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Robust Fractional-order PID Tuning Method for a Plant with an Uncer-
tain Parameter
Xu Li* � and Lifu Gao

Abstract: The robust design of fractional-order proportional-integral-differential (FOPID) controllers for controlled
plants with uncertainty is a popular research topic. The well-studied “flat phase” condition is effective for the gain
variation but not for variations in other parameters. This paper addresses the problem of tuning a robust FOPID
controller for a plant with a known structure and an uncertain parameter (a coefficient or order in the plant transfer
function). The method is based on preserving the phase margin of the open-loop system when the plant parameter
varies around the nominal value. First, the partial derivatives of the gain crossover frequency with respect to the
plant parameters are calculated. Then, the partial derivatives of the phase margin with respect to the plant parameters
are obtained as the robust performance indexes. In addition, the equations needed to compute FOPID parameters
that meet the specifications in the frequency domain are obtained and used as nonlinear constraints. Finally, the
FOPID parameters can be obtained by optimizing the robust performance indexes under these constraints. Simula-
tion experiments are carried out on examples with different types of uncertain parameters to verify the effectiveness
of the tuning method. The results show that the requirements are fulfilled and that the system with the proposed
FOPID controller is stable and robust to variations in the uncertain parameters. Comparisons clearly show that the
controllers designed by the proposed method provide relatively robust performance.

Keywords: FOPID controller, phase margin, plant parameter, robustness.

1. INTRODUCTION

Research and applications in the fields of fractional
calculus and nonintegral calculus have been increasingly
favored and popularized by researchers over the past
two decades, mainly because fractional calculus has been
shown to play a prominent role in broad and abundant
fields of science and engineering. To date, this tool has
been successfully and widely applied in various fields,
such as control systems [1–11] image processing [12],
thermal systems [13], signal processing [14], and electro-
chemistry [15]. In the abovementioned applications, the
performance of fractional-order controllers based on frac-
tional calculus has been found to be outstanding, par-
ticularly when compared with the classic integer-order
controller. In fact, fractional-order controllers can offer
more possibilities for improving system performance than
integer-order controllers [16].

According to multiple reports, industrial control is still
dominated by the PID controller despite the rapid devel-
opment of control theory and technology [17–19]. This

can be attributed to its simple structure, strong robust-
ness, reliable performance and easy implementation and
manipulation in hardware. However, the general increase
in the complexity of modern engineering platforms has
led to a gradual increase in stringency in the selection of
controllers, which has motivated the re-engineering of the
PID framework. To preserve the characteristics of the clas-
sic integer-order PID (IOPID) controller and take advan-
tage of fractional-order control, the FOPID controller was
first proposed by Podlubny [20]. As a generalization of
the IOPID controller, its advantage is that in addition to
the three gains, the tunable parameters also include differ-
ential and integral orders; thus, the controller offers more
freedom than IOPID controllers. Because of the increase
in the number of tunable parameters, the FOPID controller
can be demonstrated to be significantly superior to its pre-
decessors in terms of its dynamic and steady-state perfor-
mance.

Inevitably, considerable uncertainty arises in systems as
a result of inaccurate modeling or environmental changes
[21]. Moreover, intricate and diverse uncertainties are
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difficult to identify and eliminate completely. Therefore,
much emphasis has been placed on robust control strate-
gies, and various robust tuning rules for FOPID controllers
have been explored and described. Usually, a plant with
uncertainty has a known structure, but the parameters are
unknown [22, 23]. To obtain robustness to variations in
these parameters, tuning FOPID controllers in the fre-
quency domain is one of the most widely used options be-
cause of its intuitiveness and convenience in operation. To
impart robustness against gain variations, the “flat phase”
condition is regarded as an important part of the design in
many reports [24–28]. In [29], high-frequency noise and
output disturbances are rejected by specifying a sensitivity
function and complementary sensitivity function. In [30],
a simple technique based on a Bode ideal transfer function
for tuning fractional-order PI controllers is recommended.
In addition to the gain, variations in the time constants of
the model of a plant are unavoidable. For this reason, ro-
bust tuning strategies for time constant uncertainty have
been discussed in the literature. In [31], from the deriva-
tives of the plant’s phase and modulus with respect to the
time constant and the crossover frequency, equations are
established to determine the robustness of the time con-
stant. In addition, robust rules against large uncertainty in
the time constant of a system are available in [32]. How-
ever, these robust tuning methods do not work for other
uncertain parameters of the plant.

