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Virtual Model Reduction-based Control Strategy of Planar Three-link
Underactuated Manipulator with Middle Passive Joint
Zixin Huang, Xuzhi Lai* � , Pan Zhang, Yawu Wang, and Min Wu

Abstract: This paper presents a position control strategy for a planar active-passive-active (APA) underactuated
manipulator with second-order nonholonomic characteristics. According to the structural characteristics of the pla-
nar APA system, we divide the system into two parts: a planar virtual Pendubot (PVP) and a planar virtual Acrobot
(PVA). For the PVP, we mainly fulfill the target angle of the first link, which is calculated through the geometry
method, and make the system stable. In this stage, via keeping the states of the third link being zero, the system is
reduced to the PVP. Meanwhile, we design an open-loop control law based on the nilpotent approximation (NA)
model of the PVP to make the second link stable and the first link stabilize at its target angle. Then, the planar APA
system is reduced to a PVA with all links’ angular velocities being zero. For the PVA, we mainly realize the other
two links’ target angles obtained via the particle swarm optimization (PSO) algorithm. Thus, the control objective
of the planar APA system is achieved. Finally, above control strategy is verified by simulation results.

Keywords: Nilpotent approximation, planar underactuated manipulator, position control, PSO algorithm, second-
order nonholonomic characteristics.

1. INTRODUCTION

For an underactuated system (US), its control inputs are
less than the degrees of freedom [1–4]. Apparently, be-
cause of the reduction of control inputs, control of such
system is difficult. A typical representative of the US is
a planar underactuated manipulator (UM) [5, 6] without
gravity. And the linear approximate model of the planar
UM at its equilibrium points is uncontrollable [7,8]. Thus,
studying the point-to-point position control approaches of
the planar UM is challenging. In addition, the study on the
planar underactuated manipulator is more significant for
promoting the development of underactuated mechanical
system theory.

Usually, the planar UM with a passive joint has the dif-
ferent characteristics [9]. According to the integrability
condition in [10], such planar UM is classified into three
categories: the first is the holonomic manipulator, which
has the angle constraint [11], the second is the first-order
nonholonomic manipulator, which has the angular veloc-
ity constraint [12], and the third is the second-order non-
holonomic manipulator [13].

The holonomic system [14] is controlled based on an
angle constraint and the first-order nonholonomic sys-

tems [15] are controlled based on an angular velocity con-
straint. The control methods for these two types of sys-
tems are quite mature. However, as for the second-order
nonholonomic system, there is no angle or angular veloc-
ity constraints available, so such system is more difficult
to control than the above two types of systems.

Among the second-order nonholonomic manipulators,
the planar Pendubot is a two-link manipulator with sec-
ond passive joint. For this system, Luca [16] uses the NA
method to compute a suitable cycle control input and pro-
poses an iterative steering approach to stabilize the sys-
tem.

For a planar AAP system having the second-order non-
holonomic constraint, Arai [17] proposes a control method
to construct trajectories composed of translational and ro-
tational trajectories for positioning the planar AAP sys-
tem. And Luca [18] presentes a stable control method for
a planar AnP (n > 2) system based on the trajectory plan-
ning. Meanwhile, the above methods all rely on the center
of the percussion of the last link. Such methods can only
work for manipulators with the passive link located at the
end.

The three-link manipulator with passive first joint (pla-
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nar PAA system) can be controlled by the angular velocity
constraint [15]. The three-link manipulator with passive
last joint (planar AAP system) can be controlled by the
chained form [17]. However, there is a little researching
on a planar UM with a passive middle joint (PMJ), whose
simplest form is the planar APA system. [19] pointes the
control problem of the planar APA system remains open.
In addition, the existing methods of the PAA type and
AAP type cannot be suitable for the APA type. Thus, the
control method of the planar APA system is not mature,
and there is no effective control method for such system.

Nowadays, to study the control problem of the planar
UM with a PMJ, we take the planar APA system as the re-
search object, and propose a control method for the system
by reducing it to two virtual parts. First, we get the target
angle range of the first active link (FAL) relying on the
target position of end-point and geometrical relationship.
Then, the original system is reduced to a PVP by control-
ling the passive joint reach to its target position and the
states of the third active link (TAL) be zero. Next, we de-
sign an open-loop control law for the FAL based on the
NA model, which can make the FAL and second under-
actuated link (SUL) stop rotating and the FAL come back
to its target angle. Hence, the original system is further
reduced to PVA with the static motion of all links. Ac-
cording to the target value of end-point and the angle con-
straint of PVA, we calculate the two links’ target angles of
PVA using PSO algorithm [20]. Then, the controllers are
designed to make the TAL reach to its target states and to
keep the FAL at its target states. Meanwhile, the SUL is
adjusted to its target states based on the angle constraint.
Thus, the end-point of the planar APA system can reach
to the target position. At last, one simulation example is
taken to verify our presented strategy.

