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Improved Function Augmented Sliding Mode Control of Uncertain Non-
linear Systems with Preassigned Settling Time
Guangbin Cai, Xinyu Li, Mingzhe Hou* � , Guangren Duan, and Fei Han

Abstract: This paper investigates the robust tracking control of second-order uncertain nonlinear systems by adopt-
ing the function augmented sliding mode control approach. An improved version of this approach is proposed such
that the exact information of the initial tracking error is not required when generating the desired trajectory of the
tracking error. This evidently enlarges the application scope of the function augmented sliding mode control ap-
proach. Performance functions are introduced to form the performance envelopes for the sliding mode variables.
A robust sliding mode controller is constructed such that the sliding mode variables are confined within their per-
formance envelopes. This further guarantees that the tracking error converges to the given neighbourhood of zero
within the preassigned settling time provided that proper control parameters are selected. An application exam-
ple on the rendezvous control of spacecraft is also employed to illustrate the effectiveness of the proposed control
approach.
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1. INTRODUCTION

Settling time, which characterizes the convergence rate
of the system response, is recognized as an important
performance specification of control system design. To
achieve better performance and stronger robustness, fast
convergence is usually pursued in practice. Therefore, fi-
nite time control has received considerable attention since
it could guarantee that the state of a dynamic system con-
verges to the desired point in finite time [1–5]. Although
convergence can be achieved in finite time, the estimation
of the settling time in the existing finite time control re-
sults explicitly depends on the initial state. This, to some
extent, limits their application scope since the initial state
may be unknown a priori. To overcome this problem, a
strategy named fixed-time control is proposed [6,7]. It has
been shown that fixed-time control could guarantee that
the settling time is irrelevant to the initial condition. As
a result, the research on the fixed-time control has been a
hot topic and fruitful results have been obtained [8–10].

An exciting approach which can realize control with
the preassigned settling time is called the function aug-
mented sliding mode control approach, which is proposed

by Park and Tsuj [11]. Different from the traditional slid-
ing mode control approach where the sliding mode vari-
able is constructed directly based on the tracking error, in
the function augmented sliding mode control approach, a
desired trajectory of the tracking error which converges
to zero in the preassigned settling time is generated, and
the sliding mode variable is constructed based on the er-
ror between the tracking error and its desired trajectory,
then a controller is constructed to make the error between
the tracking error and its desired trajectory always zero,
which means that the tracking error converges to zero in
the preassigned settling time as the desired trajectory con-
verges to zero. The prominent advantage of this approach
is that the settling time can be set arbitrarily a priori by ad-
justing the desired trajectory. Therefore, this approach has
attracted considerable attention in recent years. In the the-
oretical extension aspect, [12] directly extends this result
to high-order nonlinear systems; [13] proposes an adaptive
function augmented sliding mode control approach for
high-order uncertain nonlinear systems; [14] combines the
function augmented sliding mode control approach with
the fuzzy logic which is used to approximate the unknown
nonlinear functions; [15] and [16] integrate the function
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augmented sliding mode control approach with the distur-
bance observer which is used to estimate the unknown dis-
turbances; and [17] studies the adaptive tracking control of
second-order nonlinear systems with nonlinearly parame-
terized uncertainties and disturbances, as well as multi-
plicative uncertainty in the control coefficient matrix. In
the application research aspect, by adopting the function
augmented sliding mode control approach, [18] addresses
the control problem of aeroelastic systems; [19] studies
the velocity control of a novel narrow vehicle based on the
mobile wheeled inverted pendulum; [20] designs a three-
dimensional guidance law with impact angle constraints;
[21, 22] and [23] consider the integrated translational and
rotational motion control of spacecraft; and [24] considers
the control of robotic manipulators. More related results
can be found in such as [25–27], and references therein.