Most existing works use the “flat phase” condition to
design robust FOPID controllers, and the obtained con-
trollers are robust to gain variations but not to variations
in other plant parameters. This paper focuses on the robust
FOPID tuning method for fractional plants with an uncer-
tain coefficient or order. To obtain robustness, an effective
approach should be to preserve the phase margin of the
control system when the plant parameter varies. However,
it is difficult to determine the behavior of the phase mar-
gin when the parameter is disturbed. The deviations in the
parameter will cause variations in the gain crossover fre-
quency, which is closely related to the phase margin. To
address these problems, we construct an implicit function
consisting of the gain crossover frequency and plant pa-
rameters. Then, the partial derivatives of the phase margin
with respect to all the plant parameters can be obtained
analytically. These partial derivatives are used as robust
performance indexes in the tuning of FOPID controllers.
The main contributions of our work are summarized as
follows:

1) The controlled plant is fractional, and the uncertain
parameters are not limited to the gain but include the coef-
ficients and orders. These features show that the proposed
method has universal applicability.

2) The expressions of the robust performance indexes
for all the plant parameters are developed. They are exten-
sions of the “flat phase” condition.

3) New equations for FOPID parameters to satisfy the

required phase margin and gain crossover frequency are
formulated to reduce the computational burden.

The rest of this paper is organized as follows: In Sec-
tion 2, the descriptions of fractional-order systems and the
gain robustness condition are addressed. The novel robust
design method for the FOPID controller is presented in
Section 3. In Section 4, simulation examples are carried
out to verify the proposed method. The conclusions of this
work are drawn in Section 5.

2. PRELIMINARIES

2.1. Definition of fractional-order systems
A fractional-order system is based on fractional calcu-

lus. At present, several mathematical expressions of frac-
tional differentiation have been derived through different
approaches [33]. Here, the Riemann-Liouville (RL) ex-
pression is given as

t0 Dp
t f (t) =

1
Γ(n− p)

dn

dtn

∫ t

t0
(t− τ)n−p−1 f (τ)dτ,

(1)

where n is an integer, n−1 < p < n, t0 and t are the limits,
Γ(·) represents the gamma function, and p is the order of
the differentiation.

The transfer function of a linear fractional-order system
can be given as

Pf o(s) =
bmsβm +bm−1sβm−1 + · · ·+b0sβ0

ansγn +an−1sγn−1 + · · ·+a0sγ0
e−Ls, (2)

where L is the time delay; ai (i = 0, 1, ..., n) and bk (k = 0,
1, ..., m) are coefficients; γi and βk are real numbers, where
0≤ γ0 ≤ γ1 ≤ ·· · ≤ γn and 0≤ β0 ≤ β1 ≤ ·· · ≤ βm.

In this paper, we consider the following controlled
plant:

P(s) =
k

ansγn +an−1sγn−1 + · · ·+a0sγ0
e−Ls, (3)

where k is the gain. The coefficients and fractional orders
of P(s) are arranged well to ensure a proper plant.

The standard transfer function of a FOPID controller is
as follows:

C(s) = kp +
ki

sλ
+ kdsµ , (4)

where kp, ki, and kd represent the gains of the proportion,
fractional integration and fractional differentiation com-
ponents, respectively. The parameters λ and µ are the or-
ders of the fractional calculus; 0 < λ and µ < 2.

2.2. Robust tuning method for systems with gain vari-
ation

Consider the feedback control system shown in Fig. 1. The
open-loop transfer function of the system model contain-
ing the FOPID controller is

G(s) =C(s)P(s). (5)
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Fig. 1. Feedback control system.

To obtain FOPID controllers that are robust to variation in
the gain of the system, a tuning method has been widely
reported [5,29,34–36] that contains three primary specifi-
cations in the frequency domain:

(i) Gain crossover frequency specification:

|G( jωc)|= 1, (6)

where ωc is the specified gain crossover frequency.
(ii) Phase margin specification:

arg(G( jωc)) =−π +φPM. (7)

As an important measure of robustness, an appropriate
phase margin φPM is always taken into account in con-
troller design.

(iii) Robustness to gain variations (“flat phase” condi-
tion):

d(arg(G( jω)))

dω

∣∣∣∣
ω=ωc

= 0. (8)

The phase of the open-loop transfer function is guaranteed
to be flat near the gain crossover frequency under this con-
dition; that is, the phase remains constant within a certain
interval around ωc.

