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Event-triggered Finite-time Extended Dissipative Control for a Class of
Switched Nonlinear Systems via the T-S Fuzzy Model
Hui Gao, Hongbin Zhang* � , and Jianwei Xia

Abstract: This paper foucuses on the study of finite-time extended dissipative control for a class of switched
nonlinear systems. An event-triggered communication scheme is proposed to reduce the transmitted data of the
system state. Sufficient conditions for finite-time extended dissipative control for the switched nonlinear systems
are addressed, based on extended dissipative, we can solve the H∞, L2−L∞, Passivity and (Q, S, R)-dissipativity
performance at the same time. T-S fuzzy models are applied to represent the nonlinear subsystems. Linear matrix
inequality techniques are used for the design of the fuzzy controller. Finally, numerical examples are presented.
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1. INTRODUCTION

Switched system has attracted much attention in the
past decades, which can be modeled by a class of dis-
crete or continuous-time subsystems and a logical rule
that orchestrates the switching among the subsystems. It
has many practical applications, such as aircraft, traffic
control, automotive industry and many other fields. Thus,
many results on switched systems have been researched in
[1–5].

In many practical systems, the existence of nonlinear-
ity is inevitable. The Takagi-Sugeno (T-S) fuzzy model,
which is well known that can effectively represent com-
plex nonlinear systems approximately by fuzzy sets and
fuzzy reasoning, also can be used to approximate switched
nonlinear systems. As we all know, considerable research
attention for fuzzy nonlinear systems focuses on Lya-
punov asymptotic stability. However, in practice, the sys-
tem behavior over a finite time interval is also of great
importance, such as robot control systems, chemical pro-
cesses and so on. Up to now, only few results about finite-
time analysis of fuzzy nonlinear systems reported [6–11].

In general, the transmission of the state to the controller
is usually continuous in time. However, in some cases,
when the control objective is acheived, it is unnecessary to
transmit the state every time when the system performance
is maintained, which leads to the redundant transmission.
To reduce the redundant data transmission, a so-called
event-triggered scheme was proposed, which can reduce

the transmission resource efficiently. The event-triggered
scheme has many advantages, it transmits the state data
only when necessary. Recently, much work has been done
to the event-triggered analysis and control [12–17]. Spe-
cially, distributed event-triggered estimation over sensor
networks is surveyed in [12], distributed secondary con-
trol for active power sharing and frequency regulation in
islanded microgrids using an event-triggered communica-
tion mechanism is studied in [13]. Event-triggered gener-
alized dissipativity filtering for neural networks is investi-
gated in [14]. The authors in [16] provided an important
insight that a felicitous event-driven scheme dealing with
asynchronous filtering could save network communication
resources with a satisfactory finite-time stability perfor-
mance. Significant results concerning event-triggered ob-
server design are achieved in [17], and then a resilient con-
troller is constructed in the meaning of finite-time stabil-
ity. However, only few results of event-triggered control
foucuses on switched nonlinear systems, which motivates
our research interest.

Up to now, many significant results on the system per-
formance such as H∞ performance, L2−L∞ performance,
Passivity performance and (Q, S, R)-dissipativity perfor-
mance. Recently, the concept of extended dissipative was
proposed by Zhang in [18], which is a generalization of
these performances. Through adjusting weighting matri-
ces of extended dissipative, we can obtain the above men-
tioned performance, which provide a efficient method for
system performance analysis. This performance index has
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been adopted to neural networks and linear switched sys-
tems [18–27]. To the best of our knowledge, the analysis
and the synthesis of extended dissipative has not been ex-
tended to nonlinear switched systems, which inspired our
current research.

Based on the above discussions, the contributions are
listed as follows: 1) a novel event-triggered scheme with
merged switching signal of the system is proposed; 2)
finite-time extended dissipative performance is firstly
studied for switched nonlinear systems; 3) detailed pro-
cedures for solving controller gains are given.

This paper is organized as follows. In Section 2, sys-
tem descriptions and preliminaries are formulated. In Sec-
tion 3, sufficient conditions of finite-time extended dissi-
pative performance for switched nonlinear systems are es-
tablished. Furthermore, the design of the state feedback
controllers are proposed. All the results are given in terms
of LMIs. In Section 4, numerical examples are present. In
Section 5, conclusion is given.

Notation: In this paper. MT represents the transpose
of the matrix M; X > 0 denotes a positive-definite ma-
trix. λmin(P), λmax(P) denote the minimum and maximum
eigenvalue of matrix P respectively.