2. THE MODEL

The model of the planar APA system is shown in Fig. 1,
where } represents the active joints and© represents the
passive joint. The parameters of the ith (i = 1,2,3) link
are: qi is the angle, mi is the mass, Li is the length, Lci

is the distance from its joint to its center of mass, Ji is
the moment of inertia, and τi is the torque of the ith joint,
(x,y) is the end-point coordinate.

The dynamic equations of the system is

M(q)q̈+H(q, q̇) = τ, (1)

where q = [q1 q2 q3]
T , q̇ = [q̇1 q̇2 q̇3]

T , and q̈ = [q̈1 q̈2 q̈3]
T

are the vector of angle, angular velocity and angular accel-
eration, respectively; τ = [τ1 0 τ3]

T is the input torque vec-
tor; M(q)∈R3×3 is the inertia matrix with the characteris-
tic of the symmetric positive definite, and H(q, q̇) ∈ R3×1

contains the Coriolis and centrifugal forces. For a detailed
expression of M and H, see [15].
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Fig. 1. Planar APA System.
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Fig. 2. Sketch of the PVP.

Because the planar APA system has complex nonlinear
characteristics, there is no way to achieve its stable con-
trol. However, the stable control of planar Pendubot has
been realized by employing NA model and that of planar
Acrobot has been achieved by using angle constraint.

Motivated by the above stable control strategies of two
kinds of two-link systems, we divide the planar APA sys-
tem into two parts to control by analyzing its mechanical
structure. When the angle and the angular velocity of the
third link of the planar APA system are controlled to zero,
that is, q3 = 0 and q̇3 = 0, the last two links can be re-
garded as a virtual passive link. In this case, the planar
APA system is treated as a PVP. The PVP is shown as
Fig. 2, where we mainly implement the control objective
of the FAL. When the angle of the first link of the planar
APA system is kept at a constant, the planar APA system
is treated as a PVA. The PVA is shown as Fig. 3, where we
mainly realize the control objectives of the SUL and TAL.
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Fig. 3. Sketch of the PVA.

3. CONTROLLER DESIGN FOR PVP

We achieve the control objective of FAL for the PVP
in this section, and make the system be reduced to a PVA
with all links stopping rotating.

3.1. Target angle solution of the FAL
This subsection uses a geometry method to get the

FAL’s target angle corresponding to the target value of
end-point.

For Fig. 4, we firstly draw a circle C1, where the center
of the circle is target position, and radius r1 is a sum of
the length of the SUL and TAL. Then, we draw another
circle C2, where the center of the circle is the inertial co-
ordinate origin, and the radius r2 is the length of the FAL.
The points on the two circles can be described:{

C1 : (x− xd)
2 +(y− yd)

2 = r2
1,

C2 : x2 + y2 = r2
2,

(2)

where r1 = L2+L3, r2 = L1, and (xd ,yd) is target position.
The intersections of above two circles are A(xa,ya) and

B(xb,yb). For the control objective, the controllable region
of the passive joint is the red AB arc of Fig. 4. Therefore,
when the periodicity of the angle is not taken into consid-
eration, the angle of the FAL at A, B are qA

1 , qB
1 , respec-

tively. Thus, the range of the target angle of FAL, defined
as qd

1 , is

qd
1 ∈
[
qA

1 ,q
B
1

]
. (3)

3.2. System reduced to PVP
We achieve the control objective of q1 = qd

1 , q̇1 = 0,
q3 = 0, and q̇3 = 0 in this subsection. That is, the original
system is regarded as PVP.

Let x = [x1 x2 x3 x4 x5 x6]
T = [q1 q2 q3 q̇1 q̇2 q̇3]

T , and
the dynamic model (1) can be transformed to the following
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Fig. 4. Sketch of the target area of the passive joint.

state-space equation.

ẋ1 = x4,

ẋ2 = x5,

ẋ3 = x6,

ẋ4 = f1 +g11τ1 +g13τ3,

ẋ5 = f2 +g21τ1 +g23τ3,

ẋ6 = f3 +g31τ1 +g33τ3,

(4)

where g11, g21, g31, g13, g23, and g33 are nonlinear func-
tions, and f1, f2, and f3 satisfy

[ f1 f2 f3] = M−1 (q)H (q, q̇) . (5)

Equation (4) is further expressed to be

ẋ = f (x)+g(x)τ, (6)

where{
f (x) = [x4,x5,x6, f1, f2, f3]

T ,

g(x) = [g1,g2]
T ,

(7)

where g1 is a 3×3 null matrix and

g2 (x) =

 g11 0 g13

g21 0 g23

g31 0 g33

= M−1

 1 0 0
0 0 0
0 0 1

 . (8)

The following Lyapunov function is chosen for the con-
trol objective of this subsection