3. A NEW ROBUST TUNING METHOD

3.1. Frequency response of the control system
By substituting s = jω into the controlled plant P(s)

described in (3), we have

P( jω) =
ke− jLω

A1(ω)+ jA2(ω)
, (9)

where

A1(ω) =
n

∑
i=0

aiω
γi cos

π

2
γi, (10)

A2(ω) =
n

∑
i=0

aiω
γi sin

π

2
γi. (11)

The well-known equation j = e j0.5π has been applied in
the above calculation. Similarly, the FOPID controllers in
(4) can be described as

C( jω) =C1(ω)+ jC2(ω), (12)

where

C1(ω) = kp + kiω
−λ cos

π

2
λ + kdω

µ cos
π

2
µ, (13)

C2(ω) =−kiω
−λ sin

π

2
λ + kdω

µ sin
π

2
µ. (14)

From (5), the transfer function of the open-loop system
G( jω) is given as

G( jω) = P( jω)C( jω)

=
ke− jLω

A1(ω)+ jA2(ω)
(C1(ω)+ jC2(ω)) . (15)

For convenience in the following sections, the variables
A1, A2, C1 and C2 denote A1(ωc), A2(ωc), C1(ωc) and
C2(ωc), respectively.

3.2. Robust performance indexes
To obtain a FOPID controller that is robust to the plant

parameters, all the plant parameters k, ai, γi in (3) are con-
sidered variables. From the specification in (6), the param-
eters of the plant and FOPID controller can be related to
the gain crossover frequency. This is a complex implicit
relationship that can be described as follows:

|G( jωc)|=
∣∣∣∣ k
A1 + jA2

∣∣∣∣ |C1 + jC2|= 1. (16)

We define an implicit function F , which (16) shows is
equivalent to:

F = k2 (C2
1 +C2

2

)
−
(
A2

1 +A2
2

)
= 0. (17)

Assume that the specified nominal gain crossover fre-
quency is ω0c. When subjected to environmental or in-
ternal physical changes, the system parameters are per-
turbed. As a result, the parameter ω0c changes to satisfy
(17). Therefore, the relationship of ωc to ai, γi, and k can
be described by an implicit function through (17). From
this function, we can calculate the partial derivative of ωc

with respect to each parameter as follows:

∂ωc

∂ai
=− Fai

Fωc

, (18)

∂ωc

∂γi
=−

Fγi

Fωc

, (19)

∂ωc

∂k
=− Fk

Fωc

, (20)

where Fωc , Fai , Fγi and Fk denote the partial derivatives of
F with respect to ωc, ai, γi and k, respectively.

Equations (18)-(20) represent the rate of change in the
gain crossover frequency caused by parameter variation.
Now, we focus on the phase of the open-loop transfer
function. From (15), the phase at ωc can be expressed as

φM =arg(G( jωc))
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=arg(C1 + jC2)− arg(A1 + jA2)−Lωc

=−π +φPM. (21)

Since ωc is a variable related to the plant parameters, the
phase φM can be considered to be dependent on only the
plant parameters when the controller is specified. Assum-
ing that ai, γi, and k undergo slight disturbances ∆ai, ∆γi,
and ∆k, respectively, the corresponding phase variation
∆φM can be expressed as

∆φM =
n

∑
i=0

∂φM

∂ai
∆ai +

n

∑
i=0

∂φM

∂γi
∆γi +

∂φM

∂k
∆k, (22)

where the partial derivatives represent the slope of the
phase with respect to the parameters, reflecting the sen-
sitivity of the phase with respect to these parameter varia-
tions. Regarding ωc as a function of the plant parameters
determined by (17), the partial derivatives of φM with re-
spect to these parameters can be determined. After using
some mathematical manipulations, we obtain

∂φM

∂ai
= XFai −Y1(i), (23)

∂φM

∂γi
= XFγi −ai (lnωc)Y1(i)−Y2(i), (24)

∂φM

∂k
= XFk, (25)

where the variables X , Y1(i) and Y2(i) are

X =

(
− 1

Fωc

)
(−XA +XC−L) , (26)

XA=

n−1
∑
i=0

n
∑

j=i+1
aia jω

γi+γ j−1
c (γi−γ j)sin π

2 (γi−γ j)

n
∑
i=0

(aiω
γi
c )2+2 ∑

0≤i<j≤n
aia jω

γi+γ j
c cos π

2 (γi−γ j)
,

(27)

XC =
C1(∂C2/∂ωc)−C2(∂C1/∂ωc)

C2
1 +C2

2
, (28)

Y1(i)=
ω

γi
c

n
∑
j=0

a jω
γ j
c sin π

2 (γi− γ j)

n
∑

i=0

(
aiω

γi
c
)2
+2 ∑

0≤i< j≤n
aia jω

γi+γ j
c cos π

2 (γi−γ j)
,

(29)

Y2(i) =

π

2 aiω
γi
c

n
∑
j=0

a jω
γ j
c cos π

2 (γi− γ j)

n
∑

i=0

(
aiω

γi
c
)2
+2 ∑

0≤i< j≤n
aia jω

γi+γ j
c cos π

2 (γi−γ j)
.

