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Neural Approximation-based Model Predictive Tracking Control of Non-
holonomic Wheel-legged Robots
Jiehao Li, Junzheng Wang, Shoukun Wang, Wen Qi, Longbin Zhang, Yingbai Hu, and Hang Su* �

Abstract: This paper proposes a neural approximation based model predictive control approach for tracking control
of a nonholonomic wheel-legged robot in complex environments, which features mechanical model uncertainty
and unknown disturbances. In order to guarantee the tracking performance of wheel-legged robots in an uncertain
environment, effective approaches for reliable tracking control should be investigated with the consideration of the
disturbances, including internal-robot friction and external physical interactions in the robot’s dynamical system.
In this paper, a radial basis function neural network (RBFNN) approximation based model predictive controller
(NMPC) is designed and employed to improve the tracking performance for nonholonomic wheel-legged robots.
Some demonstrations using a BIT-NAZA robot are performed to illustrate the performance of the proposed hybrid
control strategy. The results indicate that the proposed methodology can achieve promising tracking performance
in terms of accuracy and stability.

Keywords: Model predictive control, neural approximation, nonholonomic system, tracking control, wheel-legged
robot.

1. INTRODUCTION

In the past few years, wheel-legged robots [1–3] have
become widespread among applications that can oper-
ate in various uncertain or unreachable terrains, such as
narrow space in damaged buildings after disasters, radi-
ation environments, and complex working field. In the
development and control of the wheel-legged robots, re-
search interests have been attracted, and promising re-
sults have been achieved. For instance, the developed
quadruped robot AZ-IMUT in [4] was capable of switch-
ing the control modes between legs and wheel tracking.
A deformable wheeled robot based on origami structure
was introduced in [5], and the robot can move quickly
with large wheels and small gaps. A mechanically de-
coupled wheel-legged hybrid transformable robot, namely
HyTRo-I in [6], was able to achieve the transformation
between wheeled and legged configuration with improved
shifting stability and a small number of transition steps.
However, most of these wheel-legged robots are created
with series mechanism, which is small in size and weak in
payload and cannot meet the practical requirements in ex-

treme situations such as disaster relief, combat platforms,
and resource exploration. In order to meet the various ter-
rains requirements, such as movement efficiency, velocity,
stability, obstacle-negotiation, and improved payload ca-
pacity [7, 8], a new mobility structure that can transform
between wheel and leg is proposed in this paper. How-
ever, its tracking control accuracy is affected due to its
mechanical model uncertainty and unknown disturbances
in complex environments under heavy loads. Few works
have solved these challenges. Hence, this paper focuses on
the tracking control of the developed novel electric paral-
lel wheel-legged robot with payload capacity.

Accurate path tracking is one of the main challenges
of autonomous mobile robots, and it has attracted many
research interests in practical engineering fields. For ex-
ample, the lateral control of four-wheel electric vehicles
based on a delay linear quadratic regulator (LQR) control
algorithm was proposed in [9]. In [10], a model-free adap-
tive sliding mode control (ASMC) was applied to the au-
tomatic parking system, and a dynamic compensator was
introduced to solve the influence of integral saturation.
In [11], a state observer enhanced sliding mode control
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(SMC) was implemented to an underwater robot system
combined with unknown disturbances and uncertain non-
linearities. Besides, a vision-based model prediction con-
trol (MPC) was developed to guarantee a wheel mobile
robot to follow the desired target in the polar coordinate
[12]. For redundancy optimization in manipulators, a deep
convolutional neural network (DCNN) structure was pre-
sented in [13].

However, one of these drawbacks of the methods men-
tioned above is that they do not explicitly consider the me-
chanical uncertainties and external dynamic interactions
such as mechanical parameter variation, load transfer, and
friction impact, which may lead to instability and inaccu-
racy in the tracking control [14, 15]. In practical systems,
due to the existence of nonlinearities and uncertainties, ac-
curate knowledge of the developed system model cannot
be assumed.