V1 (x) =
1
2

P1
(
x1− xd

1

)2
+

1
2

x2
4 +

1
2

P2x2
3 +

1
2

x2
6, (9)

where P1, P2 are positive constants, and xd
1 = qd

1 . The
derivative of V1 is

V̇1 (x) =x4
(
P1
(
x1− xd

1

)
+ f1 +g11τ1 +g13τ3

)
+ x6 (P2x3 + f3 +g31τ1 +g33τ3) . (10)
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Thus, the controllers are chosen as{
τ1 =

(
P1
(
−x1 + xd

1

)
− f1−D1x4−g13τ3

)
g11
−1,

τ3 = (P2 (−x3)− f3−D2x6−g31τ1)g33
−1,

(11)

where D1, D2 are positive constants. From (8), we obtain

g11 =
M22M33−M2

23

detM
, g33 =

M11M22−M2
12

detM
, (12)

which are positive [15].
Substituting (11) into (10) obtains

V̇1 (x) =−D1x2
4−D2x2

6 ≤ 0. (13)

Substituting (11) into (6), the closed loop system (CLS)
is

ẋ = Fp (x) . (14)

From (13), V1 (x) is bounded. Define

Ω1 =
{

x ∈ R6 |V1 (x)≤ λ1
}
, (15)

where λ1 > 0. Next, any solution x of (14) starting in Ω1

remains in Ω1 for all t ≥ 0. Let Φ1 be an invariant of the
CLS (14)

Φ1 =
{

x(t) ∈Ω1
∣∣V̇1 (x) = 0

}
. (16)

When V̇1 (x)≡ 0, then x4 ≡ 0 and x6 ≡ 0. Substituting it
into (6) gets{

f1 =−g11τ1−g13τ3,

f3 =−g31τ1−g33τ3.
(17)

Substituting (17) into (11) obtains x1 = xd
1 , x3 = 0. Then,

the largest invariant set for the FAL and TAL states of the
original system in this stage is

W1 =
{

x ∈ R6 | x1 = qd
1 ,x3 = 0,x4 = 0,x6 = 0

}
.

(18)

From LaSalle’s invariance principle [21], the con-
trollers have completed control objectives of this subsec-
tion, which are q1 = qd

1 , q̇1 = 0 and q3 = 0, q̇3 = 0.
Thus, when the following conditions S1a are satisfied,

the system is reduced to the PVP.

S1a:=

{∣∣x1− xd
1

∣∣≤ e1, |x4| ≤ e2,

|x3| ≤ e1, |x6| ≤ e2,
(19)

where e1, e2 are small positive constants.
Based on (1), the underactuated constraint is

M21q̈1 +M22q̈2 +M23q̈3+H2= 0. (20)

From [15], we know H2 is a polynomial about (q̇1)
2

and q̇3. Combining (18) and (20), when we achieve the
objective of this subsection, the states of SUL are ẋ5 ≡ 0
and x5 = ε (ε is a constant). Therefore, the original system
is regarded as PVP. Meanwhile, the control objective of
the FAL of PVP has been achieved, but the SUL keeps
rotating due to the underactuated characteristic.

Note that the initial angular velocities of all links should
be zero when we employ the constraints of PVA to realize
control objectives of the SUL and TAL. Thus, in the next
subsection, we use the NA method to ensure that the SUL
stops rotating when the FAL reaches to its target states.

3.3. Stable control for PVP

In this subsection, we design a cycle controller to make
the two links of PVP be stationary, and to ensure that the
SUL reaches to a middle angle, while states of the FAL
at the starting moment of each period are the same as that
at the last moment. Meanwhile, the states of TAL are kept
being zero during the whole control stage, which ensures
that the system is always a PVP.

Fig. 5 shows the model of PVP. Its dynamic model is
expressed as

M̃ (q̃) ¨̃q+ H̃
(
q̃, ˙̃q
)
= τ̃, (21)

where

M̃ (q̃) =
[

M̃11 M̃12

M̃21 M̃22

]
, H̃

(
q̃, ˙̃q
)
=

[
H̃1
(
q̃, ˙̃q
)

H̃2
(
q̃, ˙̃q
) ] ,

(22)

q̃ = [q̃1 q̃2]
T , ˙̃q =

[
˙̃q1 ˙̃q2

]T
, τ̃ = [τ̃1 0]T , (23)

3τ

1L

1cL

2Lɶ
2
cLɶ

x

y

1m

2mɶ

1Jɶ

2Jɶ

2qɶ

1τ%

Active joint

Center of mass

Passive joint

( ),x y

O

End-point

1qɶ

Fig. 5. The model of the PVP.
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

M̃11 = b1 +b2 +2b3cosq̃2,

M̃12 = M̃21 = b2 +b3cosq̃2,

M̃22 = b2,

H̃1 =−b3

(
2 ˙̃q1

˙̃q2 +
(

˙̃q2

)2
)

sinq̃2,

H̃2 = b3
(

˙̃q1

)2sinq̃2

(24)


b1 = m1Lc1

2 +(m2 +m3)L1
2 + J̃1,

b2 = (m2 +m3)(Lc2 +Lc3)
2 + J̃2,

b3 = (m2 +m3)L1 (Lc2 +Lc3) .

