes to
handle such stochastic nonlinear systems. In addition, the
simulation research is given to illustrate the effectiveness
of the proposed control scheme.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Preliminaries
This section provides several definitions of stochastic

nonlinear systems for the convenience of subsequent sta-
bility analyse.

Consider the stochastic nonlinear system as follows:

dx = f (x)dt +g(x)dw, (1)

where x ∈ Rn denotes the state variable, w denotes the r-
dimension Brownian motion defined on (Ξ,F,{Ft}t≥0,P)
with Ξ, F , {Ft}t≥0 and P represent sample space, σ−field,
filtration, and probability measure respectively. f : Rn →
Rn and g : Rn → Rn×r are continuous and assumed to be
Borel measurable about x with f (0) = g(0) = 0.

Definition 1: Define a differential operator of V (x, t) ∈
C2 as follows:

LV =
∂V
∂ t

+
∂V
∂x

f +
1
2

Tr{gT ∂ 2V
∂x2 g}, (2)

where Tr denotes a matrix trace.
Definition 2: If there exists a parameter ε > 0 and the

settling time T (ε,z0)< ∞, which make E(|z(t)|2)< ε for
∀t > t0 + T , then the stochastic nonlinear system (1) is
practical finite-time stable in mean square for ∀z(t0) = z0.

Lemma 1 [32]: For zι ∈ R, ι = 1, ...,o,σ ∈ (0,1), we
have:( o

∑
ι=1
|zι |
)σ

≤
o

∑
ι=1
|zι |σ ≤ o1−σ

( o

∑
ι=1
|zι |
)σ

. (3)
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Lemma 2 [28]: If ˙̂η(t) = −νη̂(t)+υψ(t), then from
η̂(t0)≥ 0 for ∀t ≥ t0, we have η̂(t)≥ 0 with ν > 0,υ > 0
and ψ(t)> 0 .

Lemma 3 [33]: For ∀ℵ ∈ R,ℜ ∈ R, s > 0,v > 0,µ > 0,
we have:

|ℵ|s|ℜ|v ≤ s
s+ v

µ|ℵ|s+v +
v

s+ v
µ
−s
v |ℜ|s+v. (4)

Lemma 4 [34]: For ∀(x,y) ∈ R2, the following inequal-
ity holds:

xy≤ qκ

κ
|x|κ + 1

ςqς
|y|ς (5)

where q > 0,κ > 1,ς > 1, and (κ−1)(ς −1) = 1.
Lemma 5 [29]: If there exists a function ρ(x(t)) ∈C2,

three parameters c,σ ,d ∈ (0,1), κ∞ functions τ1 ,τ2 for the
system ẋ(t) = f (x(t),u), such that

τ1(‖x(t)‖)≤ ρ(x(t))≤ τ2(‖x(t)‖),

ρ(x(t))−ρ(x(s))≤−c
∫ t

s
ρ

σ (x(ϑ))dϑ

+d(t− s),∀0≤ s≤ t.

(6)

Then, we can find two parameters ∆ > 0 and ε > 0,
which meet ‖x(t)‖< ε for ∀t ≥ ∆.

2.2. Problem formulation
Think about the stochastic non-strict-feedback nonlin-

ear system as follows:
dxi = (xi+1 + fi(x))dt +gi(y)dw, 1≤ i≤ n−1,

dxn = (u+ fn(x))dt +gn(y)dw,

y = x1,

(7)

where x = [x1, x2, . . ., xn]
T ∈ Rn represents the state vari-

able; u ∈ R and y ∈ R represent the system input and out-
put respectively; fi and gi(i = 1,2, . . . ,n) represent the un-
known nonlinear functions; w is defined by (1).

Remark 1: It can be known from the system (7) that
the functions fi(·) and gi(·) include the entire state vari-
ables. Therefore, the system (7) is in non-strict-feedback
form, which is different from the stochastic pure-feedback
nonlinear system [9] and the stochastic strict-feedback
nonlinear systems [7,17,18,29]. Many physical proce-
dures, such as ball-beam system [30] and hyperchaotic
inductor-capacitor oscillation circuit system [31], are in
non-strict-feedback form. And in many practical systems,
random interference is unavoidable. Hence, many con-
trolled actual systems can be represented as the system
(7).

Remark 2: It should be pointed that the existing con-
trol methods [1–10,20–27,29] are based on the assump-
tion that the state variables of the system are measurable.