2. SYSTEM DESCRIPTIONS AND
PRELIMINARIES

Consider the switched nonlinear systems{
ẋ(t) = fσ(t)(x(t),u(t),w(t)),

y(t) = sσ(t)(x(t)),
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the state
vector, input vector and output vector, respectively; w(t)∈
Rnw is the disturbance input and belongs to L2[0,∞); fσ(t)
and sσ(t) are nonlinear functions; σ(t) is switching signal
and takes value in the finite set I = {1,2, · · · ,N}. When
σ(t) = i, we say the ith subsystem is activated.

The fuzzy model of ith subsystem is described as fol-
lows:

Rule m: IF zi1(t) is Ni1m and · · · and zig(t) is Nigm,
THEN{

ẋ(t) = Aimx(t)+Bimu(t)+Eimw(t),

y(t) =Cimx(t),

where zi(t) = (zi1(t), zi2(t), · · · , zig(t)) are some measur-
able premise variables and Nipm (p = 1, 2, · · · , g) are fuzzy
sets. Aim, Bim, Eim and Cim are real matrices of the mth local
model of the ith subsystem.

Through using “fuzzy blending”, the final output of the
ith subsystem is inferred as follows:

ẋ(t) =
ri

∑
m=1

him(z(t))[Aimx(t)+Bimu(t)+Eimw(t)],

y(t) =
ri

∑
m=1

him(z(t))Cimx(t),
(2)

and him(z(t)) = lim/
ri

∑
m=1

lim, lim =
g
∏

p=1
Nipm(zip(t)), in which

Nipm(zip(t)) is the grade of the membership function of
zip in Nipm. It is assumed that lim ≥ 0 for all t and
m = 1,2, · · · ,ri. Therefore, the normalized membership

function him(z(t)) satisfies him(z(t))≥ 0,
ri

∑
m=1

him(z(t)) = 1,

∀t ∈ N.

Proposition 1: The external disturbance satisfies∫ t

0
wT (s)w(s)ds≤ d, d ≥ 0.

3. MAIN RESULTS

Given the event-triggered scheme:

tk+1 = min{t ′k+1, tk + τd}, t0 = 0, (3)

where t ′k+1 =mint>tk{t | [x(t)−x(tk)]T Φσ(tk)[x(t)−x(tk)]≥
x(tk)T Ψσ(tk)x(tk)}, tk denotes the sampling instants for any
integer k ≥ 0. τd is the dwell time of the switched system.

We denote e(t) = x(t)− x(tk) and Ωs = [tk, tk+1), posi-
tive definite matrices Φσ(tk) and Ψσ(tk) are event-triggered
parameters. It should be noted that Φσ(tk) and Ψσ(tk) could
not be different too much and tk+1− tk > 0.

We can deduce from (3) that tk+1− tk ≤ τd . Obviously,
for any t ∈ [tk, tk+1), we have [x(t)− x(tk)]T Φσ(tk)[x(t)−
x(tk)]< x(tk)T Ψσ(tk)x(tk).

We assume τ(t) = t − tk, t ∈ [tk, tk+1), then σ(tk) =
σ̂(t) = σ(t − τ(t)). Merging the switching signal σ(t)
with σ̂(t), we have δ (t) = (σ(t), σ̂(t)). By τ(t) ∈ [0,τd)
and σ̂(t)∈ S[τa,N0+

τd
τa
] we can obtain the following Lem-

mas.

Lemma 1 [28]: Considering σ(t) ∈ S[τa,N0], then
δ (t) ∈ S[ τa

2 ,2N0 +
τd
τa
].

Lemma 2 [28]: Assume Ts(τ, t) be the total syn-
chronous time in time interval [τ, t) of σ(t) and σ̂(t), and
denote Tas(τ, t) = t − τ − Ts(τ, t) as total asynchronous
time in [τ, t). Then, for positive constants λs,λµ and λ ∈
(0,λs), if (λs + λµ)τd ≤ (λs − λ )τa, then −λsTs(τ, t) +
λuTas(τ, t)≤ (λs +λµ)N0τd−λ (t− τ).