Although a great progress has been made on the func-
tion augmented sliding mode control approach, there is a
common problem in all of the existing results: to generate
the desired trajectory of the tracking error which plays a
key role in the function augmented sliding mode control
design, the exact initial value of the tracking error must be
known, however, this requirement cannot always be sat-
isfied. For example, in practical applications, it may be
required to generate the desired trajectory of the tracking
error by using online numerical computation methods, in
order to obtain some kind of optimal performance when
the initial tracking error is relative large or in order to meet
some particular requirement, for example, obstacle avoid-
ance. In this situation, the desired trajectory generally can-
not be obtained instantly since the online numerical com-
putation needs a certain amount of time. This means that
the desired trajectory cannot be generated by using the
real value of the initial tracking error but its estimation.
As a result, the existing function augmented sliding mode
control results cannot be applied directly any more. In a
word, how to design the function augmented sliding mode
control algorithm when there is error between the real ini-
tial value of the tracking error and its estimation used to
generate the desired trajectory is still a meaningful and
challenging problem to be solved. This paper focuses on
this problem, and an improved function augmented sliding
mode control approach is proposed for a class of second
order uncertain nonlinear systems. The main contributions
of this paper can be summarized as follows. First of all, the
exact value of the initial tracking error is not required any
more when generating the desired trajectory of the track-
ing error. Hence, the application scope of the function aug-
mented sliding mode control approach can be significantly
enlarged. Secondly, compared with the existing function
augmented sliding mode control results, the proposed one
can make the control algorithm more simple when the ini-
tial values of the tracking error and its derivative are small,
since in this case the desired trajectory of the tracking er-
ror can be simply set as zero rather than generated by us-

ing any other computation methods. Last but not least, the
performance functions are introduced, which form the per-
formance envelopes for the sliding mode variables, and
the controller is constructed such that the sliding mode
variables are confined within the performance envelopes,
which could guarantee that the tracking error converges to
the given neighbourhood of zero within the preassigned
settling time with proper design parameter selection. This
is the most significant difference between our result and
the existing ones. The proposed control approach is finally
applied to the rendezvous control of spacecraft, and simu-
lation results show the effectiveness of our approach.

Throughout the paper, for a vector ζ = [ζ1, · · · ,ζn]
T, de-

fine |ζ | = [|ζ1| , · · · , |ζn|]T. For any positive integer n, de-
fine I[1,n] = {1,2, · · · ,n}. [ai j] denotes the matrix whose
(i, j) element is ai j. Ci, i ∈ {0,1,2, · · ·} denotes the set of
functions whose i-th derivative is continuous.

2. PROBLEM FORMULATION

Consider the following second-order vector nonlinear
system

ẍ = f (x, ẋ)+(I +∆)G(x, ẋ)u+δ (x, ẋ, t), (1)

where x ∈ Rn and ẋ ∈ Rn are the states, u ∈ Rn is the
input, f (x, ẋ) is an available C0 vector function, G(x, ẋ) is
an available C0 invertible matrix function, ∆ denotes the
multiplicative uncertainty, of which the elements satisfy
that

|∆i j| ≤ ∆̄i j, i = 1, · · · ,n; j = 1, · · · ,n,

and
∥∥∆̄
∥∥ < 1 where ∆̄ =

[
∆̄i j
]
, and δ (x, ẋ, t) is a C0 vec-

tor function, denoting the lumped uncertain term including
internal uncertainties and external disturbances and satis-
fying that

|δi(x, ẋ, t)| ≤ di, i = 1, · · · ,n, (2)

where di = di(x, ẋ, t)≥ 0 are available C0 functions.
The control design objective of this paper is stated as

follows: Given a reference signal xd , a settling time Tf >
0 and admissible tracking error bounds εi, i = 1, · · · ,n,
where Tf and εi are preassigned and independent from
one another, design a proper control law for system (1)
such that the states of the resulted closed-loop system are
bounded and satisfy that the tracking errors |xi− xid | ≤
εi (i = 1,2, · · · ,n) when t ≥ Tf .

In this paper, the given reference signal is assumed to
satisfy the following condition.

Assumption 1: The reference signal xd satisfies that xd ,
ẋd and ẍd are all bounded.