Due to the state variables x2, ...,xn are unmeasurable in
(7), the control schemes in [1–10,20–27,29] are unavail-
able. In addition, the finite-time design scheme [28] is not
suitable for the control design of the stochastic nonlinear
system with unmeasurable states. Unlike the existing con-
trol investigations, the purpose of this article is to develop
an observer-based adaptive finite-time control scheme for
the stochastic non-strict-feedback nonlinear system (7).

Assumption 1 [19]: For the function gi(y), there exists
another function ḡi(y), such that

gi(y) = yḡi(y). (8)

Remark 3: The unknown nonlinear function ḡi(y) will
be concentrated in the appropriate unknown function by
Assumption 1, which will be compensated by neural net-
works in this article. This assumption facilitates the sub-
sequent Lyapunov stability analysis.

2.3. Neural networks

In the subsequent control design procedure, radial basis
function (RBF) neural networks (NNs) will be employed
to handle unknown nonlinear functions. As shown in [27],
if the number of nodes ` is large enough, then the RBF
NN ξ ∗T Φ(x) can approach continuous function f (x) on
the compact set Ξ⊂ Rp with ∀ε > 0 as follows:

f (x) = ξ
∗T

Φ(x)+δ (x),∀x ∈ Ξ⊂ Rp, (9)

where δ (x) represents the approximation error, and it
meets |δ (x)| ≤ ε . ξ ∗ = [ξ1,ξ2, ...,ξ`]

T ∈ R` represents
the ideal constant weight vector and defined as ξ ∗ :=
argminξ∈R`{supx∈Ξ | f (x) − ξ T Φ(x)|} with ξ ∈ R` is a
weight vector. Φ(x) = [φ1(x),φ2(x), ...,φ`]

T represents the
basis function vector, and φi(x) uses the structure of Gaus-
sian function and it can be formulated as follows:

φi(x) = exp[− (x− ri)
T (x− ri)

ı2i
], i = 1,2, ..., `, (10)

where ıi represents the width of the φi(x) and ri =
[ri1,ri2, ...,rip]

T denotes the center of the receptive field.
Lemma 6 [27]: Let x̄p = [x1, · · · ,xp]

T , and Φ(x̄p) =
[φ1(x̄p), · · · ,φ`(x̄p)]

T is the basis function vector of the
RBF NN. For ∀p ≥ k, the following relationship can be
obtained:

||Φ(x̄p)||2 ≤ ||Φ(x̄k)||2. (11)

Remark 4: Similar to the finite-time research [27],
lemma 6 provides an effective feature of RBF NN. By ap-
plying this lemma in the subsequent stability analysis, the
adaptive backstepping design approach can be easily ex-
tended to the non-strict-feedback system (7).
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3. OUTPUT-FEEDBACK CONTROLLER DESIGN
BASED ON FINITE-TIME

3.1. The design of state observer
In many practical applications, the state variables of the

system are not available for measurement. Therefore, it is
essential to design a control strategy for stochastic non-
linear systems with unmeasurable state variables. In this
article, the following state observer is designed to evalu-
ate the unmeasurable state variables:{

˙̂xi = x̂i+1− lix̂1, 1≤ i≤ n−1,
˙̂xn = u− lnx̂1,

(12)

where x̂i denotes the estimate of xi, li denotes the design
parameter vector.

Define e = x − x̂ is the observer error with e =
[e1,e2, . . . ,en]

T , x̂ = [x̂1, x̂2, . . . , x̂n]
T . Combining the

stochastic non-strict-feedback nonlinear system (7) and
the state observer (12), the following relationship can be
obtained:

de = (Ae+F(x))dt +g(y)dw, (13)

where F(x) = [ f1(x)+ l1x1, f2(x)+ l2x1, . . . , fn(x)+ lnx1]
T ,

g(y) = [g1(y),g2(y), . . . ,gn(y)]T , and A denotes the strict
Hurwitz matrix as follows:

A =

 −l1
... In−1

−ln . . . 0

 .
For a given parameter ω > 0, there exists a matrix Γ >

0, the following relationship can be obtained:

AT
Γ+ΓA =−ωI. (14)

From (7), (12), (13) and (14), the interconnected sys-
tems are obtained as follows:

de = (Ae+F(x))dt +g(y)dw,

dy = dx1 = (x2 + f1(x))dt +g1(y)dw

= (e+ x̂2 + f1(x))dt +g1(y)dw,
˙̂xi = x̂i+1− lix̂1,

˙̂xn = u− lnx̂1.