In related works, task-space tracking based on fuzzy
adaptive control (FAC) schemes for compensating the ex-
ternal disturbances and dynamics uncertainties are studied
[16,17]. Moreover, the nonlinear model predictive control
scheme to track the desired trajectory based on neural-
dynamic optimization is proposed [18]. Besides, for the
robot vision system, a fast and robust deep convolutional
neural networks are presented [19,20]. In this paper, a neu-
ral approximation-based model predictive tracking con-
trol of nonholonomic wheel-legged robots under uncertain
disturbances is considered. The main contributions of the
paper are summarized as follows:

• A novel wheel-legged robot with parallel mechanism
is presented to improve the maneuverability and flex-
ibility effectively.
• A neural approximation-based model predictive

tracking controller is applied to eliminate the un-
certain dynamics and external disturbances for the
application of mobile robots, such as mechanical pa-
rameter variation and dynamic load disturbance.

The structure of this paper is organized as follows: Sec-
tion 2 presents the problem formulation and the devel-
oped novel wheel-legged robot. In Section 3, the RBFNN
approximation-based model predictive tracking control is
introduced to achieve accurate tracking under uncertain
internal and external disturbances. In Section 4, the sys-
tem description of the developed electric parallel platform
is introduced. Experimental results are presented to show
the controller performance in Section 5, and a conclusion
is drawn in Section 6.

2. PROBLEM FORMULATION

The formulation of the nonholonomic constraints for
the wheel-legged robot can be addressed as

ẋc sinϕc− ẏc cosϕc = 0, (1)

where (xc,yc) denote the centroid coordinate position of
X-axis and Y-axis, respectively, and ϕc represents the cor-
responding heading angle.

Assuming that q3×1 = [xc,yc,ϕc]
T and J (q) =

[sinϕc,−cosϕc,0], the constraints formulation can be
described as below:

J (q)q̇ = 0. (2)

Thus, the kinematic model of wheel-legged robot can
be represented as ẋc

ẏc

ϕ̇c

=

cosϕc 0
sinϕc 0

0 1

[vc

ωc

]
, (3)

where vc denotes the robotic linear velocity of centroid; ϕc

is the course angle, and ωc represents the yaw rate.
Besides, considering the uncertainties and external dy-

namics, the wheel-legged robot of nonholonomic con-
straint model according to the Euler-Lagrangain can be
described as

M(q)q̈+C(q, q̇)q̇+G(q) = J T (q)(λ −Fd) , (4)

where M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix; q ∈ Rn denotes the generalized coordi-
nate; C(q, q̇) ∈ Rn×n is the centripetal and Coriolis ma-
trix; G(q) ∈ Rn is the gravitational vector; Fd ∈ Rn×n is
the mechanical uncertainties such as the friction of elec-
tric cylinder and spring force and external dynamics e.g.
rolling resistance and road friction; λ ∈ Rn represents the
driving torque.

Position space decomposition by separating the control
variables into position and attitude is an efficient solution
for the control of the 6-DOF electric parallel platform. In
general, the reference coordinate is set as OB − XBYBZB

while OU −XUYU ZU is set as the moving coordinate. The
combination of the base and six servo motors are Bi (i =
1, 2, ..,6), and the coordinates in the moving coordinate
system are Ui (i = 1, 2, ..., 6). Define θx, θy, θz are the
rotation angle of X-axle, Y-axle and Z-axle, respectively.
∆x, ∆y, ∆z are the corresponding displacement. Then, we
have

PB = TPU +U0 +Pm, (5)

where T is the coordinate transformation matrix; PU and
PB are the dynamic coordinate and static coordinate, re-
spectively; Pm = [∆x,∆y,∆z]