3. ROBUST SLIDING MODE CONTROL DESIGN

Define the tracking error as

e = x− xd , (3)
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and

z = e−η , (4)

where η : ℜ≥0→ℜn denotes the desired trajectory of the
tracking error e(t). That is, z(t) denotes the error between
the tracking error e(t) and its desired trajectory η(t). The
desired trajectory of the tracking error η(t) is defined
by the user. In the traditional function augmented sliding
mode control approach, η(t) is determined according to
the following conditions:

1) η(t) is a piecewise C2 differentiable function defined
on [0,∞);

2) η(t), η̇(t) and η̈(t) are all bounded;
3) η(0) = e(0) and η̇(0) = ė(0);
4) η(t) = 0 and η̇(t) = 0 when t ≥ Tf .

According to the above four conditions, the function
η(t) can be constructed based on all kinds of function in-
terpolation methods, viewing t = 0 and t = Tf as the in-
terpolation nodes. For example, in [11], ηi(t), t ∈ [0,Tf ],
i = 1, 2, · · · , n are constructed as cubic polynomials. As
shown in [17], this may lead to large undershoot-like phe-
nomenon or large overshoot-like phenomenon. To over-
come these problems, in [17], ηi(t), t ∈ [0,Tf ] are con-
structed as piece-wise cubic polynomials. However, when
‖e(0)‖ is relative large, η(t) may need to be generated by
using online numerical methods instead of explicit formu-
las, in order to obtain some kind of optimal performance
or meet some particular requirement. In this case, η(t)
generally cannot be generated instantly since the numer-
ical computation needs a certain amount of time. Hence,
the initial values η(0) and η̇(0) used to generate η(t) can-
not respectively be the real values e(0) and ė(0) but their
estimate values ê(0) and ˆ̇e(0). As a result, the third con-
dition used to construct η(t) should be replaced by the
following condition.

3’) η(0) = ê(0) and η̇(0) = ˆ̇e(0), where ê(0) and ˆ̇e(0)
are respectively the estimate values of e(0) and ė(0).

Generally, ê(0) and ˆ̇e(0) are close to e(0) and ė(0),
respectively. Therefore, although z(0) = e(0)−η(0) and
ż(0) = ė(0)− η̇(0) are not zero, it is reasonable to suppose
that they satisfy the following condition.

Assumption 2: The initial errors zi(0) and żi(0), i = 1,
2, · · · , n, satisfy that

|zi(0)| ≤ ri,

|żi(0)| ≤ r′i,

where ri and r′i are known constants.

Another interesting case is that, when ‖e(0)‖ and
‖ė(0)‖ are small, it is in fact only needed to set η(t) ≡ 0
rather than to generate η(t) by using any other compu-
tation methods which would make the control algorithm

complicated. In this case, it is also reasonable to assume
that zi(0) and żi(0) satisfy Assumption 2, since in this sit-
uation

zi(0) = ei(0)−ηi(0) = ei(0),

żi(0) = ėi(0)− η̇i(0) = ėi(0).

Define the sliding mode variable as

s = ż+Cz, (5)

where C = diag(c1, · · · ,cn) with ci > 0 being design pa-
rameters.

Under Assumption 2, it is easy to obtain that

|si(0)| ≤ |żi(0)|+ ci |zi(0)| ≤ r′i + ciri, i = 1,2, · · · ,n.

Furthermore, one has the following result.

Theorem 1: View (5) as a dynamical system with z(t)
being the state and s(t) the input. If there exist time vary-
ing functions

ρi(t) = (ρi0−ρi∞)exp(−cit)+ρi∞, i = 1,2, · · · ,n
(6)

with ρi0 ≥ r′i + ciri, 0 < ρi∞ < ρi0 such that |si(t)| ≤ ρi(t),
∀i ∈ I[1,n], ∀t ≥ 0, then

|zi(t)|<
ρi0

ci
, |żi(t)|< 2ρi0, ∀i ∈ I[1,n], ∀t ≥ 0;

in addition, if the design parameters satisfy that, ∀i∈ I[1,n],

ρi0− ciri

ci (ρi0−ρi∞)
≤ Tf , (7)

and

ri exp(−ciTf )+(ρi0−ρi∞)exp(−ciTf )Tf

+
ρi∞

ci
(1− exp(−ciTf ))≤ εi, (8)

then

|zi(t)| ≤ εi, ∀i ∈ I[1,n], ∀t ≥ Tf .