(15)

Remark 5: We designed a state observer (12) to es-
timate the unmeasurable state variables of the system.
The results of observer-based adaptive control [11–19]
can only ensure the infinite-time stability of systems. The
observer-based finite-time control method [28] is only
suitable for deterministic systems. So far, there has not
been any results to be reported on observer-based finite-
time adaptive neural control for stochastic nonlinear sys-
tems with non-strict-feedback structure.

3.2. Finite-time controller design
Define η̂ is the estimate of η , and η = max{l‖ξ ∗0 ‖2,
‖ξ ∗i ‖2, i = 1, . . ., n}, l denotes the number of the neu-
ral network nodes and ξ ∗i denotes the ideal weight vec-
tor, η̃ = η− η̂ . Then, we define the following coordinate
transformation:

z1 = y, zi = x̂i−αi−1, i = 2, ...,n, (16)

where αi denotes the virtual controller that

αi =−kiz4σ−3
i − 1

2a2
i

z3
i η̂Φ

T
i (Xi)Φi(Xi). (17)

In the representation above, Φi(Xi) denotes the basis
function vector with Xi = (x̂1, . . . , x̂i, η̂ ,y)T , ki > 0,ai > 0
and σ = 2[−1

2[+1 ([ > 2, [ ∈ N) are design parameters, and the
adaptive law is obtained as follows:

˙̂η =
n

∑
i=1

q
2a2

i
z6

i Φ
T
i (Xi)Φi(Xi)− γη̂ , η̂(t0)≥ 0. (18)

where q > 0,γ > 0 denote the design parameters.
The controller can be expressed as follows:

u =−knz4σ−3
n − 1

2a2
n

z3
nη̂Φ

T
n (Xn)Φn(Xn), (19)

where Xn = (x̂1, . . . , x̂n, η̂ ,y)T , kn > 0 denotes the design
parameter.

Theorem 1: Consider the stochastic non-strict-feed-
back nonlinear system (7). Suppose that Assumption 1 is
valid, the virtual controller (17), the parameter adaptive
law (18), and the controller (19) are selected. Then, we
can conclude that the closed-loop system is actually finite-
time stable in mean square.

Proof: For the stochastic non-strict-feedback nonlinear
system (7), by employing Itô formula, we have:

dz1 = (x2 + f1(x))dt +g1(y)dw, (20)

dzi = (x̂i+1− lix̂1−Lαi−1)dt− ∂αi−1

∂x1
g1(y)dw, (21)

dzn = (u− lnx̂1−Lαn−1)dt− ∂αn−1

∂x1
g1(y)dw, (22)

where

Lαi−1 =
∂αi−1

∂x1
(x2 + f1(x))+

i−1

∑
j=1

∂αi−1

∂ η̂ j

˙̂η j

+
1
2

∂ 2αi−1

∂x2
1

gT
1 (y)g1(y)

+
i−1

∑
j=1

∂αi−1

∂ x̂ j

(
x̂ j+1− l j x̂1

)
. (23)

Consider the following stochastic Lyapunov function:

V = eT
Γe+

n

∑
i=1

1
4

z4
i +

1
2q

η̃
2, (24)
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where η̃ = (η̃1, . . . , η̃n)
T .

By employing (7), (15) and (16), the time derivative of
V can be obtained as follows:

LV =2eT
Γ(Ae+F(x))+Tr[gT (y)Γg(y)]

+ z3
1(x2 + f1(x))+

3
2

z2
1gT

1 (y)g1(y)

+
n−1

∑
i=2

z3
i

[
x̂i+1− lix̂1−

∂αi−1

∂x1
(x2 + f1(x))

−
i−1

∑
j=1

∂αi−1

∂ η̂ j

˙̂η j−
1
2

∂ 2αi−1

∂x2
1

gT
1 (y)g1(y)

−
i−1

∑
j=1

∂αi−1

∂ x̂ j
(x̂ j+1− l j x̂1)

]
+

3
2

n−1

∑
i=2

z2
i ‖

∂αi−1

∂x1
g1(y)‖2

+ z3
n

[
u− lnx̂1−

∂αn−1

∂x1
(x2 + f1(x))

