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Design of Repetitive Control Systems Using a Delayed Control Input and
a State Error
Tae-Yong Doh* � and Jung Rae Ryoo

Abstract: This paper presents a modified repetitive control scheme comprising of a state error and a control input via
delayed feedback to track periodic reference trajectories and/or attenuate disturbances. The closed-loop state error
dynamics can be represented using a typical neutral delay system with an exogenous input to be attenuated. The
sufficient conditions to achieve overall stability and H∞ performance to minimize state error are derived by applying
a Lyapunov-Krasovskii functional and a Hamiltonian, which are expressed as an algebraic Riccati inequality (ARI)
and a linear matrix inequality (LMI). Based on the derived conditions, it is shown that the repetitive controller
design problem can be reformulated as an optimization problem with an LMI constraint to determine the state error
feedback gain. Finally, a numerical example is presented to demonstrate the feasibility of the proposed method.

Keywords: Algebraic Riccati inequality (ARI), delayed control input, H∞ performance, L2 norm, linear matrix
inequality (LMI), neutral delay system, repetitive control, state error feedback.

1. INTRODUCTION

Repetitive control is a specialized control scheme used
to track periodic reference commands and/or attenuate pe-
riodic exogenous disturbances. Frequency domain anal-
ysis shows that its highly accurate tracking performance
can be achieved using a periodic signal generator imple-
mented in the repetitive controller. However, the positive
feedback loop to generate the periodic signal decreases the
stability margin of the system. Therefore, the tradeoff be-
tween stability and tracking performance can be consid-
ered as an important factor to design the control system.
Hara et al. [1] derived the sufficient conditions for stability
of original repetitive as well as modified repetitive control
systems that sacrifice tracking performance at high fre-
quencies in favor of system stability. Doh and Ryoo dealt
with the problem of a robust repetitive controller design
for an uncertain feedback control system using its explicit
performance information [2].

To apply repetitive control to various types of systems,
several theories have been developed for repetitive con-
trol in the state space. Doh et al. proposed a method for
designing repetitive control systems that could ensure ro-
bust stability for linear systems with time-varying uncer-
tainties [3] and applied this repetitive controller to the
track-following servo system of an optical disk drive [4].
Lucibello showed that the repetitive control of positive

real systems via delayed feedback was Lyapunov asymp-
totically stable [5]. Q. Quan et al. developed a repeti-
tive controller that was composed of a delayed control
input and an output error multiplied by a time-varying
gain and derived a sufficient condition for stability via
a Lyapunov-Krasovskii functional and linear matrix in-
equalities (LMIs) [6]. Zhou et al. dealt with the problem
of designing a robust observer-based modified repetitive-
control system with a prescribed H∞ disturbance rejection
level for a class of strictly proper linear plants [7].

Many repetitive control schemes using delayed control
input and output error have been suggested in previous re-
search. However, their stability can be ensured only for
positive real systems when fixed feedback gains are used.
In this paper, a modified repetitive control scheme is pro-
posed, wherein the controller is composed of a delayed
control input and state error multiplied by the state error
feedback gain. The closed-loop repetitive control system
can be represented as a neutral delay system with an ex-
ogenous input to be attenuated. Therefore, there is a need
to develop a method that not only ensures stability but also
attenuates the external input of the neutral delay system
representing the proposed repetitive control system. To
achieve this purpose, the sufficient condition for stability
and H∞ performance of the closed-loop system is derived
using a Lyapunov-Krasovskii functional and Hamiltonian.
The obtained condition is expressed as an algebraic Ric-
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cati inequality (ARI) and an LMI. Owing to the funda-
mental properties of the proposed scheme, the state error
converges to a nonzero value close to zero. However, the
condition for H∞ performance to reduce the state error can
also be included in the LMI condition. Therefore, the de-
sign method to find the state error feedback gain of the
repetitive controller can be formulated as an optimization
problem subject to the LMI constraint, which ensures not
only the overall stability but also minimization of the state
error in the sense of L2 norm. The validity of the proposed
method is then verified through a numerical example.

2. PROBLEM FORMULATION

Fig. 1 depicts the proposed repetitive control scheme.
Consider the following class of linear systems:

G :
ẋ(t) = Ax(t)+Bu(t),
y(t) = Cx(t),

(1)

where x(t) ∈ Rn, y(t) ∈ R, and u(t) ∈ R with t ≥ 0 are
the plant state, output, and control input, respectively, and
A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n.