T and U0 = [x,y,z]T .
Then the translation equation of can be described asxB

yB

zB

=

xU +∆x + x
yU +∆y + y
zU +∆z + z

=

xU

yU

zU

+U0 +Pm. (6)
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When the moving coordinate rotates around the X-axis,
we can obtainxB

yB

zB

=

 xU

yUCθx− zU Sθx

yU Sθx + zUCθx

= Tx

xU

yU

zU

 , (7)

subjected to

Tx =

 1 0 0
0 Cθx −Sθx

0 Sθx Cθx

 . (8)

Similarly, we can obtain the relationship of Y-axis and
Z-axis as follows:xB

yB

zB

=

 xUCθy + zU Sθy

yU

−xU Sθy + zUCθy

= Ty

xU

yU

zU

 , (9)

xB

yB

zB

=

xUCθz− yU Sθz

xU Sθz + yUCθz

zU

= Tz

xU

yU

zU

 , (10)

subjected to

Ty =

 Cθy 0 Sθy

0 1 0
−Sθy 0 Cθy

 , (11)

and

Tz =

 Cθz −Sθz 0
Sθz Cθz 0
0 0 1

 , (12)

where (Cθx, Cθy, Cθz) denote (cosθx, cosθy, cosθz), re-
spectively. (Sθx, Sθy, Sθz) represent (sinθx, sinθy, sinθz),
respectively.

Property 1: The order of rotation can be defined as: X
→ Y → Z, in other words, rotating θx → θy → θz, and
then translating ∆x→ ∆x→ ∆x.

Therefore, the position transformation matrix can be de-
scribed asxB

yB

zB

= TxTyTz

xU

yU

zU

= T

xU

yU

zU

+U0 +Pm, (13)

subjected to

T =

 CyCz −CySz Sy

SxSyCz +CxSz −SxSySz +CxCz −SxCy

−CxSyCz +SxSz CxSySz +SxCz CxCy

 ,
(14)

where Sx, Sy, Sz, Cx, Cy and Cz represent sinθx, sinθy, sinθz

cosθx, cosθy and cosθz, respectively.

Through the position control of each electric cylinder,
different attitudes of the robot can be realized. The offset
of each electric cylinder can be addressed as follows:

∆Li =

√
(uix−Bix)

2+(uiy−Biy)
2+(uiz−Biz)

2−Li.

(15)

On the other hand, we assume that the trajectory of the
robot is generated by the following reference system:

ẋr = vr cosϕr,

ẏr = vr sinϕr,

ϕ̇r = ωr, (16)

where qr = [xr,yr,ϕr]
T is the reference state; (vr,ωr) is the

reference velocity and yaw rate, respectively.
Property 2: The reference signals (vr,ωrv̇r, ω̇r) is

bounded, and satisfy with the as follows:∫ t+T

t
(|vr(s)|+ |ωr(s)|)ds≥ µ, (17)

where T,µ > 0 and ∀t ≥ 0.
Thus, the tracking problem with uncertain dynamics

and external disturbances in this paper is equivalent to de-
sign the control law for the nonholonomic constraint sys-
tem such that:

lim
t→∞

(q(t)−qr(t)) = 0. (18)

3. CONTROLLER DEVELOPMENT

3.1. Neural approximation
Uncertainties in practical robot systems can be divided

into two parts, including internal interference and exter-
nal dynamics, as shown in Fig. 1. The former mainly in-
volves the case where the parameters such as mass and
rotational inertia of the system are unknown. At the same
time, the latter mainly refers to some unmodeled dynam-
ics such as external disturbance and friction. For the de-
veloped wheel-legged robot, however, model uncertainties
and external disturbances, such as mechanical parameter
variation, external load disturbance, and unstructured un-
certainty, do exist in the dynamics of the robot systems for
tracking control.