(30)

To preserve the phase margin when a plant parameter p
(p ∈ {ai,γi,k}) changes, the partial derivative of φM with
respect to p should be kept as close to zero as possible.
Therefore, the robust performance index for the parameter

p can be expressed as

R(p) =
∣∣∣∣∂φM

∂ p

∣∣∣∣ . (31)

Remark 1: All the partial derivatives of φM with respect
to p contain the parameters of the FOPID controller. That
is, the value of R(p) can be tuned by the FOPID parame-
ters. It should be noted that the robust performance index
is invalid for the time delay. Considering that ωc is inde-
pendent of L, the partial derivative of φM with respect to L
can be computed as

∂φM

∂L
=−ωc. (32)

Hence, the value of ∂φM/∂L cannot be changed by the
FOPID controller after specifying the gain crossover fre-
quency.

Remark 2: The robust performance indexes for differ-
ent parameters are not independent of each other. From
(23)-(25), one can easily obtain the following equations:

∂φM

∂ai
=

∂φM

∂k
Fai

Fk
−Y1(i), (33)(

∂φM

∂ai
+Y1(i)

)
Fa j =

(
∂φM

∂a j
+Y1 ( j)

)
Fai , (34)

∂φM

∂γi
=

∂φM

∂k
Fγi

Fk
−ai (lnωc)Y1(i)−Y2(i), (35)(

∂φM

∂γi
+ai (lnωc)Y1(i)+Y2(i)

)
Fγ j

=

(
∂φM

∂γ j
+a j (lnωc)Y1 ( j)+Y2 ( j)

)
Fγi , (36)(

∂φM

∂ai
+Y1(i)

)
Fγ j

=

(
∂φM

∂γ j
+a j (lnωc)Y1 ( j)+Y2 ( j)

)
Fai , (37)

where 0 ≤ i, j ≤ n. Equations (33)-(37) indicate that for
different plant parameters p1 and p2, if R(p1) = 0, then
R(p2) may not be zero. In some cases, a smaller value of
R(p1) results in a large value of R(p2). This means that the
robustness indexes for different parameters restrict each
other.

Remark 3: It can be shown from (17) that Fk 6= 0. Note
that

d (arg(G( jω)))

dω

∣∣∣∣
ω=ωc

=−XA +XC−L, (38)

with R(k) = 0, will lead to the “flat phase” condition (8).
Therefore, the robust performance indexes given in (31)
can be regarded as the promotion and generalization of
the gain robustness condition.
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3.3. Specifications in the frequency domain

From the specifications given in (6) and (7), we have
the following theorem:

Theorem 1: For a plant described in (3), the parame-
ters of the FOPID controller that ensure the desired phase
margin ϕPM and gain crossover frequency ωc can be de-
termined by the following equations:

kp =−
kdω

µ
c sin π

2 (λ+µ)

sin π

2 λ
−
√

A2
1+A2

2 sin
(

π

2λ+θ
)

k sin π

2 λ
,

(39)

ki =
kdω

λ+µ
c sin π

2 µ

sin π

2 λ
+

ωλ
c

√
A2

1 +A2
2 sinθ

k sin π

2 λ
, (40)

where

θ = ϕPM +Lωc +∠(A1 + jA2). (41)

Proof: Substituting (39) and (40) into (12), C( jωc) can
be expressed as

C( jωc)

= kd

(
( jωc)

µ−
ωµ sin π

2(λ+µ)

sin π

2 λ
+

ωλ+µ sin π

2 µ

( jωc)λ sin π

2 λ

)

+

√
A2

1+A2
2 sinθ

jλ k sin π

2 λ
−
√

A2
1+A2

2 sin
(

π

2 λ+θ
)

k sin π

2 λ
. (42)