−
n−1

∑
j=1

∂αn−1

∂ η̂ j

˙̂η j−
1
2

∂ 2αn−1

∂x2
1

gT
1 (y)g1(y)

−
n−1

∑
j=1

∂αn−1

∂ x̂ j
(x̂ j+1− l j x̂1)

]
+

3
2

z2
n‖

∂αn−1

∂x1
g1(y)‖2

− η̃ ˙̂η
q

=eT (AT
Γ+ΓA)e+2eT

ΓF(x)+Tr[gT (y)Γg(y)]

+ z3
1

(
e2 + z2 +α1 + f1(x)

)
+

3
2

z2
1gT

1 (y)g1(y)

+
n−1

∑
i=2

z3
i

[
zi+1 +αi− lix̂1

− ∂αi−1

∂x1
(x̂2 + e2 + f1(x))−

i−1

∑
j=1

∂αi−1

∂ η̂ j

˙̂η j

−1
2

∂ 2αi−1

∂x2
1

gT
1 (y)g1(y)−

i−1

∑
j=1

∂αi−1

∂ x̂ j
(x̂ j+1−l j x̂1)

]
+

3
2

n−1

∑
i=2

z2
i ‖

∂αi−1

∂x1
g1(y)‖2 + z3

n

[
u− lnx̂1

− ∂αn−1

∂x1
(x̂2 + e2 + f1(x))−

n−1

∑
j=1

∂αn−1

∂ η̂ j

˙̂η j

−1
2

∂ 2αn−1

∂x2
1

gT
1 (y)g1(y)−

n−1

∑
j=1

∂αn−1

∂ x̂ j
(x̂ j+1−l j x̂1)

]
+

3
2

z2
n‖

∂αn−1

∂x1
g1(y)‖2− η̃ ˙̂η

q
. (25)

Define F(x) = (F1(x), F2(x), . . . , Fn(x))T . Since the
function Fi(x) = fi(x)+ lix1 (i = 1, 2, . . ., n) is unknown,
for ∀εi0 > 0, there exists a RBF NN ξ ∗Ti0 Φi0(X0) such that

Fi(x) = ξ
∗T
i0 Φi0(X0)+δi0(X0), |δi0(X0)| ≤ εi0, (26)

where ξ ∗Ti0 ∈ Rl , Φi0 = exp[− (X0−ι0m)
T (X0−ι0m)
ı2 ], m= 1, 2, ...,

l, X0 = x ∈ΩX0 , ΩX0 is a pre-defined compact set, and the
state trajectory can be propagated through this compact
set, ι0m = [ι0m1, · · · , ι0mn]

T represents the center of the re-
ceptive field, and ı > 0 denotes the width of the Gaussian
function, δi0(X0) represents the approximation error.

In view of (26), we have:

F(x) = ξ
∗T
0 Φ0(X0)+δ0(X0), ‖δ0(X0)‖ ≤ ε0, (27)

where

ξ
∗
0 = (ξ ∗10, . . . ,ξ

∗
n0),

δ0(X0) = (δ10(X0), . . . ,δn0(X0))
T ,

ε0 =
√

ε2
10 + . . .+ ε2

n0. (28)

With the definition of Φi0 and η , we can get ΦT
0 Φ0 =

∑
l
i=1 Φ2

i0 ≤ l and ‖ξ ∗0 ‖2 ≤ η/l respectively.
Therefore, 2eT ΓF is expressed as:

2eT
ΓF(x) = 2eT

Γ[ξ ∗T0 Φ0(X0)+δ0(X0)]

≤ 2‖e‖2 +‖Γ‖2
η +‖Γ‖2

ε
2
0 . (29)

In view of Lemma 4, the following inequalities hold:

z3
1e2 ≤

3 3
√

4
4

z4
1 +

1
4
‖e‖4 ≤ 3

2
z4

1 +
1
4
‖e‖4, (30)

z3
i zi+1 ≤

3
4

z4
i +

1
4

z4
i+1, (31)

Tr[gT (y)Γg(y)]≤ 1
2
‖Γ‖2 +

1
2

y4
n

∑
i=1
‖ḡi(y)‖4, (32)

− z3
i

∂αi−1

∂x1
e2 ≤ ‖e‖2 +

1
4
(

∂αi−1

∂x1
)2z6

i , (33)