(25)

The underacutated constraint of (21) is

M̃21 ¨̃q1 + M̃22 ¨̃q2 + H̃2 = 0. (26)

Define ¨̃q1 = u, so we get{
¨̃q1 = u,
¨̃q2 =−M̃−1

22 H̃2− M̃−1
22 M̃21u.

(27)

Combining (21) and (27), we get

τ̃1 =
(
M̃11− M̃12M̃−1

22 M̃21
)

u+ H̃1− M̃12M̃−1
22 H̃2. (28)

Let x̃ = [q̃1 q̃2 ˙̃q1 ˙̃q2]
T , so the state-space equation of

PVP is

˙̃x =


˙̃q1
˙̃q2
0

−N sin q̃2
(

˙̃q1

)2

+


0
0
1

−(1+N cos q̃2)

u

= f̃ (x̃)+ g̃(x̃)u, (29)

where N = b3/b2.
According to the state equation (29), we can adopt the

iterative steering approach [22] to make the two links of
the PVP stop rorating, and make the states of the FAL be
the same at the starting and last moment of each period.

Fig. 6 shows the control sequence diagram for control-
ling PVP. According to the Fig. 6, we define the period of
the iterative steering control as T , the initial time of itera-
tive steering as t̃0 = t1 and the initial states x̃0 of the PVP
as

x̃0 = x(t1) =
[
q̃0

1 q̃0
2

˙̃q0
1

˙̃q0
2

]
=
[
q1

1 q1
2 0 q̇1

2

]
, (30)

0

Stabilization

2t1t

t

 

Model 

reduced

Swtiching

 

2 1t t mT− =

Planar virtual Pendubot

Fig. 6. Control sequence.

where q1
1 = qd

1 .
When the PVP is stable, we define the termination time

as t̃m = t2 and the final state as x̃m = x(t2).

x̃m = [q̃m
1 q̃m

2 0 0] =
[
qd

1 qm
2 0 0

]
. (31)

Based on the above definition, we give the procedure of
the iterative steering:
Step 1: Set t̃0 = t1, t2 − t1 = mT , t̃k = t̃0 + kT and k =

1, · · · ,m. Define x̃k as the state at the kth period. x̃k

needs to be closer to x̃m than x̃k−1.
Step 2: Control the PVP to the state x̃k, and k starts from

1 to m.
Step 3: Iterative the open-loop control input u(x̃k+1)

from u(x̃k) that controls the state from x̃k to x̃k+1 in
[t̃k, t̃k+1]. In general, the x̃k 6= x̃m.

Step 4: Set t̃k+1 = t̃k +T . If x̃k+1 = x̃m, the iterative steer-
ing is finished. Otherwise, go to Step 2.

During the iterative steering, the states of the system at
the end of each cycle should be

q̃k
1 = q̃1 (t̃k) = qd

1 ,

˙̃qk
1 = ˙̃q1 (t̃k) = 0,

q̃k
2 = q̃2 (t̃k) ,

˙̃qk
2 = ˙̃q2 (t̃k) .

(32)

After m iteration periods of control, the controller en-
sures that the SUL stops rotating. At the same time, the
SUL converges to its middle angle q̃m

2 .{
q̃k=m

2 = q̃2 (t̃m) = q̃m
2 ,

˙̃qk=m
2 = ˙̃q2 (t̃m) = 0.

(33)

For achieving the control objectives, we employ the NA
model to calculate the cyclic control input in the iterative
steering approach.

Luca [16] has studied the algorithm for NA model of
the underactuated system. Thus, we reference the pro-
posed method to compute the NA model for the PVP (29).
Similarly, we construct the accessible matrix by choosing
the vector fields { f̃ , g̃, [ f̃ , g̃], [g̃, [ f̃ , g̃]]} to make coordi-
nate transformation and get the privileged coordinates at
[q̃0

1 q̃0
2

˙̃q0
1

˙̃q0
2] of the PVP as follows:

q̃1 = q̃0
1− z3, (34a)

q̃2 = q̃0
2 + ˙̃q0

2z1 +αz3, (34b)
˙̃q1 = z2, (34c)
˙̃q2 = ˙̃q0

2−αz2 +β z3− γz4 +β z1z2, (34d)

where α = 1+N cos q̃0
2, β = N ˙̃q0

2 sin q̃0
2, γ = N2 sin2q̃0

2.
The NA model of the PVP is

ż1 = 1, (35a)

ż2 = u, (35b)

ż3 =−z2, (35c)

ż4 =
z2

2

2Ncosq̃0
2
−

( (
˙̃q0
2

)2z2
1

4Nsinq̃0
2
+

αz3

2Ncosq̃0
2

)
u.(35d)
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Thus, we use the NA model (35) instead of the exact
model (29) for computing the control input.

