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Separable Recursive Gradient Algorithm for Dynamical Systems Based
on the Impulse Response Signals
Ling Xu* � , Feng Ding* � , and Erfu Yang

Abstract: The identification for process control systems is considered in this paper based on the impulse response
signals from the discrete measurements. By taking advantage of impulse signals and through the model parame-
ter decomposition, two dependent identification models are constructed and two identification sub-algorithms are
presented based on the nonlinear gradient optimization. In terms of the associated items of the parameters to be
estimated between two derived sub-algorithms, a separable recursive gradient parameter estimation method is pro-
posed by designing an interactive and recursive estimation. The performance tests and the comparison experiments
are carried out by the simulation examples.
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1. INTRODUCTION

The dynamical behavior of systems can be obtained
from the measurements of the input and output of sys-
tems. Therefore, the selection of excitation signals is an
important step in the design of the identification exper-
iments. On the other hand, the identification results can
be significantly influenced by the input signals which are
applied to the systems to be identified [1–5]. In terms
of identification experiments, sinusoidal waves and com-
binational sine signals, step signals, impulse signals and
pseudo-random binary sequences are the most frequently
used test signals. The systems to be identified are excited
by these excitation signals and will generate the system
responses, which contain the important dynamical infor-
mation. Through the discrete observations of the system
responses, we can develop identification methods to con-
struct the models of the systems. Generally, the impulse
signal is the simplest and easy to realize in many appli-
cations among the excitation signals. Some identification
methods are obtained based on special input signal excita-
tions [6–8].

There is an ordinary phenomenon that some models
show the features of the combination of linear and non-
linear relations, in which one can separate the system pa-
rameters into two parts: a linear part and a nonlinear part
[9]. In system identification, the separable technique is

adopted to decompose the identification models into sev-
eral submodels to reduce the complexity [10, 11]. Many
identification methods have been proposed in terms of lin-
ear systems or nonlinear systems by means of the model
decomposition or parameter decomposition [12–14] and
can be applied to different fields [15–18].

Many nonlinear optimization can be solved by separa-
ble nonlinear least squares method, in which a model can
be denoted by a combination of linear and nonlinear func-
tions. Recently, these models are used widely in a variety
of applications such as neural networks, time-series analy-
sis, signal analysis and other fields [19]. For the problems
of separable nonlinear least squares, the separated param-
eter sets are dependent on each other. For this problem,
the general solution is to optimize all the parameters of
the systems regardless of the features of parameters which
cannot show the preponderance of the separable methods.
Meanwhile, that the parameter decomposition gives rise
to a new difficulty is how to solve the associated items
among the separated sub-algorithms. It is worth noting
that many identification approaches are obtained by ex-
periment techniques [20, 21]. Many parameter estimation
methods have been developed for linear systems [22, 23]
and nonlinear systems [24,25] and can be applied to many
areas [26–31] for constructing their mathematical models.

The following Section 2 introduces the identification
problem and the characteristic of identification models.
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Section 3 derives a recursive gradient sub-algorithm in
terms of the the linear parameters. Section 4 presents a
recursive gradient sub-algorithm for the nonlinear param-
eters. Section 5 proposes a separable recursive gradient
algorithm by uniting two sub-algorithms. Section 6 puts
forward an integral recursive gradient algorithm for com-
paring the performance between the separable method and
the non-separable method. Section 7 provides an exam-
ple and takes the Monte Carlo experiment and comparison
test to illustrate the effectiveness of the proposed separa-
ble identification method. Section 8 is the conclusions of
this paper.

2. PROBLEM ANALYSIS

The transfer function models are of popularity for de-
scribing linear time-invariant systems. In general, the
transfer function model for the linear time-invariant sys-
tem with n order takes the following form:

G(s) = g(s,ϑ) =
C(s)
D(s)

, (1)

where C(s) and D(s) are the numerator polynomial and
denominator polynomial, i.e.,

C(s) = cmsm + cm−1sm−1 + · · ·+ c1s+ c0,

D(s) = dnsn +dn−1sn−1 + · · ·+d1s+d0, dn 6= 0.