Denote

u(t) =
ri

∑
n=1

h jn(z(t))K jnx(tk), t ∈Ωs, (4)

where K jn is the controller gain.
The closed-loop fuzzy system could be obtained as fol-

lows:{
ẋ(t) = Aδ (t)(t)x(t)−Bδ (t)(t)e(t)+Eσ(t)(t)w(t),

y(t) =Cσ(t)(t)x(t),
(5)

where

Aδ (t)(t) =
ri

∑
m=1

him(z(t))
ri

∑
n=1

h jn(z(t))(Aim +BimK jn),
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Bδ (t)(t) =
ri

∑
m=1

him(z(t))
ri

∑
n=1

h jn(z(t))BimK jn,

Eσ(t)(t) =
ri

∑
m=1

him(z(t))Eim,

Cσ(t)(t) =
ri

∑
m=1

him(z(t))Cim.

Proposition 2 [18]: Matrices ψ1, ψ2, ψ3, ψ4 satisfy the
following conditions:

(1) ψ1 = ψT
1 ≤ 0, ψ3 = ψT

3 > 0, ψ4 = ψT
4 ≥ 0;

(2) (‖ψ1‖+‖ψ2‖)ψ4 = 0.

Definition 1 [18]: Given matrices ψ1,ψ2,ψ3 and ψ4

satisfying Assumption 2, and for any Tf ≥ 0 and all w(t)∈
L2[0,∞), system (5) is said to be extended dissipative if:

∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0, (6)

where

J(t) = yT (t)ψ1y(t)+2yT (t)ψ2w(t)+wT (t)ψ3w(t).
(7)

Remark 1: By setting the weighting matrices, we have

(1) L2−L∞ performance: ψ1 = 0, ψ2 = 0, ψ3 = γ2I, ψ4 =
I;

(2) H∞ performance: ψ1 =−I, ψ2 = 0, ψ3 = γ2I, ψ4 = 0;

(3) Passivity performance: ψ1 = 0, ψ2 = I, ψ3 = γI, ψ4 =
0;

(4) (Q, S, R)-dissipativity performance: ψ1 = Q, ψ2 = S,
ψ3 = R−β I, ψ4 = 0.

Definition 2: [1] Given positive constants c1,c2,Tf

with c1 < c2, a positive definite matrix R and a switch-
ing signal σ(t), ∀t ∈ [0,Tf ], switched system (5) is said to
be finite-time bounded with respect to (c1,c2,R,Tf ,σ), if
∀t ∈ [0,Tf ],

sup
−τ≤θ≤0

{ xT (θ)Rx(θ), ẋT (θ)Rẋ(θ)} ≤ c1

⇒ xT (t)Rx(t)≤ c2. (8)

Definition 3 [1]: For any T2 > T1 ≥ 0, let Nσ (T1,T2)
denotes the switching number of σ(t) over (T1,T2). If

Nσ (T1,T2)≤ N0 +
T2−T1

τa
(9)

holds for τa > 0 and an integer N0 ≥ 0, then τa is called an
average dwell-time. We choose N0 = 0.

3.1. Finite-time boundedness and extended dissipa-
tive performance analysis

Theorem 1: If there exist positive scalars b, λs, λu and
µ ≥ 1, positive definite matrices R, Pi j, Qi j, Ψ j, Φ j, such
that the following matrix inequalities hold for all i, j ∈ I.

µ
−1Pii ≤ Pi j ≤ µPj j, Pii ≤ µPj j, ∀i 6= j, (10)

1
b

Pi j−CT
i (t)ψ4Ci(t)> 0, (11)

Θ11 −Pi jBi j(t) Pi jEi(t) Ψ j

∗ −Φ j 0 −Ψ j

∗ ∗ −Qi j 0
∗ ∗ ∗ −Ψ j

< 0, (12)

Θ11 = 2λi jPi j +Pi jAi j(t)+AT
i j(t)Pi j,

Σ11 −Pi jBi j(t) Pi jEi(t)−CT
i (t)ψ2 Ψ j

∗ −Φ j 0 −Ψ j

∗ ∗ −ψ3 0
∗ ∗ ∗ −Ψ j

< 0,

(13)

Σ11 = 2λi jPi j +Pi jAi j(t)+AT
i j(t)Pi j−CT

i (t)ψ1Ci(t)

hold, the average dwell-time satisfies

τa ≥
ln(µ)+ τd(λs +λu)

λs
, (14)

and

µ
2N0+

τd
τa e2(λs+λu)N0τd (λ2c1 +λ3d)< λ1c2, (15)

µ
2N0+

τd
τa e2(λs+λu)N0τd < b, (16)

we define

λmin(R−
1
2 Pi jR−

1
2 ) = λ1,λmax(R−

1
2 Pi jR−

1
2 ) = λ2,

λmax(R−
1
2 Qi jR−

1
2 ) = λ3. (17)

Then, the switched system (5) is finite-time bounded-
ness with extended dissipative performance.