Proof: From (5), one has that, ∀i ∈ I[1,n],

żi =−cizi + si, t ≥ 0.

Its solution is

zi(t) = exp(−cit)zi(0)+
∫ t

0
exp[−ci(t− τ)]si(τ)dτ.

Hence,

|zi(t)|=
∣∣∣exp(−cit)zi(0)+

∫ t

0
exp[−ci(t−τ)]si(τ)dτ

∣∣∣
≤exp(−cit)|zi(0)|+

∫ t

0
exp[−ci(t−τ)]|si(τ)|dτ
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≤ri exp(−cit)

+
∫ t

0
exp[−ci(t− τ)]

× [(ρi0−ρi∞)exp(−ciτ)+ρi∞]dτ

=ri exp(−cit)+(ρi0−ρi∞)exp(−cit) t

+
ρi∞

ci
(1− exp(−cit)) .

Define

σ(t) =ri exp(−cit)+(ρi0−ρi∞)exp(−cit) t

+
ρi∞

ci
(1− exp(−cit)) ,

of which the derivative satisfies that

σ̇(t) = [−ciri− ci (ρi0−ρi∞) t +ρi0]exp(−cit) .

From σ̇(t) = 0, it can be obtained that

t = tst ,
ρi0− ciri

ci (ρi0−ρi∞)
.

Clearly, when t < tst , σ̇(t) > 0 and when t > tst , σ̇(t) <
0. Hence, it can be obtained that, at t = tst , σ(t) has its
maximum value

σ(tst) =ri exp(−citst)+(ρi0−ρi∞)exp(−citst) tst

+
ρi∞

ci
(1− exp(−citst))

=
ρi0−ρi∞

ci
exp(−citst)+

ρi∞

ci

<
ρi0

ci
,

which implies that, ∀t ≥ 0,

|zi(t)| ≤ σ(t)≤ σ(tst)<
ρi0

ci
,

and

|żi(t)|= |−cizi + si| ≤ ci |zi|+ |si|

< ci
ρi0

ci
+ρi0 = 2ρi0.

Since σ(t) is strictly decreasing when t ≥ tst , one has that,
if Tf ≥ tst , then when t ≥ Tf ,

σ(t)≤σ(Tf )=riexp(−ciTf )+(ρi0−ρi∞)exp(−ciTf )Tf

+
ρi∞

ci
(1− exp(−ciTf )) .

Therefore, if the design parameters are selected such that
conditions (7) and (8) are satisfied, then one has that

|zi(t)| ≤ σ(t)≤ σ(Tf )≤ εi, ∀t ≥ Tf .

This completes the proof. �

Remark 1: The time varying function

ρi(t) = (ρi0−ρi∞)exp(−cit)+ρi∞

is called the performance function, and the region between
−ρi(t) and ρi(t) is called the performance envelop for
si(t).

Remark 2: According to Theorem 1, if a control law
is designed such that ∀i ∈ I[1,n], si(t) is confined within
the performance envelop formed by ρi(t), that is, |si(t)| ≤
ρi(t),∀t ≥ 0, and if the design parameters are chosen such
that conditions (7) and (8) are satisfied for i = 1, 2, · · · ,
n, then one can obtain that |zi(t)| ≤ εi, ∀i ∈ I[1,n], ∀t ≥ Tf .
This further implies that, ∀i ∈ I[1,n],

|xi(t)− xid(t)|= |ei(t)|= |zi(t)+ηi(t)| ≤ εi,

when t ≥ Tf since ηi(t) = 0 when t ≥ Tf , that is, the con-
trol objective can be achieved.