The notations are illustrated as follows. ϑ is the parameter
vector which contains the system parameters to be identi-
fied, i.e., dn, dn−1, · · · , d0, cm, cm−1, · · · , c0. m is the order
of the numerator polynomial. n is the order of the denom-
inator polynomial, and n > m.

Under the condition that the system only has distinct
poles and a unit impulse excitation, the impulse response
takes the following mathematical form:

y(t) = f (a,b, t) =
n

∑
i=1

bie−ait + v(t),

where a := [a1,a2, · · · ,an] ∈ Rn and b := [b1,b2, · · · ,bn]
are the unknown parameter vectors, t is the time variable
and v(t) is the observation noise.

From the above description, we find that even though
the system is linear time-invariant, the system response is
a highly nonlinear function. Moreover, the unknown pa-
rameters ai and bi are comprised in the response function.
Therefore, one can acquire the information of the system
by collecting the discrete measurements from the system
response signals. Then, the problem of the parameter esti-
mation is converted into an optimal problem by building a
cost function regarding to the unknown parameters.

Here is a special characteristic that y(t) is a linear
function about the parameters bi and y(t) is a nonlinear
function about the parameters ai. This issue motivates

us to separate the parameters into two parameter vec-
tors to be identified. One is the linear parameter vector
b := [b1,b2, · · · ,bn]

T ∈ Rn, the other is the nonlinear pa-
rameter vector a := [a1,a2, · · · ,an]

T ∈ Rn. For the purpose
of gaining enough real-time information of the systems,
we employ the dynamical data with increasing data length
so as to obtain the whole process data and use these data
dynamically.

Let the initial sampled moment be t1. Then, the mea-
surements from the initial moment t1 to the current mo-
ment tk are described as y(t1), y(t2), · · · , y(tk). With the
increasing of tk over time, the length of the collected data
also increases. Based on the dynamical observations with
the increasing data length, define the objective function

J(a,b) :=
1
2

k

∑
j=1

[y(t j)− f (a,b, t j)]
2 .

From J(a,b), it can be seen that the criterion function
with incremental data length continuously absorbs new
observed data. Therefore, more data can be involved in the
recursive computation. Based on the separated parameter
vectors a and b, the objective function is separated into
two sub-objective functions:

J(a) :=
1
2

k

∑
j=1

[y(t j)− f (a,b, t j)]
2 ,

J(b) :=
1
2

k

∑
j=1

[y(t j)−ϕb(a, t j)b]2,

where ϕb(a, t j) = [e−a1t j ,e−a2t j , · · · ,e−ant j ]T ∈ Rn. As a re-
sult, two sub-algorithms can be derived by optimizing the
above two separated criterion functions J(a) and J(b) sep-
arately. The deriving process is described in the following
section.

3. THE RECURSIVE GRADIENT
SUB-ALGORITHM FOR LINEAR

PARAMETERS

Let us make a hypothesis that the nonlinear parameter
vector a is known and the linear parameter vector b is un-
known. Under this hypothesis, the aim of identification is
to obtain the parameter estimate of the linear parameter
vector b.

Define the information vector

ϕb(a, tk) = [e−a1tk ,e−a2tk , · · · ,e−antk ]T ∈ Rn.

Define the error between the observed output and model
output:

v(a,b, tk) := y(tk)−
n

∑
i=1

bie−aitk ∈ R.
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Then, v(a,b, tk) can be expressed as

v(a,b, tk) = y(tk)−ϕ
T
b(a, tk)b.

Finding the search direction by taking the first-order
derivative of the objective function J(b) gives the gradi-
ent vector:

grad[J(b)] :=
∂J(b)

∂b
=−

k

∑
j=1

ϕb(a, t j)v(a,b, t j) ∈ Rn.