Proof: Considering

V (t) =Vδ (t)(t) = xT (t)Pδ (t)x(t). (18)

Denote τk as the switching time of δ (t). Then from (10)
we have

Vδ (τk)(τk)≤ µVδ (τ−k )(τ
−
k ). (19)

for ∀t ∈Ωs, we have

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)−wT (t)Qδ (t)w(t)

= 2xT (t)Pδ (t)ẋ(t)+2λδ (t)xT (t)Pδ (t)x(t)

−wT (t)Qδ (t)w(t)≤ 2xT (t)Pδ (t)(Aδ (t)(t)x(t)

−Bδ (t)(t)e(t)+Eσ(t)(t)w(t))+2λδ (t)xT (t)Pδ (t)x(t)

−wT (t)Qδ (t)w(t)+ [x(t)− e(t)]T Ψσ̂(t)[x(t)− e(t)]
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− e(t)T
Φσ̂(t)e(t)≤ XT (t)Ωδ (t)X(t), (20)

where

λδ (t) =

{
λs, t ∈ Ts(Ωs);

−λu, t ∈ Tas(Ωs),

X(t) =
[

xT (t) eT (t) wT (t)
]T

,

and

Ωδ (t) =

 Ψ11 −Pδ (t)Bδ (t)(t) Pδ (t)Eσ(t)(t)
∗ −Φσ̂(t) 0
∗ ∗ −Qδ (t)


+ET

Ψσ̂(t)E,

Ψ11 = 2λδ (t)Pδ (t)+Pδ (t)Aδ (t)(t)+AT
δ (t)(t)Pδ (t),

E =
[

I −I
]
.

Assume one switching in [tk, tk+1) for δ (t). And let
σ(τk) = i. When t ∈ [tk,τk), we have δ (t) = ( j, j), Ωδ (t) =
Ω j j; and if t ∈ [τk, tk+1), then δ (t) = (i, j), Ωδ (t) = Ωi j.

Assume no switching in [tk, tk+1) for δ (t), then δ (t) =
( j, j) in t ∈ [tk, tk+1) and Ωδ (t) = Ω j j.

By Schur complement of (12), we have Ωδ (t) < 0.
Thus, V̇δ (t)(t) + 2λδ (t)Vδ (t)(t) − wT (t)Qδ (t)w(t) < 0

holds.
Denote τ1, . . ., τNδ (0,t) as the switching instants of δ (t)

in (0, t). We assume τ1 > 0 and τNδ (0,t) < t. Then, from
(19) and V̇δ (t)(t)+2λδ (t)Vδ (t)(t)−wT (t)Qδ (t)w(t)< 0, we
have

Vδ (t)(t)≤ e
−2λδ (τN

δ
(0,t))

(t−τN
δ
(0,t))Vδ (τN

δ
(0,t))(τNδ (0,t))

+
∫ t

τN
δ
(0,t)

e−2λδ (s)(t−s)wT (s)Qδ (s)w(s)ds,

µe
−2λδ (τN

δ
(0,t))

(t−τN
δ
(0,t))

×
[

e
−2λδ (τN

δ
(0,t)−1)

(τN
δ
(0,t)−τN

δ
(0,t)−1)Vδ (τN

δ
(0,t)−1)(τNδ (0,t)−1)

+
∫

τN
δ
(0,t)

τN
δ
(0,t)−1

e−2λδ (s)(τN
δ
(0,t)−s)wT (s)Qδ (s)w(s)ds

]
+
∫ t

τN
δ
(0,t)

e−2λδ (s)(t−s)wT (s)Qδ (s)w(s)ds

= µe
−2λδ (τN

δ
(0,t))

(t−τN
δ
(0,t))−2λδ (τN

δ
(0,t)−1)

(τN
δ
(0,t)−τN

δ
(0,t)−1)

×Vδ (τN
δ
(0,t)−1)(τNδ (0,t)−1)

−µ

∫
τN

δ
(0,t)

τN
δ
(0,t)−1

e
−2λδ (τN

δ
(0,t))

(t−τN
δ
(0,t))−2λδ (s)(τN

δ
(0,t)−s)

×wT (s)Qδ (s)w(s)ds

+
∫ t

τN
δ
(0,t)

e−2λδ (s)(t−s)wT (s)Qδ (s)w(s)ds.