Considering that for any Tf , εi, ri and r′i, one can select
proper parameters ci, ρi0 and ρi∞ such that conditions (7)
and (8) are satisfied. Hence, to achieve the control objec-
tive, the remained main task is to design a control law such
that |si(t)| ≤ ρi(t), ∀i ∈ I[1,n], ∀t ≥ 0.

From (5), one has that

ṡ =z̈+Cż

=ë− η̈ +C (ė− η̇)

=ẍ− ẍd− η̈ +C (ẋ− ẋd− η̇)

= f (x, ẋ)+(I +∆)G(x, ẋ)u+δ (x, ẋ, t)−w, (9)

where

w = ẍd + η̈−C (ẋ− ẋd− η̇) . (10)

Define ξ =
[
ξ1 · · · ξn

]T with

ξi =
si

ρi
, (11)

then one has that

ξ̇ =M1 (ṡ−M2s)

=M1[ f (x, ẋ)+(I+∆)G(x, ẋ)u+δ (x, ẋ, t)−w−M2s],

where

M1 =


1
ρ1

0 0

0
. . . 0

0 0 1
ρn

 ,

M2 =


ρ̇1
ρ1

0 0

0
. . . 0

0 0 ρ̇n
ρn

 .
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Construct the robust sliding mode control law as fol-
lows:

u = G−1(x, ẋ) [− f (x, ẋ)+w+M2s−SAT(ξ )χ] ,
(12)

where

SAT(ξ ) =

 sat(ξ1) 0 0

0
. . . 0

0 0 sat(ξn)


with

sat(ξi) =


1, ξi > 1,

ξi, |ξi| ≤ 1,

−1, ξi <−1,

i = 1,2, · · · ,n,

and

χ = (In− ∆̄)−1[∆̄| f (x, ẋ)−w−M2s|+d + k], (13)

where d =
[
d1 · · · dn

]T, k =
[
k1 · · · kn

]T with ki > 0
being design parameters.

For the stability of the resulted closed-loop system, one
has the following theorem.

Theorem 2: System (1) with control law (12) under
Assumptions 1 and 2 is such that x and ẋ are bounded,
and for the preassigned settling time Tf > 0 and admissi-
ble tracking error bounds εi > 0, the tracking errors satisfy
that |xi− xid | ≤ εi (i = 1, 2, · · · , n) when t ≥ Tf , if condi-
tions (7) and (8) are satisfied for all i ∈ I[1,n].

Proof: Substituting (12) into (9) yields that

ξ̇ (t) =M1
[

f (x, ẋ)

+(I +∆)(− f (x, ẋ)+w+M2s−SAT(ξ )χ)

+δ (x, ẋ, t)−w−M2s
]

=M1
[
−(I+∆)SAT(ξ )χ+∆(−f (x, ẋ)+w+M2s)

+δ (x, ẋ, t)
]
.

Consider the i-th (∀i ∈ I[1,n]) subsystem

ξ̇i =−
1
ρi
(1+∆ii)sat(ξi)χi−

1
ρi

n

∑
j=1, j 6=i

∆i jsat(ξ j)χ j

− 1
ρi

n

∑
j=1

∆i j

(
f j(x, ẋ)−w j−

ρ̇ j

ρ j
s j

)
+

1
ρi

δi(x, ẋ, t).

Define

Vi =
1
2

ξ
2
i .