Assumption 1: All the eigenvalues of A are less than
0. (A, B) is controllable and (C, A) is observable.

Assumption 2 [6]: There exists a bounded, continu-
ous, and periodic control input ud(t) = ud(t−T ) that al-
lows x(t) to track a desired periodic state xd(t) ∈ Rn with
period T perfectly when substituted for u(t) in (1). There-
fore, the reference system can be given as

ẋd(t) = Axd(t)+Bud(t),

yd(t) =Cxd(t), (2)

where yd(t) ∈ R is a desired periodic trajectory.

Remark 1: Taking the Laplace transform of (1),
Yd(s) = G(s)Ud(s) where G(s) = C(sI − A)−1B; Yd(s)
and Ud(s) are Laplace transforms of yd(t) and ud(t), re-
spectively. For any periodic, bounded, and continuous tra-
jectory yd(t) that satisfies the appropriate differentiability
condition, if G(s) is invertible and G(s)−1 is stable, then
ud(t) is periodic, bounded, continuous, and unique [6],
[8]. For example, suppose G(s) = 1/(1+ s); thus Ud(s) =
(1 + s)Yd(s), which implies that ud(t) = yd(t) + ẏd(t).

Fig. 1. Repetitive control system with delayed control in-
put and state error.

Hence, the appropriate differentiability condition implies
that yd(t) is first-order differentiable.

The control objective is to track xd(t) with a period T ,
and a modified repetitive controller is designed for this
purpose as

u(t) = αu(t−T )+Ke(t) (3)

with an initial condition

u(θ) = ϕ(θ), θ ∈ [−T,0), (4)

where α is a constant value satisfying the condition 0 <
α < 1, K ∈ R1×n is the state error feedback gain, and
e(t) = xd(t)− x(t) is the state error between the desired
state and the plant state.

The overall repetitive control system is as shown in
Fig. 1, where the structure is almost identical to that of
Hara’s modified repetitive control [1], with the exception
that q(s) is replaced by α .

By subtracting (2) from (1), the state error dynamic sys-
tem can be described as

ė(t) = Ae(t)+Bue(t), (5)

where ue(t) = ud(t)−u(t). Owing to the property of ud(t)
in Assumption 2, i.e., ud(t) = ud(t−T ), (3) can be written
as

ue(t) =ud(t−T )−αu(t−T )−Ke(t)

=αue(t−T )+(1−α)ud(t−T )−Ke(t).

(6)

Combining (5) and (6) and using the periodicity of the
system, i.e., ė(t−T ) = Ae(t−T )+Bue(t−T ), a neutral
delay system can be obtained as follows:

ė(t)−α ė(t−T ) =(A−BK)e(t)−αAe(t−T )

+(1−α)Bud(t−T ). (7)

By denoting Ac , A− BK, Aα , αA, and ν(t) , (1−
α)Bud(t − T ) ∈ Rn, (7) can be simply written as a neu-
tral delay system with an equivalent bounded and periodic
disturbance ν(t) as follows:

ė(t)−α ė(t−T ) = Ace(t)−Aα e(t−T )+ν(t). (8)

In (8), as α approaches 1, e(t) decreases since ν(t) ap-
proaches 0. However, if α becomes 1, the stability of the
system cannot be ensured any further, as will be shown in
the next section. Moreover, since α is not equal to 1, there
exists ν(t) 6= 0 such that e(t) does not converge to zero
any longer.

Therefore, we attempt to find a method to minimize e(t)
over the periodic exogenous input ν(t). The closed-loop
transfer function Teν(s) from ν(t) to e(t) is given by

Teν(s) =
[
sI
(
1−αe−T s)− (Ac−Aα e−T s)]−1

. (9)
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Since ν(t) is bounded and periodic, ν(t) is a power signal
of which power is defined as the power semi-norm (‖·‖P )
[9] and e(t) is also a power signal which is generated by
the linear system (8). In order to obtain as small a state
error e(t) as possible for the external periodic input ν(t)
in the system (8), the H∞ norm of Teν(s) should be mini-
mized, which is equivalent to minimize e(t) in the sense of
L2 norm [9]. This means that the repetitive control design
problem is replaced with a problem that ensures stability
and minimizes ‖Teν‖∞ of the neutral delay system (8).