We can obtain from the above calculation that

Vδ (t)(t)≤µ
Nδ (0,t)eϕ(0,t)Vδ (0)(0)

+
∫ t

0
µ

Nδ (s,t)eϕ(s,t)wT (s)Qδ (s)w(s)ds,

where ϕ(s, t) = −2λsTs(s, t) + 2λuTas(s, t),τ0 = 0 and
τNδ (0,t)+1 = t.

By Lemma 1, we have Nδ (0, t)≤ 2N0 +
τd
τa
+ 2t

τa
.

For all λ ∈ ( lnµ

τa
,λs− τd

τa
(λs+λu)], λ− lnµ

τa
> 0 and (λs+

λu)τd ≤ (λs−λ )τa, by Lemma 2 we have ϕ(s, t)≤ 2(λs+
λu)N0τd−2λ (t− s).

Then we have

Vδ (t)(t)≤µ
2N0+

τd
τa e2(λs+λu)N0τd e−2t(λ− lnµ

τa
)

× (Vδ (0)(0)+
∫ t

0
wT (s)Qδ (s)w(s)ds)

≤µ
2N0+

τd
τa e2(λs+λu)N0τd

(
Vδ (0)(0)

+
∫ t

0
wT (s)Qδ (s)w(s)ds

)
. (21)

On the other hand,

Vδ (0)(0) =xT (0)Pδ (0)x(0)

=xT (0)R
1
2 (R−

1
2 Pδ (0)R−

1
2 )R

1
2 x(0)≤ λ2c1.

(22)

For ∀t ∈Ωs, we have

Vδ (t)(t) =xT (t)Pδ (t)x(t) = xT (t)R
1
2 (R−

1
2 Pδ (t)R−

1
2 )R

1
2 x(t)

≥λ1xT (t)Rx(t). (23)

From (21) (22) and (23) we have that

xT (t)Rx(t)<
µ

2N0+
τd
τa e2(λs+λu)N0τd (λ2c1 +λ3d)

λ1
.

Using (15), one obtains

xT (t)Rx(t)< c2.

The proof is completed.
Next we prove extended dissipative performance. Sim-

ilar to the above proof, we have

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)− J(t)≤ XT (t)Φδ (t)X(t),

where

X(t) =
[

xT (t) eT (t) wT (t)
]T

,

by virtue of (13) we have that

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)− J(t)< 0.

Similar to above proof, we have

Vδ (t)(t)≤µ
Nδ (0,t)eϕ(0,t)Vδ (0)(0)

+
∫ t

0
µ

Nδ (s,t)eϕ(s,t)J(s)ds,
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under zero initial condition Vδ (0)(0), we have

Vδ (t)(t)< µ
2N0+

τd
τa e2(λs+λu)N0τd

∫ t

0
J(s)ds,

and it is equivalent to

Vδ (t)(t)

µ
2N0+

τd
τa e2(λs+λu)N0τd

<
∫ t

0
J(s)ds,

by (16), we have

Vδ (t)(t)
b

<
∫ t

0
J(s)ds,

so we have∫ t

0
J(s)ds >

Vδ (t)(t)
b

>
1
b

xT (t)Pδ (t)x(t)> 0,

considering inequality∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0,

when ψ4 = 0, one obtains∫ Tf

0
J(t)dt ≥ 0,

when ψ4 > 0, by Proposition 2 we have ψ1 = 0, ψ2 = 0,
ψ3 > 0, then we have∫ t

0
J(s)ds =

∫ t

0
wT (s)ψ3w(s)ds,

thus, for ∀t ∈ [0,Tf ], we have∫ Tf

0
J(s)ds >

∫ t

0
J(s)ds≥ 1

b
xT (t)Pδ (t)x(t)> 0,

it follows from (11) that∫ Tf

0
J(s)ds≥ 1

b
xT (t)Pδ (t)x(t)

≥ xT (t)CT
σ(t)(t)ψ4Cσ(t)(t)x(t)

= yT (t)ψ4y(t),

so we get∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0.

The proof is completed. �

Remark 2: Through adopting the novel event-
triggered method, we successfully address the extended
dissipative analysis to switched nonlinear systems, which
is the main contribution of this paper. Then we discussed
finite-time boundedness, it should be noted that the ex-
tended dissipative performance and finite-time bounded-
ness are satisfied simultaneously.