Bear the inequalities on the absolute value in mind, it is
easy to conclude that the time derivative of Vi satisfies the
following inequality

V̇i =ξiξ̇i

=− 1
ρi
(1+∆ii)ξisat(ξi)χi−

1
ρi

ξi

n

∑
j=1, j 6=i

∆i jsat(ξ j)χ j

− 1
ρi

ξi

n

∑
j=1

∆i j

(
f j(x, ẋ)−w j−

ρ̇ j

ρ j
s j

)
+

1
ρi

ξiδi(x, ẋ, t)

≤− 1
ρi
(1− ∆̄ii) |ξi|χi +

1
ρi
|ξi|

n

∑
j=1, j 6=i

∆̄i jχ j

+
1
ρi
|ξi|

n

∑
j=1

∆̄i j

∣∣∣∣ f j(x, ẋ)−w j−
ρ̇ j

ρ j
s j

∣∣∣∣+ 1
ρi
|ξi|di,

when |ξi| ≥ 1, where the well-known triangle inequality is
used repeatedly. Considering that the derivation of this in-
equality is tedious but not difficult, the details are omitted
here. Since condition (13) is equivalent to

(
1− ∆̄ii

)
χi =

n

∑
j=1, j 6=i

∆̄i jχ j +di + ki

+
n

∑
j=1

∆̄i j

∣∣∣∣ f j(x, ẋ)−w j−
ρ̇ j

ρ j
s j

∣∣∣∣ ,
one has that

V̇i ≤−
ki

ρi
|ξi|< 0,

when |ξi| ≥ 1. This implies that

|ξi(t)| ≤ 1, ∀t ≥ 0,

since

|ξi(0)|=
∣∣∣∣ si(0)
ρi(0)

∣∣∣∣≤ r′i + ciri

ρi0
≤ 1.

Hence,
∣∣∣ si(t)

ρi(t)

∣∣∣ ≤ 1, ∀t ≥ 0, or equivalently, |si(t)| ≤ ρi(t),
∀t ≥ 0.

According to Theorem 1, one can conclude that

|zi(t)|<
ρi0

ci
,

|żi(t)|< 2ρi0,∀t ≥ 0,

or equivalently,

|xi− (xid +ηi)|<
ρi0

ci
,

|ẋi− (ẋid + η̇i)|< 2ρi0.

Therefore, it is easy to obtain that

|xi|= |xi− (xid +ηi)+(xid +ηi)|
≤|xid +ηi|+ |xi− (xid +ηi)|

< |xid |+ |ηi|+
ρi0

ci
,

and

|ẋi|= |ẋi− (ẋid + η̇i)+(ẋid + η̇i)|
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≤ |ẋid + η̇i|+ |ẋi− (ẋid + η̇i)|
< |ẋid |+ |η̇i|+2ρi0.

According to Assumption 1 and the conditions on η , one
has that xid , ẋid , ηi and η̇i are all bounded. Hence, xi and
ẋi are bounded.

In addition, as shown in Remark 2, if conditions (7) and
(8) are satisfied, then one has that |xi(t)− xid(t)| ≤ εi when
t ≥ Tf . This completes the proof. �

4. APPLICATION ON THE RENDEZVOUS
CONTROL OF SPACECRAFT

In this section, the obtained results are applied to the
rendezvous control of spacecraft. If the target orbit is cir-
cular, then the motion of the chaser relative to the target
in the local-vertical-local-horizontal reference frame cen-
tered on the target is governed by (please see [28])

ẍ = f (x, ẋ)+u+ad , (14)

where

x =

xr

yr

zr

 ,

f (x, ẋ) =


n2

0xr+2n0ẏr−
µg(xr+R)

[y2
r+z2

r+(xr+R)2]
3
2
+

µg

R2

−2n0ẋr+n2
0yr−

µgyr

[y2
r+z2

r+(xr+R)2]
3
2

− µgzr

[y2
r+z2

r+(xr+R)2]
3
2

 ,

with x = [xr yr zr]
T being the relative position of the chaser

with respect to the target, R the scalar radius of the tar-
get from the center of the Earth, n0 the orbital angular
rate of the target, µg the gravitational parameter, u = ac =
[ac1 ac2 ac3]

T the control acceleration produced by the pro-
peller, and ad = [ad1 ad2 ad3]

T the disturbance accelera-
tion. ad is assumed to be bounded, that is, |adi| ≤ di, where
di are known positive constants.