Because the measurements are stacked with the time in-
creasing, we define the stacked output vector Y (tk) and
the stacked information matrix Φb(a, tk) as

Y (tk) :=


y(t1)
y(t2)

...
y(tk)

 ∈ Rk,

Φb(a, tk) :=


ϕT

b(a, t1)
ϕT

b(a, t2)
...

ϕT
b(a, tk)

 ∈ Rk×n.

As a result, the gradient vector grad[J(b)] becomes

grad[J(b)] =−Φ
T
b(a, tk)[Y (tk)−Φb(a, tk)b]

=− [ΦT
b(a, tk)Y (tk)−Φ

T
b(a, tk)Φb(a, tk)b]

=− [ξ b(tk)−Rb(tk)b],

where

ξ b(tk) :=Φ
T
b(a, tk)Y (tk)

=ξ b(tk−1)+ϕb(a, tk)y(tk) ∈ Rn,

Rb(tk) :=Φ
T
b(a, tk)Φb(a, tk)

=Rb(tk−1)+ϕb(a, tk)ϕ
T
b(a, tk) ∈ Rn×n.

The estimate of the linear parameter vector b at tk is de-
noted by b̂(tk) := [b̂1(tk), b̂2(tk), · · · , b̂n(tk)]T. By means of
the negative gradient search, the recursive gradient sub-
algorithm for identifying the linear parameter vector b is
developed as follows:

b̂(tk) = b̂(tk−1)−
1

rb(tk)
grad[J(b̂(tk−1))]

= b̂(tk−1)+
1

rb(tk)
[ξ b(tk)−Rb(tk)b̂(tk−1)], (2)

rb(tk) = rb(tk−1)+‖ϕb(a, tk)‖2, (3)

ξ b(tk) = ξ b(tk−1)+ϕb(a, tk)y(tk), (4)

Rb(tk) = Rb(tk−1)+ϕb(a, tk)ϕ
T
b(a, tk), (5)

ϕb(a, tk) = [e−a1tk ,e−a2tk , · · · ,e−antk ]T, (6)

b̂(tk) = [b̂1(tk), b̂2(tk), · · · , b̂n(tk)]T. (7)

Remark 1: The recursive sub-algorithm in (2)–(7) only
can be used for estimating the linear parameter vector b

when the nonlinear parameter vector a is known. If the
nonlinear parameter vector a is unknown, the recursive
sub-algorithm (2)–(7) is in vain because there contains the
unknown nonlinear parameter vector a in the information
vector ϕb(a, tk).

4. THE RECURSIVE GRADIENT
SUB-ALGORITHM FOR NONLINEAR

PARAMETER VECTOR

Based on the separable parameters, here derives the re-
cursive gradient sub-algorithm for the nonlinear parame-
ter vector a. Suppose that the linear parameter vector b is
known and the nonlinear parameter vector a is unknown.

Taking the first-order derivative of the separated objec-
tive function J(a) obtains the search direction, i.e., the gra-
dient of J(a):

grad[J(a)] :=
∂J(a)

∂a

=

[
∂J(a)
∂a1

,
∂J(a)
∂a2

, · · · , ∂J(a)
∂an

]T

∈ Rn,

∂J(a)
∂al

=
k

∑
j=1

blt je−alt j v(a,b, t j), l = 1,2, · · · ,n,

v(a,b, t j) = y(tk)−
n

∑
i=1

bie−ait j .

The information vector is given by

ϕa(a,b, tk) := [b1tke−a1tk ,b2tke−a2tk , · · · ,bntke−antk ]T

∈ Rn.

The stacked information matrix is given by

Φa(a,b, tk) :=


ϕT

a(a,b, t1)
ϕT

a(a,b, t2)
...

ϕT
a(a,b, tk)

 ∈ Rk×n.

Define the model output at tk as f (a,b, tk) :=
n
∑

i=1
bie−aitk ∈

R. The stacked model output vector is defined as

F(a,b, tk) :=


f (a,b, t1)
f (a,b, t2)

...
f (a,b, tk)

 ∈ Rk.