Theorem 2: If there exist positive scalars b, λs, λu and
µ ≥ 1, positive definite matrices R, Ri j, Qi j, Ψ j, Φ j, such
that the following matrix inequalities hold for all i, j ∈ I.

µ
−1R−1

ii ≤ R−1
i j ≤ µR−1

j j , R−1
ii ≤ µR−1

j j , ∀i 6= j,
1
b

R−1
i j −CT

i (t)ψ4Ci(t)> 0,
Σ11 −Bi j(t)Ri j Ei(t) Ψ̂ j

∗ −Φ̂ j 0 −Ψ̂ j

∗ ∗ −Qi j 0
∗ ∗ ∗ −Ψ̂ j

< 0, (24)

Σ11 = 2λi jRi j +Ai j(t)Ri j +Ri jAT
i j(t),

Ω11 −Bi j(t)Ri j Ω13 Ψ̂ j Ri jCT
i (t)

∗ −Φ̂ j 0 −Ψ̂ j 0
∗ ∗ −ψ3 0 0
∗ ∗ ∗ −Ψ̂ j 0
∗ ∗ ∗ ∗ ψ

−1
1

< 0,

(25)

Ω11 = 2λi jRi j +Ai j(t)Ri j +Ri jAT
i j(t),

Ω13 = Ei(t)−Ri jCT
i (t)ψ2

hold, the average dwell-time satisfies

τa ≥
ln(µ)+ τd(λs +λu)

λs
,

and

µ
2N0+

τd
τa e2(λs+λu)N0τd (λ2c1 +λ3d)< λ1c2,

we define

P−1
i j = Ri j, Φ̂ j = Ri jΦ jRi j, Ψ̂ j = Ri jΨ jRi j,

K jnRi j = Yjn,

λmin(R−
1
2 R−1

i j R−
1
2 ) = λ1,λmax(R−

1
2 R−1

i j R−
1
2 ) = λ2,

λmax(R−
1
2 Qi jR−

1
2 ) = λ3.

Then, the switched system (5) is finite-time bound-
edness with extended dissipative performance. The con-
troller gains can be given by K jn = YjnR−1

i j .

Proof: Similar to the proof of Theorem 1, we have

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)−wT (t)Qδ (t)w(t)

≤ XT (t)Ωδ (t)X(t).

Pre- and post-multiplying (24) by diag{R−1
i j , R−1

i j , 0,
R−1

i j }, by Schur complement, we have Ωδ (t) < 0, we can
conclude that

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)−wT (t)Qδ (t)w(t)< 0.

Similarly,

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)− J(t)≤ XT (t)Φδ (t)X(t).



Event-triggered Finite-time Extended Dissipative Control for a Class of Switched Nonlinear Systems via the T-S ... 2803

Pre- and post-multiplying (25) by diag{R−1
i j ,R

−1
i j ,0,R

−1
i j },

by Schur complement, we have Φδ (t) < 0, we can con-
clude that

V̇δ (t)(t)+2λδ (t)Vδ (t)(t)− J(t)< 0.

The following proof is similar to that of Theorem 1, it
is omitted here. �

Remark 3: By applying schur complement and some
matrix transformation method. The desired controllers can
be constructed by solving certain linear matrix inequalities
(LMIs).

4. NUMERICAL EXAMPLE

Example: Consider the following switched nonlinear
system with two subsystems.

Subsystem 1:

ẋ1(t) = 0.2x1(t)+0.1sin(x1(t))x1(t)+0.1x2(t)

+0.2sin(x1(t))x2(t)+0.1u1(t)+0.4u2(t)

−0.2sin(x1(t))u2(t)+0.3w1(t)

−0.4sin(x1(t))w1(t)+0.8sin(x1(t))w2(t);

ẋ2(t) = 0.1x1(t)+0.3x2(t)−0.3sin(x1(t))x2(t)

+0.1u1(t)−0.1sin(x1(t))u1(t)+0.1u2(t)

+0.2sin(x1(t))u2(t)+0.2w1(t)

−0.2sin(x1(t))w1(t)+0.2w2(t)

−0.1sin(x1(t))w2(t);

Subsystem 2:

ẋ1(t) = 0.3x1(t)−0.1cos(x2(t))x1(t)+0.2x2(t)

−0.1cos(x2(t))x2(t)+0.1u1(t)+0.6u2(t)

−0.5cos(x2(t))u2(t)+0.2w1(t)