Since the system goes through a cycle of control, the
states of the FAL should return to

(
qd

1 ,0
)
. Thus, according

to ¨̃q1 = u, u should satisfy the conditions∫ T

0
u(t)dt = 0,

∫ T

0

∫ t

0
u(τ)dτdt = 0. (36)

From (35b), (35c) and (36), we find that
z2 (T ) =

∫ T

0
u(t)dt = 0, (37a)

z3 (T ) =−
∫ T

0

∫ t

0
u(τ)dτdt = 0. (37b)

According to (34b) and (37b), we obtain the angle error
of SUL at k = 1 period.

∆q̃2 = q̃1
2− q̃0

2 = ˙̃q0
2z1 (T ) = ˙̃q0

2T. (38)

Since z1(t) =
∫ T

0 ż1dt = T from (35a), (38) indicates
∆q̃2 does not depend on the control input, but only de-
pends on ˙̃q0

2.
According to (34d) and (37), we can obtain the angular

velocity error of SUL at k = 1 period.

∆ ˙̃q2 = ˙̃q1
2− ˙̃q0

2 =−γz4 (T ) . (39)

From (35d), we get

z4 (T ) =
∫ T

0

1
2Ncosq̃0

2
z2

2(t)dt

−
∫ T

0

( (
˙̃q0
2

)2

4Nsinq̃0
2

z2
1(t)+

α

2Ncosq̃0
2

z3(t)

)
u(t)dt.

(40)

Based on partial integration method, the relative items
of (40) can be obtained

∫ T

0
z2

1(t)u(t)dt =
∫ T

0
z2

1(t)dz2(t)

=(z2
1(t)z2(t))|T0−2

∫ T

0
z1(t)ż1(t)z2(t)dt

=−2
∫ T

0
z1(t)z2(t)dt

= 2
∫ T

0
z1(t)dz3(t)

= 2(z1(t)z3(t)) |T0−2
∫ T

0
ż1(t)z3(t)dt

=−2
∫ T

0
z3(t)dt,∫ T

0
z3(t)u(t)dt =

∫ T

0
z3(t)dz2(t)

= (z3(t)z2(t)) |T0−2
∫ T

0
ż3(t)z2(t)dt

=
∫ T

0
z2

2(t)dt.

(41)

A

T

Fig. 7. Profile of u.

From (39), (40) and (41), we can obtain

∆ ˙̃q2 =N2sinq̃0
2cosq̃0

2

∫ T

0
z2

2(t)dt

−Ncosq̃0
2

(
˙̃q0
2

)2
∫ T

0
z3(t)dt, (42)

where the sign of the two items on the right depends only
on q̃0

2 and
(

˙̃q0
2

)2, respectively.
The cyclic control input u(t) is designed as

u(t) =


−Acos

4πt
T

, t ∈
[

0,
T
2

)
,

Acos
4π
(
t− T

2

)
T

, t ∈
[

T
2
,T
]
.

(43)

where the A (see Fig. 7) is the amplitude of u(t).
From (35b) and (35c), z̈3 =−u is obtained. Thus,∫ T

0
z3(t)dt =

∫ T

0

∫ t

0

∫
σ

0
u(ρ)dρdσdt = 0, (44)

and ∫ T

0
z2

2(t)dt =
∫ T

0

(∫ t

0
u(σ)dσ

)2

dt =
T 3

32π2 A2.

(45)

According to (42), (44) and (45),

∆ ˙̃q2 =
A2T 3N2

64π2 sin2q̃0
2. (46)

The above expression indicates ∆ ˙̃q2 and sin2q̃0
2 have the

same sign.
To ensure that the states of the SUL are closer to the

given values by the iterative steering after every period,
we give the contracting relationship of the first period as
follows:∣∣q̃m

2 − q̃1
2

∣∣≤ η1
∣∣q̃m

2 − q̃0
2

∣∣ , (47)∣∣ ˙̃q1
2

∣∣≤ η2
∣∣ ˙̃q0

2

∣∣ . (48)

where η1, η2 ∈ [0,1) are coefficients of convergence.
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Without loss of generality, assume

q̃m
2 − q̃1

2 = η1
(
q̃m

2 − q̃0
2

)
, (49)

˙̃q1
2 = η2 ˙̃q0

2. (50)

Observing (38) and (49), we get

T = (1−η1)
q̃m

2 − q̃0
2

˙̃q0
2

, 0≤ η1 < 1. (51)

Because T > 0, the following conditions should be satis-
fied when (51) holds.{

q̃0
2 < q̃m

2 ,

˙̃q0
2 > 0,

or

{
q̃0

2 > q̃m
2 ,

˙̃q0
2 < 0.