Fig. 1. Uncertain physical interaction in robot system.
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To solve this problem, a RBFNN-based control ap-
proach is implemented to the robot system to deal with
bounded disturbances and unmodeled dynamics. With the
approximation capability of the RBFNN [21,22], a contin-
uous smooth function k(Z) : Rq → R is defined, and then
the RBFNN is used to estimate the uncertain dynamics
and external disturbances.

knn (Zin) =W T S (Zin) , (19)

where Zin ∈ Ω ⊂ Rq denotes the input of RBFNN; W =
[w1,w2, · · · ,wm] ∈ Rm represents the NN weight, and m >
0 is the NN node number in the hidden layer; S (Zin) =
[S1 (Zin) ,S2 (Zin) , · · · ,Si (Zin)]

T and Si (Zin) denote an ac-
tivation function which is often chosen as Gaussian func-
tion.

Si (Zin) = exp

[
−
(
Zin−uT

i

)
(Zin−ui)

η2
i

]
,

i = 1,2, · · · ,m, (20)

where ui = [ui1,ui2, · · · ,uiq]
T ∈Rq is the center of receptive

field and ηi is the variance.
From the definition of activation function, we can ob-

tain that the S (Zin) is bounded, which can be described
as:

‖S (Zin)‖ ≤ ξ , (21)

where ξ is a positive constant.
With a sufficiently large node m, any smooth continuous

function can be approximated to any degree.

knn (Zin) =W ∗TS (Zin)+ ε, (22)

where W ∗ is the ideal weight over a compact set ΩZin ⊂
Rq. The approximation error of RBFNN satisfies ‖ε‖ ≤ ρ,
where ρ is a small unknown constant.

Over a compact set Zin ∈ ΩZin ⊂ Rq, the ideal weight
vector can be represented as

W ∗ = arg min
Zin∈R

{
sup
∣∣knn (Zin)−W TS (Zin)

∣∣} . (23)

3.2. Model predictive tracking control
In this section, the model predictive tracking control is

carried out with the RBFNN-based approximation. There
are three key issues, including trajectory error function,
system constraint and optimization objective function.
The error equation is a mathematical description of the
trajectory tracking control system. System constraints in-
clude controller constraints, control quantity constraints,
and stability constraints. The objective function needs to
consider the rapidity and smoothness of the trajectory
tracking control.

According to (4), we can rewritten the kinematic model
as  ẋ

ẏ
ϕ̇

=

 cosϕ

sinϕ
2tanδ

L(1+tanδ )

v, (24)

subjected to

ω = ϕ̇ =
v
R
=

2tanδ

L(1+ tanδ )
v, (25)

where (x,y) is the center coordinate; ϕ is yaw angle, and
v is the linear velocity of robot. In particular, according to
the steering relationship of the wheel-legged robot [16],
R = L

2 +
L

2tanδ
.

Then the robot control system can be converted to input
variable u(v,δ ) and state variable χ(x,y,ϕ).

χ =W(x,u). (26)

For the convenience of the MPC method design, we can
define the expected motion trajectory as

χ̇d =W (χd ,ud) , (27)

where expected state variable is χd = [xd ,yd ,ϕd ]
T and ex-

pected input variable is ud = [vd ,δd ].
According to the Taylor theorem and ignoring the high-

order values, (38) can be converted as

ẋ =W (xd ,ud)+
∂W(x,u)

∂x

∣∣∣∣
x=xd

(x− xd)

+
∂W(x,u)

∂u

∣∣∣∣
x=xd

(u−ud) . (28)

The error function can be represented as

xe = x(x)− xd(x),

ye = y(x)− yd(x),

ϕe = ϕ(x)−ϕd(x). (29)

Thus, the path error function can be developed as

χ̇e =

 ẋ− ẋd

ẏ− ẏd

ϕ̇− ϕ̇d

=

0 0 −vd sinϕd

0 0 vd cosϕd

0 0 0

χe

+

 cosϕd 0
sinϕd 0
2tanδ

L(1+tanδ )
2vd

L(1+tanϕ)2 cos2 δd

ue. (30)

In order to effectively implement tracking control, an
improved objective function using relaxation factors can
be represented as

δd(k) =
NP

∑
i=1
‖ϒ(k+ i|t)−ϒref(k+ i|t)‖2

L
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+
Ne−1

∑
i=1
‖∆U(k+ i|t)‖2

L+σψ
2, (31)

where NP is the prediction horizon; Ne is the control hori-
zon; σ is the weight coefficient, and ψ is the weighting
factor.