We also have the following equations:

sin
(

π

2
λ +θ

)
= sin

π

2
λ cosθ + cos

π

2
λ sinθ , (43)

cos
(

π

2
λ +θ

)
= cos

π

2
λ cosθ − sin

π

2
λ sinθ , (44)

which allow (42) to be rewritten as

C( jωc) =−e jθ

√
A2

1 +A2
2

k
. (45)

Then, we have

|G( jωc)|=

∣∣∣∣∣−e jθ

√
A2

1+A2
2

k

∣∣∣∣∣×
∣∣∣∣k A1− jA2

A2
1+A2

2
e− jLωc

∣∣∣∣=1,

(46)

∠G( jωc) =−π +ϕPM. (47)

It can be observed from (46) and (47) that the speci-
fications in (6) and (7) are fully met. This completes the
proof. �

Remark 4: Equations (39) and (40) provide direct cal-
culations of the FOPID parameters to meet the specifica-
tions of the phase margin and gain crossover frequency.
They simplify the complex equations given in (6) and (7).

3.4. Tuning procedure for the FOPID controller
To improve and perfect the tuning of the FOPID con-

troller, high-frequency noise attenuation and output dis-
turbance rejection [29] should be considered. Then, the
robust tuning method for a system with an undetermined
parameter p can be formulated as follows:

1) Specify the gain crossover frequency ωc and the de-
sired phase margin φPM; then, we obtain (39) and (40).

2) Specify the high-frequency noise attenuation:∣∣∣∣T ( jω) =
C( jω)P( jω)

1+C( jω)P( jω)

∣∣∣∣≤ h1, ∀ω ≥ ωt ,

→ T ( jωt) = h1, (48)

where h1 is an appropriate constant.
3) Specify the output disturbance rejection∣∣∣∣S( jω) =

1
1+C( jω)P( jω)

∣∣∣∣≤ h2, ∀ω ≤ ωs,

→ S ( jωs) = h2, (49)

where h2 is a desired value.
4) Determine the p-robust performance index R(p).
For a plant with variations in the parameter p, R(p) can

be taken as the objective function to tune the FOPID con-
troller with the other four specifications.

5) Perform steady-state error cancellation: The frac-
tional integrator s−λ is as efficient as an integer-order in-
tegrator. Therefore, this condition can always be fulfilled
[22].

The above tuning method includes four nonlinear con-
straints and one objective function (31). Therefore, the five
parameters (kp, ki, kd , λ , and µ) of the FOPID controller
can be obtained based on the solution of the nonlinear op-
timization problem. It should be noted that for a parameter
p, the minimum value of R(p) may not be zero under the
other four specifications. In addition, determining the ap-
propriate specifications is important because inappropriate
specifications can lead to system instability.

4. EXAMPLES

The proposed tuning method is tested for two examples.
The types of variable parameters involved in each example
are different.

Example 1: A liquid level system is modeled by a first-
order system with a time delay [29]

P1(s) =
3.13

T s+1
e−50s, (50)

where T is a time constant that either undergoes a per-
turbation or cannot be accurately measured. The nominal
value is estimated to be T0 = 433.33 s. We aim to design a
FOPID controller with robustness to T . The design speci-
fications are
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• gain crossover frequency ω0c = 0.008 rad/s;

• phase margin φ0PM = 60◦;

• output disturbance rejection:

|S( jω)| ≤ 0.1, ∀ω ≤ ωs = 0.001 rad/s;

• high-frequency noise attenuation:

|T ( jω)| ≤ 0.1, ∀ω ≥ ωt = 10 rad/s.

From (23), a performance index R(T ) that is robust to
the time constant T can be obtained. Using the proposed
tuning method, the transfer function of the robust FOPID
controller can be expressed as

C3 = 1.0379+
0.0044
s0.9642 +6.0349s1.4069. (51)

As a comparison, applying the tuning method in [29] and
the transfer function of a FOPID controller with gain ro-
bustness produces

C4 = 0.6152+
0.01

s0.8968 +4.3867s0.4773. (52)

Fig. 2 shows the step responses of the closed-loop system
with C3. It can be seen that in the time-constant variation
range [303.33, 563.33] (±30% variations from the nomi-
nal value of 433.33), the overshoot does not change much,
and the closed-loop system remains stable. Fig. 3 shows
the step responses of the closed-loop system with con-
troller C4, which has a larger variation in overshoot in the
variation range. Table 1 presents a summary of the results
corresponding to Figs. 2 and 3. It can be seen that the av-
erage variation in overshoot of the system with controller
C3 is 1.625%, while that of the system with controller C4

is 4.05%. In Fig. 4, the variations in the phase margin as T
varies are shown. The system using the proposed FOPID
controller has an almost constant phase margin near the
nominal value of 60◦, which demonstrates its greater ro-
bustness to variations in T . Fig. 5 shows that the system
with C4 exhibits significant instability as T changes to 100,
but the system with C3 remains stable. This finding shows
that the robustness performance of the proposed FOPID
controller is better.