The control objective is stated as follows: Given a
settling time Tf = 100 s, and admissible tracking error
bounds εi = 0.05 m, i= 1, 2, 3, design a proper control law
for system (14) such that xr converges to a small neigh-
borhood of xr f which denotes the desired final value of
xr when completing the rendezvous task, yr and zr con-
verge to a small neighborhood of zero, and when t ≥ Tf ,
|xr− xr f | ≤ ε1, |yr| ≤ ε2 and |zr| ≤ ε3.

Theorem 2 is employed to design the control law. The
sliding mode variable is defined as

s = ż+Cz,

where C = diag(c1,c2,c3) with ci > 0, and

z = e−η ,

where

e = x−

xr f

0
0

 .
Suppose that the chaser is not near to the target and

some online trajectory planning scheme is needed to gen-
erate η : ℜ≥0 → ℜ3 based on the four conditions 1), 2),
3’) and 4) stated in Section 3.

When the real values x(0) and ẋ(0) are obtained,
one can determine ri ≥ |zi(0)| = |ei(0)−ηi(0)| and r′i ≥
|żi(0)| = |ėi(0)− η̇i(0)|, i = 1, 2, 3. Further, one can ob-
tain the performance functions

ρi(t) = (ρi0−ρi∞)exp(−cit)+ρi∞, i = 1,2,3

with ρi0 ≥ r′i + ciri, 0 < ρi∞ < ρi0 and define

ξi =
si

ρi
, i = 1,2,3.

Then, the control law can be obtained as follows:

u =− f (x, ẋ)+w+M2s−SAT(ξ )(d + k),

where

ξ =
[

ξ1 ξ2 ξ3
]T

,

w = η̈−C (ẋ− η̇) ,

M2 =


ρ̇1
ρ1

0 0
0 ρ̇2

ρ2
0

0 0 ρ̇3
ρ3

 ,
SAT(ξ ) =

 sat(ξ1) 0 0
0 sat(ξ2) 0
0 0 sat(ξ3)

 ,
d =

[
d1 d2 d3

]T
,

k =
[

k1 k2 k3
]T

,

with ki > 0. The design parameters are selected such that
conditions (7) and (8) are satisfied for i = 1, 2, 3.

For numerical simulation, the system parameters are
set as follows: R = 42241 km, n0 = 7.2722× 10−5 rad/s,
and µg = 3.986× 1014 m3/s2. The upper bound of |adi|
are set as di = 0.1 m/s2, i = 1, 2, 3. xr f is set to
be 2 m. The estimate values of the initial states are
x̂(0) = [ 50 0 0 ]T m and ˆ̇x(0) = [0 0 0]Tm/s, but their
real values are x(0) = [ 49 1 −0.5 ]Tm and ẋ(0) =
[ −0.1 0.1 −0.1 ]T m/s. For simplicity, suppose the
desired trajectory η is generated as follows:

ηi(t) =

{
ai0 +ai1t +ai2t2 +ai3t3, if 0≤ t ≤ Tf ,

0, if t > Tf ,

(15)
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Fig. 1. Curves of xr, yr and zr.

where i = 1, 2, 3,

ai0 = êi(0),ai1 = ˆ̇ei(0),

ai2 =−3(êi(0)/T 2
f )−2( ˆ̇ei(0)/Tf ),

ai3 = 2(êi(0)/T 3
f )+ ˆ̇ei(0)/T 2

f .

It is easy to check that η satisfies the four conditions
(1), (2), (3’) and (4). The parameters are set as follows:
C = diag(0.2,0.2,0.2), ri = 1, r′i = 0.1, ki = 0.1, ρi0 = 0.5,
ρi∞ = 0.01. It is easy to check that these parameters satisfy
conditions (7) and (8) for i = 1, 2, 3. And the disturbance
acceleration is set as

ad =

 0.05cos(0.2t)
−0.1sin(0.1t)
−0.05sin(0.1t)

 m/s2.