As a result, the gradient vector grad[J(a)] is expressed as

grad[J(a)] =Φ
T
a(a,b, tk)[Y (tk)−F(a,b, tk)]

=Φ
T
a(a,b, tk)Y (tk)−Φ

T
a(a,b, tk)F(a,b, tk).

Define the following recursive relationships:

ξ a(a,b, tk) := Φ
T
a(a,b, tk)Y (tk)
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= Φ
T
a(a,b, tk−1)Y (tk−1)

+ϕa(a,b, tk)y(tk) ∈ Rn,

ζ a(a,b, tk) := Φ
T
a(a,b, tk)F(a,b, tk)

= Φ
T
a(a,b, tk−1)F(a,b, tk−1)

+ϕa(a,b, tk) f (tk) ∈ Rn.

Thus, the gradient vector grad[J(a)] can be expressed as

grad[J(a)] = ξ a(a,b, tk)−ζ a(a,b, tk).

Denote â(tk) = [â1(tk), â2(tk), · · · , ân(tk)]T ∈ Rn, where
â(tk) is the recursive estimate of the nonlinear parame-
ter vector a at tk. According to the theory of the nega-
tive gradient search and optimizing the objective function
J(a), the recursive gradient sub-algorithm for estimating
the nonlinear parameter vector a is summarized as fol-
lows:

â(tk) = â(tk−1)−
1

ra(tk)
grad[J(â(tk−1),b)]

= â(tk−1)−
1

ra(tk)
[ξ̂ a(tk)− ζ̂ a(tk)], (8)

ra(tk) = ra(tk−1)+‖ϕa(â(tk−1),b, tk)‖2, (9)

ξ̂ a(tk) = ξ a(â(tk−1),b, tk)

= ξ̂ a(tk−1)+ϕa(â(tk−1),b, tk)y(tk), (10)

ζ̂ a(tk) = ζ a(â(tk−1),b, tk)

= ζ̂ a(tk−1)+ϕa(â(tk−1),b, tk) f̂a(tk), (11)

ϕ̂a(tk) = ϕa(â(tk−1),b, tk)

=[b1tke−â1(tk−1)tk , · · · ,bntke−ân(tk−1)tk ]T, (12)

f̂a(tk) = f (â(tk−1),b, tk) =
n

∑
i=1

bieâi(tk−1)tk , (13)

â(tk) = [â1(tk), â2(tk), · · · , ân(tk)]T. (14)

Remark 2: From the presented recursive gradient sub-
algorithm in (8)–(14), we notice that the algorithm only
can be used for determining the estimate of the nonlinear
parameter vector a in the condition that the linear param-
eter vector b is known. Because the unknown parameters
b exist in the information vector ϕ̂a(tk), the recursive gra-
dient sub-algorithm in (8)–(13) cannot be realized. This is
the same problem as the sub-algorithm in (2)–(7).

5. THE SEPARABLE RECURSIVE GRADIENT
ALGORITHM

In order to solve the problem which the sub-algorithms
are unavailable, we combine the sub-algorithm in (2)–(7)
for estimating the linear parameter vector b and the sub-
algorithm in (8)–(14) for estimating the nonlinear param-
eter vector a. The key difficulty of the unavailable sub-
algorithms is that there are the associated unknown terms
between the sub-algorithms. Thus the following measures
are taken:

1) use â(tk−1) to replace a in (2)–(7);
2) use b̂(tk−1) to replace b in (8)–(14);
3) estimate the separable parameter vectors a and b by

interactive estimation technique. Then we obtain the sep-
arable recursive gradient (SRG) algorithm as follows:

â(tk) = â(tk−1)−
1

ra(tk)
grad[J(â(tk−1)]

= â(tk−1)−
1

ra(tk)
[ξ̂ a(tk)− ζ̂ a(tk)], (15)

ra(tk) = ra(tk−1)+‖ϕ̂a(tk)‖2, (16)

ξ̂ a(tk) = ξ a(â(tk−1), b̂(tk−1), tk)

= ξ̂ a(tk−1)+ ϕ̂a(tk)y(tk), (17)