3
2

z2
i ‖

∂αi−1

∂x1
g1(y)‖2 ≤ 3

4
b−2

i z4
i ‖

∂αi−1

∂x1
g1(y)‖4 +

3
4

b2
i ,

(34)
3
2

z2
1gT

1 (y)g1(y) =
3
2

z4
1‖ḡ1(y)‖2. (35)

Substituting (14) and (29)-(35) into (25). It follows that

LV ≤− eT
ωe+2‖e‖2 +‖Γ‖2

η +‖Γ‖2
ε

2
0 +

1
2
‖Γ‖2

+
1
2

y4
n

∑
i=1
‖ḡi(y)‖4 +

3
4

z4
1 +

1
4
‖e‖2 +

3
4

z4
1

+
1
4

z4
2 + z3

1

(
α1 + f1(x)

)
+

3
2

z4
1‖ḡ1(y)‖2

+
n−1

∑
i=2

(
3
4

z4
i +

1
4

z4
i+1)+

n−1

∑
i=2

z3
i

[
αi− lix̂1

− ∂αi−1

∂x1
(x̂2 + f1(x))−

∂αi−1

∂ η̂

˙̂η

−1
2

∂ 2αi−1

∂x2
1

gT
1(y)g1(y)−

i−1

∑
j=1

∂αi−1

∂ x̂ j
(x̂ j+1−l j x̂1)

]
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+
n

∑
i=2

[
‖e‖2 +

1
4
(

∂αi−1

∂x1
)2z6

i

]
− η̃ ˙̂η

q

+
n

∑
i=2

[3
4

b−2
i z4

i ‖
∂αi−1

∂x1
g1(y)‖4 +

3
4

b2
i

]
+ z3

n

[
u− lnx̂1−

∂αn−1

∂x1
(x̂2 + f1(x))

− ∂αn−1

∂ η̂

˙̂η− 1
2

∂ 2αn−1

∂x2
1

gT
1 (y)g1(y)

−
n−1

∑
j=1

∂αn−1

∂ x̂ j
(x̂ j+1− l j x̂1)

]
=−ω‖e‖2 +σ0 +

5
4
‖e‖2 + z3

1

(
α1 + f̄1(x)

)
+

n−1

∑
i=2

z3
i

[
f̄i +αi +ψi(Xi)−

∂αi−1

∂ η̂

˙̂η
]

+
n

∑
i=1
‖e‖2−

n

∑
i=1

3
4

z4
i +

n

∑
i=2

3
4

b2
i

+ z3
n

[
f̄n +u− ∂αn−1

∂ η̂

˙̂η +ψn(Xn)
]
− η̃ ˙̂η

q

=− (ω− (n+
5
4
))‖e‖2 +σ0

+ z3
1

(
α1 + f̄1(x)−

3
4

z1

)
+

n−1

∑
i=2

z3
i

[
f̄i +αi +ψi(Xi)−

∂αi−1

∂ η̂

˙̂η− 3
4

zi

]
+ z3

n

[
f̄n +u− ∂αn−1

∂ η̂

˙̂η +ψn(Xn)−
3
4

zn

]
+

n

∑
i=2

3
4

b2
i −

η̃ ˙̂η
q

, (36)

where

σ0 = ‖Γ‖2
η +‖Γ‖2

ε
2
0 +

1
2
‖Γ‖2, (37)

f̄1 = f1(x)+
1
2

z1

n

∑
i=1
‖ḡi(y)‖4 +

3
2

z1‖ḡ1(y)‖2 +
9
4

z1,

(38)

f̄i =−lix̂1−
i−1

∑
j=1

∂αi−1

∂ x̂ j
(x̂ j+1− l j x̂1)+

7
4

zi−ψi(Xi)

− ∂αi−1

∂x1
(x̂2 + f1(x))−

1
2

∂ 2αi−1

∂x2
1

gT
1 (y)g1(y)

+
1
4

(
∂αi−1

∂x1

)2
z3

i +
3
4

b−2
i zi‖

∂αi−1

∂x1
g1(y)‖4,

(2≤ i≤ n−1), (39)

f̄n =−lnx̂1−
n−1

∑
j=1

∂αn−1

∂ x̂ j
(x̂ j+1− l j x̂1)+ zn−ψn(Xn)

− ∂αn−1

∂x1
(x̂2 + f1(x))−

1
2

∂ 2αn−1

∂x2
1

gT
1 (y)g1(y)