Note that the first term of the objective function reflects
the ability of the robot system to track the reference trajec-
tory, and the second term represents the capacity to con-
strain the control variable. This illustrates that the MPC
controller can adequately realize the path tracking con-
trol, but cannot eliminate the uncertainties of the robot
system and external interferences. However, the method
of RBFNN approximation has shown the useful general-
ization [23, 24].

Then, we can transform the trajectory error model as

φ(k|t) = [x̃(k|t), ũ(k−1|t)]T . (32)

The state function can be described as

φ(k+1|t) = H̃k,t(k|t)+ K̃k,t∆U(k|t),
ϒ(k|t) = Z̃k,tφ(k|t), (33)

where H̃k,t =

[
Hk,t Kk,t

0m×n Im

]
, K̃k,t = [Kk,t , Im]

T , n is the state

degree and m is the control variable degree.
Therefore, the output of model prediction can be ob-

tained as follows:

YP(t) = Θtφ(t|t)+Et∆U(t|t). (34)

Define the following vectors as

H = Im⊗



1 0 · · · · · · 0
1 1 0 · · · 0

1 1 1
. . . 0

...
...

. . . . . . 0
1 1 · · · 1 1

 ,

Uλ = 1Nc ⊗u(k−1), (35)

where 1NC is a column vector with the number of Nc; Im is
a unit matrix of order m and ⊗ is Kronecker product.

The optimization objective function can be represented
as

S[φ(t),u(t),∆U(t)]

= Ft
[
∆U(t)T,ψ

]T
+
[
∆U(t)T,ψ

]TDt
[
∆U(t)T,ψ

]T
,

(36)

where Ft =
[
2eT

t LEt ,0
]
, Dt =

[
ET

t LEt +M 0
0 σ

]
.

Therefore, the prediction horizon error can be obtained
as

et = Θtφ(t|t)−Yref(t), (37)

Fig. 2. Block diagram of RBFNN-based tracking control.

Yref(t) = [ϒref(t +1|t), · · · ,ϒref (t +NP|t)]T . (38)

When the model predictive controller completes the op-
timization objective function for each time, the control in-
put increment of the system in the control horizon is de-
fined as

∆U∗t =
[
∆u∗t ,∆u∗t+1, · · · ,∆u∗t+Nc−1

]T
. (39)

Finally, substituting the first element of the control in-
crement (67) into the control system as the actual control
input increment

u(t) = u(t−1)+∆u∗t . (40)

Considering the safety and stability of the wheel-legged
robot, it is necessary to restrict the control limit and con-
trol increment, as following:

umin(t + k)≤ u(t + k)≤ umax(t + k), (41)

∆Umin(t + k)≤ ∆U(t + k)≤ ∆Umax(t + k), (42)

where k = 1, 2, ..., t +Nc−1.

3.3. Control block diagram
Based on the overall control scheme, the structure of

RBFNN approximation for tracking control is shown in
Fig. 2. The trajectory generator simulates the desired path
and transfers the position information to the kinematics
and dynamics model of the robot system. Then, the model
predictive tracking controller is carried out to realize the
path following in the undisturbed state according to the
error of a lateral position, longitudinal position, and head-
ing angle. For the model uncertainties and external distur-
bances, the RBFNN algorithm is applied to eliminate the
uncertain physical interaction.