(52)

And according to (39), (46) and (50), we obtain

A =
8π

NT

√
˙̃q0
2 (η2−1)
T sin2q̃0

2
, 0≤ η2 < 1. (53)

In order to guarantee the square root in above equation
to be positive, the following conditions should be obeyed:

˙̃q0
2 < 0 :

{
q̃0

2 ∈ Q1,

q̃0
2 ∈ Q3,

˙̃q0
2 > 0 :

{
q̃0

2 ∈ Q2,

q̃0
2 ∈ Q4,

(54)

where Q1, Q2, Q3 and Q4 are four quadrants.
Combining (52) and (54), we obtain the following four

conditions, where as long as one condition is satisfied, the
convergence of the PVP can be realized by using (51) and
(53).

q̃m
2 ∈ Q1, q̃0

2 ∈ Q1, q̃0
2 > q̃m

2 , ˙̃q0
2 < 0, (55a)

q̃m
2 ∈ Q2, q̃0

2 ∈ Q2, q̃0
2 < q̃m

2 , ˙̃q0
2 > 0, (55b)

q̃m
2 ∈ Q3, q̃0

2 ∈ Q3, q̃0
2 > q̃m

2 , ˙̃q0
2 < 0, (55c)

q̃m
2 ∈ Q4, q̃0

2 ∈ Q4, q̃0
2 < q̃m

2 , ˙̃q0
2 > 0. (55d)

Here, we define S1b: = (55a) or (55b) or (55c) or(55d).
Then, only when S1b is satisfied, we can continue to do
iterate steering and realize the stable control of PVP by
employing controllers (28).

In order to guarantee the system is reduced to PVP and
realize the stable control of PVP, the controllers should
be switched from (11) to (28) when the switch condition
S1: = S1a∪S1b is satisfied.

When the following switch condition S2 is satisfied,

S2:=


∣∣q1−qd

1

∣∣≤ e1, |q̇1| ≤ e2,

|q2− q̃m
2 | ≤ e1, |q̇2| ≤ e2,

|q3| ≤ e1, |q̇3| ≤ e2,

(56)

the stable control of the PVP is realized using the con-
troller (28).

So far, the target angle of the FAL has been achieved
and the planar APA system has been stabilized with all
links’ angular velocities being zero, which means the pla-
nar APA system is reduced to the PVA.

4. CONTROLLER DESIGN FOR PVA

In this section, we realize the control objective of PVA.
That is, we control the TAL to its target value, also bring-
ing the SUL to its.

4.1. Modeling for PVA
Fig. 8 shows a model of PVA. Because the initial value

of this stage is the termination value of the previous
stage, at this stage, we let the initial states of the PVA be[
θ 0

p q0
3 0 0

]
, where q0

3 = 0. The θ 0
p is also expressed as{

θ
0
p = qd

1 +qm
2 ,

qm
2 = q̃m

2 .
(57)

The dynamic equation of PVA is

M̂ (q̂) ¨̂q+ Ĥ
(
q̂, ˙̂q
)
= τ̂, (58)

where

M̂ (q̂) =
[

M̂22 M̂23

M̂32 M̂33

]
, Ĥ

(
q̂, ˙̂q
)
=

[
Ĥ1
(
q̂, ˙̂q
)

Ĥ2
(
q̂, ˙̂q
)] , (59)

q̂ = [θp q3]
T , τ̂ = [0 τ̂3]

T , (60)

M̂22 = c1 + c2 +2c3cosq3,

M̂23 = M̂32 = c2 + c3cosq3,

M̂33 = c2,

Ĥ1 =−c3

(
2θ̇pq̇3 +(q̇3)

2
)

sinq3,

Ĥ2 = c3
(
θ̇p
)2sinq3,

(61)


c1 = m2Lc2

2 +m3L2
2 + Ĵ1,

c2 = m3Lc3
2 + Ĵ2,

c3 = m3L2Lc3.

(62)

The passive part of (58) is

M̂22θ̈p + M̂23q̈3 + Ĥ1 = 0. (63)

x

y

1L

1cL 1m 1J
2

mq

3q

3L

3cL

3m

3J

2J
2
m

2
cL

1̂τ
( , )p px y

3̂τ

pθ

( , )x y

2L

Active joint

Center of mass

Passive joint

End-point

O 1

dq

Fig. 8. The model of the PVA.
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The PVA is a holonomic system. Thus, integrating (63)
can get the following angular velocity constraint [11]
when all links are motionless at initial time.

M̂22θ̇p + M̂23q̇3 = 0. (64)

When q̇3 = 0, θ̇p = 0. Then, integrating (64), we obtain
the angle constraint of PVA [11].

θp =−
q3

2
−δ

(
ϕtan

q3

2
−ϕtan

q0
3

2
+ jπ

)
+ξ , j ∈ Z,

(65)

where

δ =
c2− c1√

(c1 + c2)
2−4c2

3

, ξ = θ
0
p +

q0
3

2
,

ϕ= arctan(φψ), φ =

√
c1 + c2−2c3

c1 + c2 +2c3
,

ψ = tan
(q3

2

)
.