+
1
4

(
∂αn−1

∂x1

)2
z3

n+
3
4

b−2
n zn‖

∂αn−1

∂x1
g1(y)‖4, (40)

ψi(Xi) =−c0η̂
∂αi−1

∂ η̂
−

i

∑
m=2

zi
r

2a2
m
|zm

∂αm−1

∂ η̂m
|

+
i−1

∑
m=1

∂αi−1

∂ η̂

q
2a2

m
z2

mξ
T
m ξm, 2≤ i≤ n. (41)

Note f̄1 contains the unknown function f1(x), the RBF
NN ξ ∗T1 Φ1(ζ1) is used to approximate f̄1 with ζ1 =
(x1,x2, . . . ,xn,y)T . So, we have

f̄1 = ξ
∗T
1 Φ1(ζ1)+δ1(ζ1), (42)

where δ1(ζ1) represents the approximation error.

Remark 6: It is noteworthy that f̄1 includes all the state
variables x1,x2, . . . ,xn. Due to x2, . . . ,xn are immeasurable,
ξ ∗T1 Φ1(ζ1) cannot be directly employed to the control pro-
cess. Therefore, Lemma 6 and (12) will be applied to han-
dle this difficulty in the subsequent produce.

The approximated error δ1(ζ1) satisfies | δ1(ζ1) |≤ ε1.
Then, for ∀ε1 > 0 and ∀a1 > 0, according to lemma 4 and
Lemma 6, we obtain

z3
1 f̄1 = z3

1(ξ
∗T
1 Φ1(ζ1)+δ1(ζ1))

≤ |z3
1|(||ξ ∗1 ||||Φ1(X1)||+ ε1)

≤ 1
2a2

1
z6

1ηΦ
T
1 (X1)Φ1(X1)+

1
2

a1 +
3
4

z4
1 +

1
4

ε
4
1 ,

(43)

where X1 = y, η = max{‖ξ ∗i ‖2, i = 1, 2, . . . , n}.
Similarly, by applying the RBF NN ξ ∗Ti Φi(ζi) to ap-

proximate the unknown nonlinear function f̄i and adopt-
ing Young’s inequality, we have

z3
i f̄i =z3

i (ξ
∗T
i Φi(ζi)+δi(ζi))

≤|zi|3(‖ξ ∗i ‖‖Φi(Xi)‖+ εi)

≤ 1
2a2

i
z6

i ηΦ
T
i (Xi)Φi(Xi)+

1
2

a2
i +

3
4

z4
i +

1
4

ε
4
i ,

|δi(ζi)| ≤ εi, (44)

where 2 ≤ i ≤ n, η = max{‖ξ ∗i ‖2, i = 1, 2, . . . , n}, Xi =
(x̂1, . . . , x̂i, η̂ ,y)T ∈ ΩXi ⊂ Ri+2, and ai > 0 is a design pa-
rameter.

Substituting (17)-(19) and (43)-(44) into (36). It follows
that

LV ≤− (ω− (n+
5
4
))‖e‖2−

n

∑
i=1

kiz4σ

i +σ0

− 1
q

η̃

(
˙̂η−

n

∑
i=1

q
2a2

i
z6

i Φ
T
i Φi

)
+

n

∑
i=1

(
1
2

a2
i +

1
4

ε
4
i )

+
n

∑
i=2

z3
i

(
ψi(Xi)−

∂αi−1

∂ η̂

˙̂η
)
+

n

∑
i=2

3
4

b2
i

≤− (ω− (n+
5
4
))‖e‖2−

n

∑
i=1

kiz4σ

i +σ1 +
γ

q
η̃η̂
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+
n

∑
i=2

z3
i

(
ψi(Xi)−

∂αi−1

∂ η̂

˙̂η
)
, (45)

where σ1 = σ0 +∑
n
i=1(

1
2 a2

i +
1
4 ε4

i )+∑
n
i=2

3
4 b2

i .
In view of the reference [3], we have

n

∑
i=2

z3
i

(
ψi(Xi)−

∂αi−1

∂ η̂

˙̂η
)
≤ 0. (46)

In addition, by using Lemma 4, we have

η̃η̂ = η̃(η− η̃)≤−1
2

η̃
2 +

1
2

η
2. (47)

Then, (45) can be analyzed as

LV ≤− (ω− (n+
5
4
))‖e‖2−

n

∑
i=1

kiz4σ

i −
γ

2q
η̃

2 +σ1

+
γ

2q
η

2

≤−τeT
Γe−

n

∑
i=1

kiz4σ

i −
γ

2q
η̃

2+σ1+
γ

2q
η

2. (48)

where τ =
ω−(n+ 5

4 )

λmax(Γ)
.