−0.3cos(x2(t))w1(t)+0.7cos(x2(t))w2(t);

ẋ2(t) = 0.1x1(t)+0.1cos(x2(t))x1(t)+0.2x2(t)

−0.2cos(x2(t))x2(t)+0.8cos(x2(t))u1(t)

+0.2u2(t)+0.9w1(t)−0.9cos(x2(t))w1(t)

+0.2w2(t);

Let x(t) = [xT
1 (t)x

T
2 (t)]

T , u(t) = [uT
1 (t)u

T
2 (t)]

T , the T-S
fuzzy model of switched nonlinear system (5) consisting
of four local rules are formulated:

Subsystem 1:
Fuzzy Rule 1.
IF sin(x1(t)) = 0, THEN ẋ(t) = A11x(t) + B11u(t) +

E11w(t);
Fuzzy Rule 2.
IF sin(x1(t)) = 1, THEN ẋ(t) = A12x(t) + B12u(t) +

E12w(t);
Subsystem 2:
Fuzzy Rule 1.

IF cos(x2(t)) = 0, THEN ẋ(t) = A21x(t) + B21u(t) +
E21w(t);

Fuzzy Rule 2.
IF cos(x2(t)) = 1, THEN ẋ(t) = A22x(t) + B22u(t) +

E22w(t);
where

A11 =

[
0.2 0.1
0.1 0.3

]
, B11 =

[
0.1 0.4
0.1 0.1

]
,

C11 =

[
0.3 0.1
0 −0.1

]
, E11 =

[
0.3 0
0.2 0.2

]
,

A12 =

[
0.3 0.3
0.1 0

]
, B12 =

[
0.1 0.2
0 0.3

]
,

C12 =

[
0.4 0
0.6 −0.2

]
, E12 =

[
−0.1 0.8

0 0.1

]
;

A21 =

[
0.3 0.2
0.1 0.2

]
, B21 =

[
0.1 0.6
0 0.2

]
,

C21 =

[
0.2 0.5
0 −0.2

]
, E21 =

[
0.2 0
0.9 0.2

]
,

A22 =

[
0.2 0.1
0.2 0

]
, B22 =

[
0.1 1
0.8 0.2

]
,

C22 =

[
0.4 0
0.2 −0.1

]
, E22 =

[
−0.1 0.7

0 0.2

]
.

The fuzzy membership functions are taken as

h11 = 1− sin(x1(t)), h12 = sin(x1(t)),

h21 = 1− cos(x2(t)), h22 = cos(x2(t)).

The initial condition is x(0) =
[
−0.2 0.2

]T , and

w(t) =
[

e−t ∗ sinT (t) e−t ∗ cosT (t)
]T .

We choose c1 = 0.08, c2 = 0.4, Tf = 8, γ = 0.6, R =
I2×2, λs = 0.1, λu = 0.1.

H∞ performance: As discussed in Remark 3, we set ma-
trices ψ1 =−I, ψ2 = 0, ψ3 = γ2I, ψ4 = 0.

By solving the LMIs presented in Theorem 2, we can
obtain the controller gains and event-triggered parameters
listed in Tables 1 and 2, respectively.

L2−L∞ performance: As discussed in Remark 3, we set
matrices ψ1 = 0, ψ2 = 0, ψ3 = γ2I, ψ4 = I.

By solving the LMIs presented in Theorem 2, we can
obtain the controller gains and event-triggered parameters
listed in Tables 1 and 2, respectively.

Passivity performance: As discussed in Remark 3, we
set matrices ψ1 = 0, ψ2 = I, ψ3 = γI, ψ4 = 0.

By solving the LMIs presented in Theorem 2, we can
obtain the controller gains and event-triggered parameters
listed in Tables 1 and 2, respectively.

(Q, S, R)-dissipativity performance: As discussed in Re-
mark 3, we set matrices ψ1 = I, ψ2 = I, ψ3 = I− 0.4 ∗ I,
ψ4 = 0.
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Table 1. Controller gains for each subsystem.

Subsystem 1

K11 =

[
−5.1898 −9.5658
−3.1638 −4.5708

]

K12 =

[
−5.1898 −9.5658
−3.1638 −4.5708

]
Subsystem 2

K21 =

[
−6.9115 −21.7918
−1.7344 −4.6505

]

K22 =

[
−6.9115 −21.7918
−1.7344 −4.6505

]

Table 2. Event-triggered parameters for each subsystem.