ζ̂ a(tk) = ζ a(â(tk−1), b̂(tk−1), tk)

= ζ̂ a(tk−1)+ ϕ̂a(tk) f̂ (tk), (18)

ϕ̂a(tk) = ϕa(â(tk−1), b̂(tk−1), tk)

= [b̂1(tk−1)tke−â1(tk−1)tk , b̂2(tk−1)tke−â2(tk−1)tk , · · · ,
b̂n(tk−1)tke−ân(tk−1)tk ]T, (19)

f̂ (tk) = f (â(tk−1), b̂(tk−1), tk)

=
n

∑
i=1

b̂i(tk−1)eâi(tk−1)tk , (20)

b̂(tk) = b̂(tk−1)−
1

rb(tk)
grad[J(b̂(tk−1))]

= b̂(tk−1)+
1

rb(tk)
[ξ̂ b(tk)−Rb(tk)b̂(tk−1)], (21)

rb(tk) = rb(tk−1)+‖ϕb(â(tk−1), tk)‖2, (22)

ξ̂ b(tk) = ξ̂ b(tk−1)+ϕb(â(tk−1), tk)y(tk), (23)

Rb(tk) = Rb(tk−1)+ϕb(â(tk−1), tk)ϕT
b(â(tk−1), tk),

(24)

ϕ̂b(tk) = ϕb(â(tk−1), tk)

= [e−â1(tk−1)tk ,e−â2(tk−1)tk , · · · ,e−ân(tk−1)tk ]T, (25)

â(tk) = [â1(tk), â2(tk), · · · , ân(tk)]T, (26)

b̂(tk) = [b̂1(tk), b̂2(tk), · · · , b̂n(tk)]T. (27)

In accordance with the above algorithm in (15)–(27),
we summarize the computational steps for computing the
parameter estimation vectors â(tk) and b̂(tk) of the system
which is studied in this work.

1) Initiation: Let k = 1, set â(t0) = [â1(t0), â2(t0), · · · ,
ân(t0)]T, b̂(t0) = [b̂1(t0), b̂2(t0), · · · , b̂n(t0)]T, ra(t0) = 1,
rb(t0) = 1, ξ̂ a(t0) = 0, ζ̂ a(t0) = 0, ξ̂ b(t0) = 0, Rb(t0) = 0,
and a recursive length kmax.

2) Collect the impulse response data y(tk).
3) Calculate and construct the information vector ϕ̂a(tk)

via (19), calculate the model output f̂ (tk) via (20) and cal-
culate and construct the information vector ϕ̂b(tk) via (25).

4) Calculate ra(tk) via (16), calculate vector ξ̂ a(tk) via
(17), calculate vector ζ̂ a(tk) via (18) and refresh the pa-
rameter estimation vector â(tk) via (15).
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5) Calculate rb(tk) via (22), calculate vector ξ̂ b(tk) via
(23), calculate the matrix Rb(tk) via (24) and refresh the
parameter estimation vector b̂(tk) via (21).

6) Acquire the nonlinear parameter estimate âi(tk) from
the vector â(tk) in (26) and the linear parameter estimate
b̂i(tk) from vector b̂(tk) in (27), i = 1, 2, · · · , n.

7) If recursion k satisfies k < kmax, then k := k+ 1 and
go to Step 2); otherwise obtain the parameter estimation
vectors â(tk) and b̂(tk) and terminate the computational
process.