Adopting Lemma 3, let ℵ = eT Γe, ℜ = 1, s = σ , v =
1−σ , and µ = 1

σ
, we obtained that

(eT
Γe)σ ≤ (1−σ)σ

σ

1−σ + eT
Γe. (49)

And then, let ℵ = 1
2q η̃2, ℜ = 1, and s = σ , v = 1−σ ,

µ = 1
σ

, we also obtained( 1
2q

η̃
2
)σ

≤ (1−σ)σ
σ

1−σ +
1

2q
η̃

2. (50)

With the results of (49)-(50), the inequality (48) is com-
puted as

LV ≤− τ(eT
Γe)σ −

n

∑
i=1

kiz4σ

i − γ

( 1
2q

η̃
2
)σ

+σ1

+
γ

2q
η

2 + τ(1−σ)σ
σ

1−σ + γ(1−σ)σ
σ

1−σ

≤− c(eT
Γe)σ − c

n

∑
i=1

(
1
4

z4
i )

σ − c
( 1

2q
η̃

2
)σ

+d,

(51)

where c = min{τ,4σ ki,γ, i = 1,2, . . . ,n} and d = σ1 +
τ(1 − σ)σ

σ

1−σ + γ(1 − σ)σ
σ

1−σ + γ

2q η2. By employing
Lemma 1, (51) can be analyzed as

LV (Zn(t))≤− c(eT
Γe)σ − c

( n

∑
i=1

1
4

z4
i

)σ

− c
( 1

2q
η̃

2
)σ

+d

≤− cV σ (Zn(t))+d. (52)

Remark 7: Unlike the investigations in [1–28],
Lemma 5 will be adopted to analyze the finite-time stabil-
ity of stochastic nonlinear system (7), and the presented
control scheme is based on the finite-time stability crite-
rion “LV ≤−cV σ +d”.

With Itô formula, for 0≤ s < t, we obtained that

EV (Zn(t)) = EV (Zn(s))+E
∫ t

s
LV (Zn(s))ds

= EV (Zn(s))+
∫ t

s
E[LV (Zn(s))]ds. (53)

With (52) and Jessen’s inquality, one has

E[LV (Zn(s))]≤−cE[V σ (Zn(s)]+d

≤−c[EV (Zn(s))]σ +d. (54)

According to the inequality (54), the equality (53) is
computed as

EV (Zn(t))≤EV (Zn(s))

+
∫ t

s
{−c[EV (Zn(s))]σ +d}ds. (55)

Then, we have

EV (Zn(t))−EV (Zn(s))≤− c
∫ t

s
[EV (Zn(s))]σ ds

+d(t− s). (56)

Let ρ(t) = EV (Zn(t)), from [29], for ∀t ≥ ∆, there is a
settling time

∆ =
1

(1−σ)βc

[
(EV (Zn(0)))1−σ−

( d
(1−β )c

) (1−σ)
σ

]
,

(57)

which makes EV (Zn(t))≤ ε with ε = 4( d
(1−β )c )

1/4σ .
From the definition of V (Zn(t)), one has

E
( n

∑
j=1

z4
j

)
≤ 4E[V (Zn(t))]≤ 4ε, t ≥ ∆. (58)

From the nature of mathematical expectation, we have[
E(z2

j)
]2
≤ E

(
z4

j

)
≤ E

( n

∑
j=1

z4
j

)
≤ 4ε, t ≥ ∆. (59)

Therefore

E(z2
j)≤ 2

√
ε, t ≥ ∆. (60)

Similarly, the following inequality is also obtained:

E(η2
j )≤ 2qmaxε, t ≥ ∆, (61)

where qmax = max{q j, 1≤ j ≤ n}.
From (60) and (61), we proved that the closed system is

practical finite-time stable in mean square. �
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Fig. 1. Block diagram of control system.

The design process of the controller can be seen from the
block diagram shown in Fig. 1.