4. SYSTEM DESCRIPTION

Inspired by the Stewart parallel platform of the 6-
degree-of-freedom (6-DOF) in the advantages of kinemat-
ics and dynamics, this paper developed the electric par-
allel wheel-legged robot (BIT-NAZA). It combines the
rapidity and stability of wheel sport with strong adapt-
ability of legged sport, making the robot movement more
flexible and variable [25]. The developed concept of the
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Fig. 3. Parallel mechanism of the wheel-legged robot.

Table 1. The main parameters of BIT-NAZA robot.

Size 1.2 m∗1.2m∗1.4m
Load capacity 150 kg (carrying)

Max wheel speed 15 km/h
Max legged Speed 1.2 m/s

The range of wheel track 0.5 m - 1 m
The range of base 1.2 m - 1.6 m

wheel-legged robot platform is shown in Fig. 3. The in-
verted Stewart parallel platform and drive wheel consti-
tute a wheel-legged composite mechanism, which obtains
a new sport model, including four-legged walking, four-
wheel independent driving, and wheel-legged composite
motion. The BIT-NAZA robot is mainly composed of
the control system, environment perception system, power
system, and parallel mechanical structure. In addition, the
motion platform involves the electric cylinders, servo mo-
tors, suspension systems, and reducers. The correspond-
ing parameters of the wheel-legged robot are shown in Ta-
ble 1.

The communication network includes TCP/IP, CAN-
bus, and RS232. The robot status information is transmit-
ted to a monitor computer by wireless UDP transmission
technology, and the cooperative control framework is im-
plemented using the CAN bus. The robot device has been
constructed using a DC motor and electric cylinder as the
actuation element. The electric cylinder is GSM20-1202,
with a 300 mm stroke, and the DC motor driver is Elmo.

Fig. 4. The motion sport of wheel-legged robot.

The energy system is a 48V20Ah power battery. The bot-
tom controller adopts SCM/SGX1-PC104 module, and the
central controller of the environmental perception system
is TX2 (CPU: ARM+ Denver2; GPU: Pascal-GPU with
256 CUDA-cores).

There is a three-sport model in the wheel-legged robot,
which is the wheel/foot model, the wheel-legged model,
and the specific model, as shown in Fig. 4. When the ob-
stacles are larger than the wheel track or higher than the
base, the robot can autonomously switch to the wheel-
legged sport. In practical application, the robot can trans-
port 150 kg payload and cross the unstructured ground.
Benefited by the various wheel-legged composite sport,
the BIT-NAZA robot has the strong ability to walk in a
complex environment such as military operations, emer-
gency relief, resource exploration.

5. RESULTS AND DISCUSSIONS

In order to illustrate the effectiveness of the proposed
algorithms, some demonstrations are carried out on the de-
veloped electric parallel wheel-legged robot (BIT-NAZA).
Two groups of comparative test are carried out as follows:

• Trajectory tracking without external disturbances of
PID and NMPC, including straight lines, curves and
obstacles, is designed to verify the accuracy and ro-
bustness of the proposed algorithm.
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Fig. 5. The tracking performance of S-shape.

• In contrast, to further explain the advantage of NMPC
in uncertain disturbances, including the internal-robot
friction and external-robot and environment interac-
tion forces, a comparison using NMPC and MPC is
discussed for the circle path.

The main experiment parameter setting are as follows:
robot speed v = 1 m/s, prediction horizon NP = 20, con-
trol horizon Ne = 5, weight coefficient σ = 10, MPC sam-
ple time T = 0.02 s, interference signal of sine curve
d = 0.015 and period t = 2 s. In order to control the abil-
ity of stability and smoothness, we define the constraint
condition of the control variable as [−0.3,−25]T ≤ u ≤
[0.3,25]T and [−0.02,−0.05]T ≤ ∆U ≤ [0.02,0.05]T . At
the same time, the weight matrix of RBFNN are initial-
ized as W1(0) = 0 ∈ R3l1×3 and W2(0) = 0 ∈ R3l2×3, and
the momentum parameter and the learning rate of RBFNN
are set as 0.00005 and 0.000005, respectively. ηi = 1.1 and
ui =

[
−3 −1.5 0 1.5 3 3.5

]
.