3. MAIN RESULTS

The following results will play an important role in de-
signing the repetitive control system.

Theorem 1: The closed-loop system (8) is asymptoti-
cally stable and ‖Teν(s)‖∞ < γ if one of the following two
equivalent conditions holds:

1) There exist matrices P = PT ∈ Rn×n > 0, Q = QT ∈
Rn×n > 0 and S = ST ∈ Rn×n > 0 satisfying the ARI

AT
c P+PAc +Q+S+ I +PP/γ

2 +MW−1MT

+PAS−1
1 AT P < 0, (10)

where

W = Q/α
2− (Q+S+ I)> 0, (11)

S1 = S/α
2, (12)

M = PAc +Q+S+ I. (13)

2) There exist matrices X = XT = P−1 ∈ Rn×n > 0, Q =
QT ∈ Rn×n > 0 and S = ST ∈ Rn×n > 0 satisfying the
ARI

XAT
c +AcX +Q+S+ I +XX/γ

2 +M1W−1MT
1

+XAT S−1
1 AX < 0, (14)

where

M1 = XAT
c +Q+S+ I. (15)

Proof: 1) We introduce a Lyapunov-Krasovskii func-
tional V (et) for the system (8), which is a modified form of
the Lyapunov-Krasovskii functionals used in neutral delay
equations [10], [11]:

V (et) =(e(t)−αe(t−T ))T P(e(t)−αe(t−T ))

+
∫ t

t−T
e(τ)T (Q+S)e(τ)dτ, (16)

where et = e(t+θ), θ ∈ [−T,0]. It can be shown that there
exist scalar c1 > 0 and c2 > 0 such that the following rela-
tion holds:

c1‖Dφ‖2 ≤V (φ)≤ c2 sup
θ∈[−T,0]

‖φ(θ)‖2, (17)

where Dφ = e(φ)−αe(φ −T ).
In order to show that the system (8) is asymptotically

stable with a disturbance attenuation γ , the associated
Hamiltonian H(e,ν , t) should be satisfied [9], [11]:

H(e,ν , t) = V̇ (et)+ e(t)T e(t)− γ
2
ν(t)T

ν(t)≤ 0.
(18)

This inequality can be rewritten as

H(e,ν , t)

=DT
t (A

T
c P+PAc +Q+S+ I)Dt

+DT
t (αPAc−PAα +α(Q+S)+αI)e(t−T )

+ e(t−T )T (αAT
c P−AT

α P+α(Q+S)+αI)Dt

+ e(t−T )T (α2(Q+S)+α
2I− (Q+S))e(t−T )

+ν(t)T PDt +DT
t Pν(t)− γ

2
ν(t)T

ν(t)≤ 0. (19)

If Ξ is denoted as Ξ = [DT
t αe(t−T )T ν(t)T ]T , then (19)

can be rearranged as follows:

Ξ
T

ΛΞ≤ 0, (20)

where

Λ =

 Π M−PA P
MT −AT P −W −S1 0

P 0 −γ2I

 , (21)

Π = AT
c P+PAc +Q+S+ I. (22)

The sufficient condition for (18) is then equivalent to Λ <
0. Λ can be separated as follows:

Λ =

 Π M P
MT −W 0
P 0 −γ2I


+

 0 −PA 0
−AT P −S1 0

0 0 0

< 0. (23)

Using Schur complement [12], the ARI (10) can be ob-
tained from (23).

2) By substituting P for X−1 in the ARI (10) and us-
ing mathematical manipulation, the ARI (14) can be ob-
tained. �

As explained in the previous section, if α becomes 1,
the W in (10) or (14) is no longer positive definite, and
the overall stability of the system cannot be ensured by
Theorem 1.

Remark 2: If α is 1, then (8) becomes a critical case of
the neutral delay equation and its characteristic equation
has an infinite sequence of roots whose real parts approach
zero, as noted in [6, 13, 14].

Remark 3: Using two positive definite matrices Q and
S in (16), W can be ensured to be positive definite. If only
Q or S is used, then W is always negative definite and The-
orem 1 cannot be established.
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The following theorem provides a solution to the H∞

problem, i.e., ‖Teν‖∞ < γ to determine K.