(66)

From (65), when the TAL reaches to a given angle, the
SUL is simultaneously brought to a given angle. In other
words, when the TAL is controlled to its target states, the
PVA is stabilized at the target position.

4.2. Solution of target angles
In this subsection, the target angles of two links of PVA

are solved according to the following constraint relation-
ships by using PSO algorithm: (i) the geometric constraint
relationship between the angles of all links; (ii) the reach-
able area of the FAL, which is selected as a suitable value;
(iii) the states of the SUL satisfying S1b; (iv) the angle
constraint of the PVA, which is given by (65).

From Fig. 8, we get{
x =−sinqd

1L1− sinθpL2− sin(θp +q3)L3,

y = cosqd
1L1 + cosθpL2 + cos(θp +q3)L3.

(67)

According to (3), we can obtain the reachable area of
the FAL. The angle of the FAL is adjusted to qd

1 , which
can guarantee the end-point reaches to its target position.

Considering the above constraint relationships, the PSO
algorithm is introduced to calculate the middle angle of
SUL qm

2 and the target angle of the TAL qd
3 .

The iterative rule is as follows:
sδ

k (t +1) = sδ

k (t)+ vδ

k (t +1),

vδ

k (t +1) = ωvδ

k (t)+w1µ1

(
gδ

k − sδ

k (t)
)

+w2µ2

(
bδ − sδ

k (t)
)
,

(68)

where δ = 1, 2, · · · , S; k = 1, 2, · · · , N; t is the distance
traveled by each particle; sδ

k and vδ

k are the location and
velocity of the kth particle, respectively; gδ

k and bδ are

the best location and global best location, respectively; ω

is the inertia weight; µ1, µ2 ∈ [0,1]; w1 and w2 are the
weighting factors.

The following evaluation function is defined for the
PSO algorithm

h = |x− xd |+ |y− yd | , (69)

where (x,y) is calculated from (67). Let sk =
(
s1

k ,s
2
k

)
be a

2-dimensional vector, in which s1
k and s2

k stand for q̃m
2 and

qd
3 , respectively. The procedure flow of the PSO algorithm

is as follows:

Step 1: Initialize the particle location sδ

k , and the particle
velocity vδ

k .
Step 2: Use the angle constraint (65) and a suitable target

angle of first link qd
1 to calculate q̃m

2 in the stage of the
stable control of the PVP and q3 in the stage of the
stable control for the PVA. Calculate h(·) for sδ

k and
vδ

k respectively. If the value of h(·) for sδ

k is less than
the value of h(·) for gδ

k , then set gδ

k = sδ

k .
Step 3: Calculate h(·) for bδ . If there is a gδ

k for which
the value of h(·) is less than the value of h(·) for bδ ,
then set bδ = gδ

k .
Step 4: If the value of h(·) ≤ e3 for bδ , stop. Otherwise,

use (68) to update all the locations and velocities, and
jump to Step 2.

We calculate the coordinates of end-point by using the
values of qd

1 , θp, and q3 generated by the PSO algorithm.
Also, calculate the value of (69) using those angles. If the
result is less than the constant e3, then the middle angle of
the SUL is qm

2 and target angles of the SUL and TAL are
qd

2 , qd
3 .

4.3. Controller design for PVA
In this subsection, we realize the control objective of

PVA. That is, we maintain the FAL at the target states, and
we control the TAL to its target states, which also brings
the SUL to its target states.

The following Lyapunov function is chosen based on
the control objective of this stage

V2(x) =
1
2

P1(x1−xd
1)

2+
1
2

x2
4+

1
2

P2(x3−xd
3)

2+
1
2

x2
6,

(70)

where P1, P2 are positive constants, xd
1 = qd

1 and xd
3 = qd

3 .
The derivative of V2 is

V̇2(x) =x4(P1(x1− xd
1)+ f1 +g11τ1 +g13τ3)

+ x6(P2(x3− xd
3)+ f3 +g31τ1 +g33τ3). (71)

So the controllers are designed as{
τ1 =

(
P1
(
−x1 + xd

1

)
− f1−D1x4−g13τ3

)
g11
−1,

τ3 =
(
P2
(
−x3 + xd

3

)
− f3−D2x6−g31τ1

)
g33
−1.

(72)
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The CLS of this stage is

ẋ = Fa (x) . (73)

Similar to the first stage control of the PVP, we define{
Ω2 =

{
x ∈ R6 |V2 (x)≤ λ2

}
,

Φ2 =
{

x(t) ∈Ω2
∣∣V̇2 (x) = 0

}
,

(74)

where λ2 > 0. The largest invariant set in this stage is

W2 =
{

x ∈ R6|xi = qd
i , xi+3 = 0

}
, (i = 1,2,3). (75)

From LaSalle′s invariance principle, the controllers
have completed control objectives of this subsection,
which are q1 = qd

1 , q̇1 = 0, q2 = qd
2 , q̇2 = 0 and q3 = qd

3 ,
q̇3 = 0.