Example 2: Consider a fractional-order plant with un-
certain order described by the following transfer function:

P2(s) =
1

2sγ +1
, (53)

where the order γ of the plant cannot be measured pre-
cisely but has a nominal value of 1.4. The design specifi-
cations are given as

• gain crossover frequency ω0c = 0.8 rad/s;

• phase margin φ0PM = 70◦;

Table 1. Summary of the results corresponding to Figs. 2
and 3.

Time constant
T

Overshoot (%)
in Fig. 2

Overshoot (%)
in Fig. 3

303.33 7.8 6.3
368.33 6.8 9.6
433.33 8.1 12.5
498.33 9.7 15.0
563.33 11.4 17.1

Fig. 2. Step responses of the closed-loop system with the
FOPID C3.

Fig. 3. Step responses of the closed-loop system with the
FOPID C4.

Fig. 4. Curves of the phase margin with respect to T .
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Fig. 5. Step responses of the closed-loop systems with
T = 100.

• output disturbance rejection:

|S( jω)| ≤ 0.0001, ∀ω ≤ ωs = 0.001 rad/s;

• high-frequency noise attenuation

|T ( jω)| ≤ 0.1, ∀ω ≥ ωt = 100 rad/s.

The robust performance index R(γ) can be obtained
from (24). Using the proposed tuning method, the robust
FOPID controller is given by

C5 = 1.8716+
1.2366
s1.3026 +1.1782s1.0342. (54)

Similarly, by applying the tuning method in [29], the
FOPID controller is obtained as

C6 = 1.6951+
0.6539
s1.3948 +0.2971s1.3381. (55)

When the plant order changes from 1 to 1.8, the closed-
loop system with C5 remains stable, and the overshoot of
the step response changes slightly, as shown in Fig. 6. In
contrast, the performance of the system with C6 changes
dramatically with order variation, as shown in Fig. 7. The
corresponding results are given in Table 2. It can be seen
that the average variation in overshoot of the system with
controller C5 is 2.775%, while that of the system with con-
troller C6 is 8.25%. Fig. 8 shows the mapping of the plant
order γ and phase margin. It is clear that with the change
in γ , the variation in the phase margin is less in the system
with C5. Fig. 9 shows the step responses of the closed-
loop systems with γ = 1.9. It can be seen that the proposed
FOPID controller C5 provides superior performance com-
pared with the system with C6, which undergoes a long
period of oscillation.

5. CONCLUSION

This study presents a robust tuning method for FOPID
controllers based on maintaining the phase margin of

Fig. 6. Step responses of the closed-loop system with
FOPID C5.

Fig. 7. Step responses of the closed-loop system with the
FOPID C6.

Table 2. Summary of the results corresponding to Figs. 6
and 7.

Fractional
order γ

Overshoot (%)
in Fig. 6

Overshoot (%)
in Fig. 7

1 19.2 17.9
1.2 18.0 15.0
1.4 16.2 12.2
1.6 16.1 17.7
1.8 22.4 31.2

an open-loop system. The implicit function of the gain
crossover frequency and the plant parameters are con-
structed, and the partial derivatives of the phase margin
with respect to all the plant parameters are obtained as the
robust performance indexes. These performance indexes
maintain the insensitivity of the phase margin to param-
eter changes; thus, the robust performance of the system
can be ensured. In addition, the formulas for calculating
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Fig. 8. Curves of the phase margin with respect to γ .

Fig. 9. Step responses of the closed-loop systems with γ =
1.9.

the parameters of the FOPID controller that meet the spec-
ified phase margin and gain crossover frequency are pre-
sented and proved. The simulation results clearly show
the effectiveness of the proposed tuning method for the
FOPID controller. The specifications of the gain crossover
frequency, phase margin, complementary sensitivity func-
tion and sensitivity function are met. Compared with pre-
vious results, the phase margin and overshoot change less
when the specified uncertain parameter varies around its
nominal value. In our future work, the proposed method
will be applied to other fractional-order controllers.
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