Remark 8: Note that ∆ depends on the initial value of
z(0). Under this condition, the system is said to be finite-
time stable. If ∆ can be independent of z(0), the system is
called fixed-time stable. The fixed-time stability of system
may be a research direction in the future

4. SIMULATION EXAMPLE

In this part, we will show the significance of the pre-
sented control strategy by a numerical example. Con-
sider the following stochastic nonlinear system in the non-
strict-feedback form

dx1 = (x2 + x1x2 sin(x3)+
x2

1

1+ x2
1
)dt

+0.5x1 cos(x1)dw,

dx2 = (x3−10sin(x1)− x2 + x2x2
3)dt

+0.1sin(x2
1)dw,

dx3 = (u− x2
2 sin(x1)−8x3)dt +0.1x1 sin(2x1)dw,

y = x1,

(62)

where x1, x2 and x3 represent the state variables (x2 and
x3 are unmeasurable), u and y denote the system input
and output respectively, and w is defined by (1). Due to
the state variables of the stochastic nonlinear system (62)
are unmeasurable, the existing finite-time control schemes
for stochastic nonlinear system cannot be employed to the
system (62).

To ensure the stability of the system (62) in finite-time,
the state observer (12), the virtual control signal (17),

the adaptive laws (18), and the actually controller (19)
are applied to (62). The design parameters are chosen as
a1 = 0.65, a2 = 0.7, a3 = 0.6, l1 = 31, l2 = 275, l3 = 794,
k1 = 2, k2 = 2, k3 = 2.6 q = 6, γ = 2.5, σ = 199

201 . Fur-
thermore, the RBF NN ξ ∗T1 Φ1(ζ1) contains 73 nodes, the
centers spaced evenly in the interval [−1.5, 1.5]× [−1.5,
1.5]× [−1.5, 1.5] with widths being equal to 2. The RBF
NN ξ ∗T2 Φ2(ζ2) includes 76 nodes with centers spaced
evenly in the interval [−1.5, 1.5]× [−1.5, 1.5]× [−1.5,
1.5]× [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5] with widths
being equal to 2. The RBF NN ξ ∗T3 Φ3(X3) contains 77

nodes with centers spaced evenly in the interval [−1.5,
1.5] × [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5] × [−1.5,
1.5]× [−1.5, 1.5]× [−1.5, 1.5] with widths being equal to
2. The initial conditions are given as [x1(0), x2(0), x3(0),
x̂1(0), x̂2(0), x̂3(0), η̂(0)]T = [−0.3,−0.2, 0.1, 0.1, 0.1, 0,
0.1, 0, 0]T .
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Time(sec)
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Fig. 2. Responses of x1 and x̂1.
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Fig. 3. Responses of x2 and x̂2.
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Fig. 4. Responses of x3 and x̂3.
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Fig. 5. Responses of η̂1, η̂2 and η̂3.
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Fig. 6. Response of u.

The simulation results are demonstrated by Figs.2 to 6.
The responses of x1 and x̂1, x2 and x̂2, x3 and x̂3 are shown
in Figs. 2-4, respectively. It can be seen that the designed
observer can estimate the state variables of the system ef-
fectively. The adaptive parameter curves and the control
input curve under the action of the finite-time adaptive
controller are plotted in Figs. 5 and 6, respectively. From
Figs. 2-6, we can obtain that although the state variables
of the system (62) are unmeasurable, the boundedness of
all the signals can be assured in finite-time under the pre-
sented control strategy.

5. CONCLUSION

In this paper, the observer-based finite-time neural con-
trol scheme has been developed for a category of stochas-
tic nonlinear systems with non-strict-feedback structure.
In the process of control design, by introducing RBF NNs,
the unknown nonlinear functions have been approximated,
and the backstepping design method has been extended
from stochastic strict-feedback nonlinear systems to non-
strict-feedback ones. With the designed observer, the un-
measurable state variables have been approximated use-
fully, which lays the foundation for the design of the con-
trol program under unmeasurable state variables. In addi-
tion, the presented control strategy ensures that all the sig-
nals in the closed-loop systems are bounded. By adopting
Lemma 5, the finite-time stability of the stochastic non-
linear system has been proved. Finally, simulation results
have been rendered to demonstrate the validity and effec-
tiveness of the presented control scheme in this article.

Time-delays and quantization often occur in many
stochastic nonlinear systems, which may cause instabil-
ity and degrade system performance. Therefore, how to
achieve fixed-time stability and take into account the time-
delay and quantization phenomena on the basis of this pa-
per. This may be considered a possible research topic in
the future.
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