Subsystem 1

Φ1 =

[
20.3190 −3.4779
−3.4779 14.9973

]

Ψ1 =

[
0.1119 0.1854
0.1854 0.3088

]
Subsystem 2

Φ2 =

[
31.7157 −38.7129
−38.7129 47.2604

]

Ψ2 =

[
0.8378 −1.0075
−1.0075 1.2116

]

Fig. 1. The switching signal of the system.

From Fig. 1, we can see that the switching signal of the
system is time dependent and without Zeno behavior.

By solving the LMIs presented in Theorem 2, we can
obtain the controller gains and event-triggered parameters
listed in Tables 1 and 2, respectively.

Fig. 2. The state trajectory without control.

Table 3. Controller gains for each subsystem.

Subsystem 1

K11 =

[
−5.3847 −9.9341
−3.2021 −4.6720

]
,

K12 =

[
−5.3847 −9.9341
−3.2021 −4.6720

]

Subsystem 2

K21 =

[
−6.9856 −22.1511
−1.7286 −4.6554

]
,

K22 =

[
−6.9856 −22.1511
−1.7286 −4.6554

]

Table 4. Event-triggered parameters for each subsystem.

Subsystem 1

Φ1 =

[
0.6022 1.0650
1.0650 1.9605

]
,

Ψ1 =

[
0.1224 0.2045
0.2045 0.3433

]

Subsystem 2

Φ2 =

[
0.5566 1.7997
1.7997 5.8850

]
,

Ψ2 =

[
0.0380 0.1162
0.1162 0.3556

]

From Fig. 2, we can see that the state trajectory without
control is diverge, it is not asymptotically stability.

Tables 3-8 shows the controller gains and event-
triggered parameters for each subsystem.

From Fig. 3, one can see that when the initial condition
xT (0)Rx(0) ≤ 0.08, the trajectory satisfies xT (t)Rx(t) ≤
0.4 during the time interval, then system is finite time
bounded. Fig. 4 shows that the transmission of the state
information is reduced effectively. Take H∞ performance
for example, Fig. 5 shows the relation of z(t) and w(t).
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Table 5. Controller gains for each subsystem.

Subsystem 1

K11 =

[
−5.3847 −9.9341
−3.2021 −4.6720

]
,

K12 =

[
−5.3847 −9.9341
−3.2021 −4.6720

]

Subsystem 2

K21 =

[
−6.9856 −22.1511
−1.7286 −4.6554

]
,

K22 =

[
−6.9856 −22.1511
−1.7286 −4.6554

]

Table 6. Event-triggered parameters for each subsystem.

Subsystem 1

Φ1 =

[
0.6022 1.0650
1.0650 1.9605

]
,

Ψ1 =

[
0.1224 0.2045
0.2045 0.3433

]

Subsystem 2

Φ2 =

[
0.5566 1.7997
1.7997 5.8850

]
,

Ψ2 =

[
0.0380 0.1162
0.1162 0.3556

]

Table 7. Controller gains for each subsystem.

Subsystem 1

K11 =

[
−5.1898 −9.5658
−3.1638 −4.5708

]
,

K12 =

[
−5.1898 −9.5658
−3.1638 −4.5708

]

Subsystem 2

K21 =

[
−6.9115 −21.7918
−1.7344 −4.6505

]
,

K22 =

[
−6.9115 −21.7918
−1.7344 −4.6505

]

Table 8. Event-triggered parameters for each subsystem.

Subsystem 1

Φ1 =

[
0.5721 0.9998
0.9998 1.8150

]
,

Ψ1 =

[
0.1119 0.1854
0.1854 0.3088

]

Subsystem 2

Φ2 =

[
0.6169 1.9838
1.9838 6.4557

]
,

Ψ2 =

[
0.0427 0.1295
0.1295 0.3937

]

Fig. 3. The state trajectory under event triggered H∞ con-
trol.

Fig. 4. Event triggered transmission interval.

Fig. 5. Simulation of z(t) and w(t).
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5. CONCLUSION

In this paper, the problem of finite time extended dis-
sipative control for switched nonlinear system is investi-
gated . An event triggered scheme is introduced to save
the transmission resource. We can solve the H∞, L2−L∞,
Passivity and (Q, S, R)-dissipativity performance in a uni-
fied framework based on extended dissipative. LMIs are
used to obtain the results, we give numerical examples
to show the effectiveness of the method. This paper con-
siders switched nonlinear systems, the proposed method
could extended to repetitive control systems in the future
research.
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