6. INTEGRAL RECURSIVE GRADIENT
ALGORITHM

For comparing the performance of the proposed separa-
ble algorithm, the integral recursive gradient algorithm is
provided directly, in which the parameters to be identified
are not separated. The recursive gradient (RG) algorithm
is as follows:

θ̂(tk) = θ̂(tk−1)+
1

r(tk)

× [ξ (θ̂(tk−1), tk)−ζ (θ̂(tk−1), tk)]

= θ̂(tk−1)+
1

r(tk)
[ξ̂ (tk)− ζ̂ (tk)], (28)

r(tk) = tr[ΦT(θ̂(tk−1), tk)Φ(θ̂(tk−1), tk)]

= r(tk−1)+‖ϕ(θ̂(tk−1), tk)‖2

= r(tk−1)+‖ϕ̂(tk)‖2, r(t0) = 1, (29)

ξ̂ (tk) := ξ (θ̂(tk−1), tk)

= ξ (θ̂(tk−1), tk−1)+ϕ(θ̂(tk−1), tk)y(tk)

= ξ̂ (tk−1)+ ϕ̂(tk)y(tk), (30)

ζ̂ (tk) := ζ (θ̂(tk−1), tk)

= ζ (θ̂(tk−1), tk−1)+ϕ(θ̂(tk−1), tk) f (θ̂(tk−1), tk)

= ζ̂ (tk−1)+ ϕ̂(tk) f̂ (tk), (31)

ϕ̂(tk) := ϕ(θ̂(tk−1), tk)

= [−b̂1(tk−1)tke−â1(tk−1)tk ,e−â1(tk−1)tk ,

− b̂2(tk−1)tke−â2(tk−1)tk ,e−â2(tk−1)tk , · · · ,
− b̂n(tk−1)tke−ân(tk−1)tk ,e−ân(tk−1)tk ]T, (32)

f̂ (tk) = f (θ̂(tk−1), tk)

=
n

∑
i=1

b̂i(tk−1)e−âi(tk−1)tk , (33)

θ̂(tk) = [â1(tk), · · · , ân(tk), · · · , b̂1(tk), · · · , b̂n(tk)]T.
(34)

In accordance with the algorithm (28)–(34), we summa-
rize the computational steps for estimating the parameter
estimation vector θ̂(tk) as follows.

1) Initiation: Let k = 1, set θ̂(t0) = [â1(t0), â2(t0), · · · ,
ân(t0), b̂1(t0), b̂2(t0), · · · , b̂n(t0)]T, r(t0) = 1, ξ̂ (t0) = 0,

ζ̂ (t0) = 0, and set the recursive step kmax.
2) Collect the impulse response data y(tk).
3) Calculate and construct the information vector ϕ̂(tk)

via (32), and calculate the model output f̂ (tk) via (33).
4) Calculate r(tk) via (29), calculate vector ξ̂ (tk) via

(30), and calculate vector ζ̂ (tk) via (31)
5) Refresh the parameter estimation vector θ̂(tk) via

(28).
6) If recursion k satisfies k < kmax, then k := k+ 1 and

go to Step (2); otherwise obtain the parameter estimates
θ̂(tk) from (34) and terminate the computational process.

The methods proposed in this paper can combine some
mathematical tools [32–37] and strategies [38–41] to
study the parameter estimation problems of different sys-
tems with colored noises and can be applied to other en-
gineering systems [42–46] such as information systems
[47–50] and networked systems [51–56] and so on.

7. ILLUSTRATED EXAMPLE

Consider the following nonlinear function

y(t) = b1e−a1t +b2e−a2t +b3e−a3t ,

where the true parameters of the system are a1 = 5.4,
a2 = 4.3, a3 = 3.2, b1 = 1, b2 = 2 and b3 = 1.8. Its
Laplace transform gives the transfer function G(s) =

1
s+5.4 +

2
s+4.3 +

1.8
s+3.2 . y(t) is the unit impulse response of

G(s). In this section, the following simulation experiments
are taken and the simulation results are analyzed.

7.1. Monte Carlo experiment
In this subsection, the Monte Carlo simulation tests us-

ing the measured data under different circumstance are
taken to test the effectiveness of the proposed separable
identification method. The experimental conditions are set
as follows: 1) the noise variance is σ 2 = 0.102; 2) the num-
ber of the Monte Carlo simulation tests is 20; 3) the re-
cursive step is kmax = 200, kmax = 500, kmax = 1000 and
kmax = 1500, respectively; 4) the estimation error is com-
puted according to the following equation:

δ (tk) :=

√
‖â(tk)−a‖2 +‖b̂(tk)−b‖2

‖a‖+‖b‖
.