Under the above control, the controllers (72) force all
links to be stabilized at the target angles, which means the
control objective of the original system is fulfilled.

5. SIMULATIONS

The simulations are implemented based on Matlab tool
for verifying the proposed control strategy. Table 1 shows
the parameters of the planar APA system.

The parameters in the switch conditions (19) and (56)
are e1 = 0.001 rad, and e2 = 0.001 rad/s.

Remark 1: In the switch conditions (19) and (56), the
small positive numbers e1 and e2 mean that the states of
the system are close to the given states. Through extensive
simulation experiments, we choose small positive number
to be within a small range with 0.001 as center.

Therefore, e3 = 0.001 m. The parameters of the con-
trollers (11) and (72) are P1 = 1, P2 = 1, D1 = 1.8, and
D2 = 1.8.

The amplitude A of u(t) is calculated by (53). T is cho-
sen as a constant at the stable control for PVP. However, it
is impossible to choose arbitrarily the angle iteration con-
traction rate η1 of the SUL, which only depends on ˙̃q0

2
from (38). According to (38) and (50), when we use small
enough T , η2 is

η2 =
q̃m

2 − q̃0
2−T ˙̃q0

2

q̃m
2 − q̃0

2
= 1+

˙̃q0
2

q̃0
2− q̃m

2
T < 1. (76)

We choose [q10,q20,q30, q̇10, q̇20, q̇30] and (xd ,yd) as{
[q10,q20,q30, q̇10, q̇20, q̇30]

T = [−1,0.5,0,0,0,0]T,

(xd ,yd) = (0.2,0.8) m.

(77)

Table 1. Model parameters of the planar APA system.

Link i mi (kg) Li (m) li (m) Ji
(
kg ·m2

)
i = 1 0.7 0.7 0.35 0.0286
i = 2 0.6 0.6 0.30 0.0180
i = 3 0.5 0.5 0.25 0.0104

According to the reachable area constraint (3), we can
obtain the reachable area of the FAL qd

1 ∈ [−1.8504,
1.3605]rad and choose qd

1 =−1.8000 rad.
Form (68), the parameters for the PSO algorithm are

chosen as w1 = 2, w2 = 2, ω = 0.9, N = 24 and S = 2.
At the same time, since the target angles of all links cor-
responding to one target position of end-point are multi-
solution and periodic, we randomly initialize the positions
of first and second particles within range of π/2 to π and
−2π to 2π , respectively. Therefore, employing the PSO
algorithm to calculate the middle angle of SUL and the
target angles of SUL and TAL gets[

qm
2 ,q

d
2 ,q

d
3

]T
= [2.8757,2.4670,5.8390]T rad. (78)

Fig. 9 shows that: firstly, the FAL is stabilized at its tar-
get angle, the TAL is controlled to zero and the SUL is
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38 Zixin Huang, Xuzhi Lai, Pan Zhang, Yawu Wang, and Min Wu

rotating at a constant speed at t = 4.3 s. Thus, the control
objective of this stage is fulfilled and the original system
is regarded as PVP.

Then, the states of TAL are kept in zero so that the sys-
tem is always a PVP from t = 4.3 s to t = 42.9 s. The
SUL is stabilized at its middle angle qm

2 = 2.8757 rad at
t = 42.9 s. That is the control in this stage is fulfilled and
the original system is regarded as PVA.

Next, the angle of the FAL is maintained at its target
value, which ensures the passive joint is always in its tar-
get position and the system is a PVA. Finally, at t = 53.5
s, the TAL is stabilized at its target angle qd

3 = 5.8390 rad,
while bringing the SUL to its target angle qd

2 = 2.4670
rad. At the same time, the end-point reaches to (0.2000,
0.8002) m, which means the position control objective of
the planar APA system is achieved.

6. CONCLUSION

Our paper develops a position control approach for the
planar APA system. For realizing the control objective, the
control is divided into two parts based on the NA model
of PVP and the complete integrability of PVA. First, the
designed controllers make the states of the TAL be zero
and the FAL be stabilized at its target angle, that means
the system is reduced to a PVP. Then, the NA method is
applied to design a stabilization controller for the PVP to
realize its stable control. In the stage of PVA, the target
angles are calculated by the PSO algorithm according to
the holonomic characteristic of PVA. Then, the controllers
make the FAL and TAL move to their target values, and
the SUL is brought to its target value according to the an-
gle constraint of PVA. Simulation results demonstrate its
validity.

What is worth mentioning is the main advantage of
this paper is that a novel control method is proposed for
the three-link underactuated manipulator with the passive
middle joint. Moreover, our control method can enrich the
control method of underactuated system and promote the
development of the control theory of underactuated sys-
tem.
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