Theorem 2: The closed-loop system (8) is asymptot-
ically stable and ‖Teν(s)‖∞ < γ if there exist matrices
X > 0, Y , Q > 0, and S > 0 satisfying the LMI

Ω Σ XAT X
ΣT −W 0 0
AX 0 −S1 0
X 0 0 −γ2I

< 0, (24)

where

Ω = XAT −Y T BT +AX−BY +Q+S+ I, (25)

Σ = XAT −Y T BT +Q+S+ I, (26)

and the state error feedback gain K is given by

K = Y X−1. (27)

Proof: Using Schur complement [12], the ARI (14)
can be represented as an LMI

Π1 M1 XAT X
MT

1 −W 0 0
AX 0 −S1 0
X 0 0 −γ2I

< 0, (28)

where

Π1 = XAT
c +AcX +Q+S+ I. (29)

Using the realization Ac = A−BK for the closed-loop sys-
tem (8), (24) readily follows from (28) along with the
change of variable K = Y X−1. �

The LMI (24) is convex in variables X , Y , and γ , and the
state error feedback gain K can be obtained via convex op-
timization. To obtain the minimum value of γ and evaluate
the feasibility of the LMI condition, the problem to deter-
mine K can be formulated as a standard problem of linear
objective minimization that is subject to an LMI constraint
as follows:

Minimize γ over X , Y satisfying (24). (30)

4. NUMERICAL EXAMPLE

To demonstrate the feasibility of the proposed method,
an illustrative example is presented herein. It is assumed
that A, B, and C of the plant (1) are given as

A =

[
−5 0
0 −10

]
, B =

[
0.2
−0.2

]
, C = [1 1].

(31)

With α = 0.9, Q = 5I, and S = 0.01I, solutions of the
optimization problem (30) using Robust Control Toolbox
[15] are given as

X =

[
0.7538 0.2733
0.2733 0.4279

]
> 0, (32)

Y =
[

11.4815 −7.0094
]
, (33)

γ = 0.625. (34)

Note that α , Q, and S should be selected to ensure that
W > 0. From (27), K is obtained as

K = [27.5547 −33.9846], (35)

using (32) and (33).
A desired state with a period T = 2 second is given as

xd(t) =
[

xd1(t)
xd2(t)

]
=

[
2.1sin(πt +0.3)
1.2sin(πt−2.6)

]
, (36)

which renders the desired trajectory yd(t) = sin(πt).
In simulation, αe−T s is not connected before 4 second,

i.e., the control input is given only as u(t) = Ke(t). The
repetitive controller is turned on at 4 second, i.e., the 3rd
period. Fig. 2 and Fig. 3 show that not only x(t) tracks
xd(t) but also the state error diminishes abruptly once the
repetitive controller is turned on.

Fig. 4 shows the root mean square (rms) values of the
state error e(t) versus the number of period, where the
performance improvement by the added repetitive con-
troller is clearly shown. More quantitatively, the rms val-
ues of e1(t) and e2(t) decrease steadily to approach around
0.02598 and 0.01759, which are 13.65% and 14.91% of
the initial rms values 0.1903 and 0.1180, respectively,
thus verifying the benefit of repetitive control. Since α is
slightly less than 1 but not equal to 1, the state error does
not converge to zero even if it reaches a near-zero value.

Fig. 2. Desired state xd1(t)(dash), state x1(t)(solid), and
state error e1(t) = xd1(t)− x1(t).
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Fig. 3. Desired state xd2(t)(dash), state x2(t)(solid), and
state error e2(t) = xd2(t)− x2(t).

Fig. 4. Root mean square(rms) values of state error
e1(t)(solid) and e2(t)(dash).

5. CONCLUSION

The problem of repetitive control system design using
delayed control input and state error has been considered.
The state error dynamics of the repetitive control system is
represented as a neutral delay system with a periodic dis-
turbance. The sufficient conditions for the stability and the
state error reduction are derived, which have the forms of
the ARI and LMI, respectively. We showed that the repet-
itive controller design problem could be reformulated as
an optimization problem with an LMI constraint to find
the state error feedback gain.

In further works, we will develop a repetitive control
system using a delayed control input based on the out-
put feedback, observer-based control, etc., by considering
the case where a state cannot be measured. Moreover, for
industrial applications, studies to ensure robustness to un-
certainties can be performed in the design of the proposed
repetitive control system.
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