The parameter estimates obtained by the Monte Carlo tests
are shown in Table 1, where SRG means the separable re-
cursive gradient method. The estimation errors under dif-
ferent recursive steps for 20 Monte Carlo tests are drawn
in Fig. 1.

7.2. Performance comparison
The performance comparison with other algorithms is

an important way to illustrate the features of presented
methods. In this subsection, the performance comparison
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Table 1. The SRG estimates and their estimation errors by the 20 Monte Carlo tests.

k 200 500 1000 1500 True values
a1 5.19738±0.20447 5.21363±0.18877 5.24370±0.16165 5.27319±0.13560 5.40000
a2 4.01297±0.29542 4.07954±0.23498 4.20557±0.12641 4.33246±0.06724 4.30000
a3 3.00986±0.19044 3.01192±0.18882 3.01595±0.18559 3.02015±0.18178 3.20000
b1 0.98662±0.07630 1.04011±0.09422 1.07623±0.20569 1.03866±0.20443 1.00000
b2 2.02968±0.11315 2.09499±0.15179 2.14158±0.25357 2.10367±0.26399 2.00000
b3 1.87035±0.21571 1.86617±0.30278 1.87574±0.35708 1.91011±0.39457 1.80000

200 300 500 1000 1500

0

0.01

0.02

0.03

0.04

0.05

0.06

 k

 δ

Fig. 1. The estimation errors under different recursive
steps.

experiment is implemented between the separable recur-
sive gradient algorithm and the recursive gradient algo-
rithm without separation. Firstly, we use the separable re-
cursive gradient algorithm and the recursive gradient al-
gorithm without separation to identify the parameters of
the system in this example. Furthermore, different signal-
to-noise ratio (SNR) is considered because the noisy ob-
servations are involved in this example, where the SNR
is defined as the ratio between the variance of signal and
the variance of noise. Here, the experimental conditions
are set as follows: 1) the sample period is 0.1 s; 2) the
recursive step is kmax = 2000; 3) the estimation error is
computed according to the following equation:

δ (tk) :=

√
‖â(tk)−a‖2 +‖b̂(tk)−b‖2

‖a‖+‖b‖
.

Under the noisy measurement scenario, the perfor-
mance of the proposed separable recursive gradient algo-
rithm and the recursive gradient algorithm without sepa-
ration are verified based on different SNRs. In the simu-
lation, the SNR is set as 26.17 and 1.04. The estimated
values of the system parameters and their estimation er-
rors on different SNRs are displayed in Tables 2–3. The
parameter estimation errors versus k obtained via the sep-
arable recursive gradient method are shown in Figs. 2 and
3, respectively. The parameter estimates obtained by these
two methods under different SNRs and the original system
parameters are illustrated in Figs. 4 and 5, respectively.

In Fig. 4, the parameter estimate of a1 is shown in (a),

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.05

0.1

0.15

0.2

0.25

0.3

RG method

SRG method

k

σ

Fig. 2. The SRG and RG estimation errors versus k
(SNR= 1.04).
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Fig. 3. The SRG and RG estimated errors versus k (SNR=
26.17).

the parameter estimate of a2 is shown in (b), the parameter
estimate of a3 is shown in (c), the parameter estimate of b1

is shown in (d), the parameter estimate of b2 is shown in
(e) and the parameter estimate of b3 is shown in (f). More-
over, the mark “◦” denotes the original value, the mark “∗”
denotes the estimated value obtained by the recursive gra-
dient (RG) method without separation and the mark “4”
denotes the estimated value obtained by the separable re-
cursive gradient (SRG) method.

In Fig. 5, the parameter estimate of a1 is shown in (a),
the parameter estimate of a2 is shown in (b), the parameter
estimate of a3 is shown in (c), the parameter estimate of b1

is shown in (d), the parameter estimate of b2 is shown in
(e) and the parameter estimate of b3 is shown in (f). More-
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Table 2. The SRG and the RG estimates and their estimation errors (SNR= 1.04).