In Fig. 5, the target path is mainly composed of the
straight path with 7.5 meters, the circular arc with a ra-
dius of 5.2 meters and three obstacles with narrow aisles.
The width of the barrier is only 4cm more extensive than
the robot body to verify the accuracy of the control algo-
rithm. Set the robot to advance at a uniform speed of 1
m/s, and pass the trajectory of straight, arcs and obstacles
in sequence. The comparative results of co-simulation are
displayed in Fig. 6. It can be seen from the co-simulation
results that the proposed algorithm NMPC can track the
reference path well, and the robot responds smoothly with
a lateral error of around±0.05 meters. Both the lateral po-
sition and the longitudinal position are capable of tracking
the reference path, whether in straight sections or curve
sections. However, the wheel-legged robot using the PID
scheme has a large fluctuation in tracking trajectory with
the lateral error around ±0.1 meters and heading angle
error around 4 degrees. The control response of accu-
racy and frequency does not meet the fast real-time in
the robot system. In addition, the NMPC can accurately
pass through the uncertain disturbances of narrow aisles
(8s, 15s, and 23s), while the robot with PID approach col-

Fig. 6. The comparative results of PID and MPC.

Fig. 7. The tracking performance of tracking control with
NMPC and MPC.

lided when passing the second obstacle, indicating that the
NMPC algorithm can achieve satisfactory performance
with high accuracy and respond quickly in tracking per-
formances.

To further evaluate the superiority and universality of
the proposed algorithm, a circular path with 5.2 meters
tracking experiment using NMPC and MPC under un-
certain physical interaction with sinusoid input is investi-
gated, and the tracking performance is displayed in Fig. 7.
There are the comparative results of longitudinal position,
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Fig. 8. The comparative performances of NMPC and
MPC in longitudinal position, lateral position,
heading angle, roll angle and pitch angle.

Fig. 9. The tracking error of NMPC and MPC in longitu-
dinal position, lateral position and heading angle.

lateral position, heading angle, roll angle and pitch angle,
as noted in Fig. 8. It can be seen that both the NMPC and
MPC approach can basically track the desired trajectory.
However, from the tracking error of NMPC and MPC, as
presented in Fig. 9, the system with NMPC can be con-

trolled to track the desired trajectory with the gradually
decreasing error variation in the lateral position, longitu-
dinal position and heading angle, while the tracking error
of the MPC scheme is slowly increasing. The lateral error
of NMPC is efficiently controlled within ±0.02 meters,
which means that in the case of external interference and
uncertain dynamics, the NMPC can obtain the higher con-
trol accurately, and the tracking error is gradually reduced.
In addition, the method of NMPC can maintain a smaller
pitch angle and roll angle, which means that the NMPC
can achieve the advantage of performance in the case of
uncertain dynamics.

Based on the obtain tracking performance, we can infer
that the RBFNN approximation can be properly compen-
sated for the internal interference and external uncertainty
of the robot system. The proposed algorithm NMPC has
higher position control accuracy than the classical MPC,
especially in more precise and smoother in lateral error.

6. CONCLUSION

This paper investigates the neural approximation-based
model predictive tracking control for the developed wheel-
legged robot under the uncertain physical interaction and
external dynamics. The proposed NMPC approach can
adequately compensate for dynamic uncertainties. In ad-
dition, an advanced parallel mechanism of wheel-legged
is introduced to validate the proposed algorithm. Some
demonstrations are performed using the BIT-NAZA robot
to illustrate that the proposed method can achieve promis-
ing tracking performance, which can provide theoretical
and engineering guidance for intelligent robots. To im-
prove our future research, we will endeavor to consider the
dynamic analysis of impedance control and more compli-
cated road conditions in a practical robot system.
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