The simulation results are given in Fig. 1 to Fig. 4.
Fig. 1 shows the relative position variables of the chaser
with respect to the target. Clearly, xr converges to a
small neighborhood of xr f , yr and zr both converge to
a small neighborhood of zero, and when t ≥ Tf = 100s,
|xr− xr f | < 0.05m, |yr| < 0.05m and |zr| < 0.05m. This
means that the control objective is achieved. Fig. 2 shows
the change rate of the relative position variables. Fig. 3
shows the curves of the control accelerations. The mag-
nitude of every control signal is reasonable. And Fig. 4
shows the curves of the sliding mode variables. One can
see that |si(t)| < ρi(t),∀t ≥ 0, that is, every si(t) is con-
fined within the performance envelope formed by ρi(t),
this coincides with the obtained theoretical result. In a
word, the presented simulation results show the correct-
ness and effectiveness of the proposed control method.

To further illustrate the robustness of the obtained con-
trol law, let us consider the situation when the measured
signals xr, yr, zr, ẋr, ẏr and żr are contaminated by mea-
surement noises. The measurement noises imposed on the

Fig. 2. Curves of ẋr, ẏr and żr.

Fig. 3. Curves of ac1, ac2 and ac3.

Fig. 4. Curves of s1, s2 and s3.
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Fig. 5. Curves of xr, yr and zr when considering measure-
ment noises.

Fig. 6. Curves of ẋr, ẏr and żr when considering measure-
ment noises.

feedback signals xr, yr and zr are set to be zero mean
value and standard deviation 0.02 m; and the measurement
noises imposed on the feedback signals ẋr, ẏr and żr are set
to be zero mean value and standard deviation 0.005 m/s.

The simulation results are given in Fig. 5 to Fig. 7,
which respectively show the relative position variables of
the chaser with respect to the target, the change rate of
the relative position variables and the curves of the con-
trol accelerations. Fig. 5 and Fig. 6 are similar to Fig. 1
and Fig. 2, respectively. It can also be seen that when
t ≥ Tf = 100s, |xr− xr f |< 0.05m, |yr|< 0.05m and |zr|<
0.05m. This means that the obtained control law possesses
good robustness property against the measurement noises.
Fig. 7 is different from Fig. 4, but it presents a normal phe-
nomenon caused by the measurement noises which are not
further dealt with by utilizing filters here.

Remark 3: In [17], the rendezvous control problem of

Fig. 7. Curves of ac1, ac2 and ac3 when considering mea-
surement noises.

spacecraft is also considered by using the adaptive func-
tion augmented sliding mode control approach. Like all
the other results on the function augmented sliding mode
control approach, the exact initial values of the relative po-
sition variables are required there to generate the function
η(t). If the exact initial values of the relative position vari-
ables are unknown when generating η(t), just like the sit-
uation considered in this example, the function augmented
sliding mode control methods obtained in [17] as well as
the other references are not applicable. So our results ev-
idently enlarge the application scope of the function aug-
mented sliding mode control approach.

5. CONCLUSION

This paper proposes an improved function augmented
sliding mode control approach for the tracking control
of second-order nonlinear systems with uncertainties in-
cluding nonlinearly parameterized uncertainties, external
disturbances, and multiplicative uncertainty in the control
coefficient matrix. Different from the existing results, the
proposed approach does not need the exact information
of the initial tracking error to generate the desired trajec-
tory of the tracking error, thus evidently enlarges the ap-
plication scope of the function augmented sliding mode
control approach. By introducing performance functions,
performance envelopes for the sliding mode variables are
formed. Then a robust sliding mode controller is con-
structed such that the sliding mode variables are confined
within their performance envelopes, and this could further
guarantee that the tracking error converges to the given
neighbourhood of zero within the given settling time pro-
vided that proper control parameters are selected. An ap-
plication example on the rendezvous control of spacecraft
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shows the correctness and effectiveness of the proposed
method. In this paper, all the states are assumed to be
available, but in the practical applications, only the out-
put variables can be measured. In this case, how to design
the output feedback control law is of great value and will
be studied in the near future.
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