Method k a1 a2 a3 b1 b2 b3 δ (%)

SRG 100 5.18814 3.97352 3.00857 0.83499 1.70324 1.26882 9.41002
200 5.19229 3.99105 3.00913 0.88594 1.80900 1.45368 7.21713
500 5.20472 4.04362 3.01084 0.89871 1.83158 1.48244 6.49668
1000 5.22544 4.13125 3.01367 0.90558 1.83896 1.47662 5.93689
2000 5.26688 4.30651 3.01934 0.91899 1.85333 1.46500 5.37002

RG 100 5.09758 3.59083 2.99620 0.78662 1.60216 1.09031 14.25280
200 5.08594 3.54165 2.99461 0.82521 1.68325 1.23474 13.28037
500 5.08416 3.53414 2.99437 0.83110 1.69562 1.25677 13.15755
1000 5.08416 3.53413 2.99436 0.83111 1.69565 1.25682 13.15727
2000 5.08416 3.53413 2.99436 0.83111 1.69565 1.25682 13.15727

True values 5.40000 4.30000 3.20000 1.00000 2.00000 1.80000

Table 3. The SRG and the RG estimates and their estimation errors (SNR= 26.17).

Method k a1 a2 a3 b1 b2 b3 δ (%)

SRG 100 5.18818 3.97365 3.00857 0.83762 1.70867 1.27815 9.29701
200 5.19235 3.99131 3.00914 0.88905 1.81536 1.46431 7.10602
500 5.20488 4.04428 3.01086 0.90222 1.83850 1.49298 6.37959
1000 5.22575 4.13257 3.01371 0.90963 1.84659 1.48662 5.80708
2000 5.26751 4.30914 3.01943 0.92410 1.86234 1.47395 5.23553

RG 100 5.09708 3.58877 2.99613 0.78827 1.60561 1.09636 14.20637
200 5.08537 3.53931 2.99454 0.82709 1.68716 1.24159 13.24110
500 5.08359 3.53177 2.99429 0.83301 1.69960 1.26375 13.11990
1000 5.08359 3.53175 2.99429 0.83302 1.69963 1.26380 13.11962
2000 5.08359 3.53175 2.99429 0.83302 1.69963 1.26380 13.11962

True values 5.40000 4.30000 3.20000 1.00000 2.00000 1.80000
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Fig. 4. The SRG and RG estimated parameters (SNR=
1.04).

over, the mark “◦” denotes the original value, the mark “∗"
denotes the estimated value obtained by the recursive gra-
dient (RG) method without separation and the mark “4"
denotes the estimated value obtained by the separable re-
cursive gradient (SRG) method.

8. CONCLUSIONS

This paper studies the the identification of the trans-
fer functions of process control systems for identifying
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Fig. 5. The SRG and RG estimated parameters (SNR=
26.17).

the industrial process. For the purpose of obtaining higher
estimation accuracy and on-line identification, a strategy
of using dynamical data with increasing length is devel-
oped and applied to derive the identification method based
on system response signals. Because the system response
function is highly nonlinear, we analyze the relation be-
tween the system response function and the system pa-
rameters to be identified, and design a separable identi-
fication algorithm by separating the whole parameters of
the systems into two parameter vectors. On the basis of the
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separated parameter vectors and the gradient optimization,
two separated identification models are built and two sub-
algorithms are derived by combining them together and
reciprocal estimation. Finally, the separable recursive gra-
dient method is proposed for the process control systems.
The numerical simulation results concerning the perfor-
mance test and comparison show that the proposed sep-
arable recursive gradient method is practically feasible,
which can be adopted for industrial applications. The pro-
posed separable recursive gradient algorithm for dynam-
ical systems based on the impulse response signals can
combine and other estimation methods [57–59] to explore
new identification methods and can be applied to other
fields [60–64] such as information processing and engi-
neering systems [65–71] and so on.
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