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Extended Gradient-based Iterative Algorithm for Bilinear State-space
Systems with Moving Average Noises by Using the Filtering Technique
Siyu Liu, Yanliang Zhang* � , Ling Xu, Feng Ding* � , Ahmed Alsaedi, and Tasawar Hayat

Abstract: This paper develops a filtering-based iterative algorithm for the combined parameter and state estimation
problems of bilinear state-space systems, taking account of the moving average noise. In order to deal with the
correlated noise and unknown states in the parameter estimation, a filter is chosen to filter the input-output data
disturbed by colored noise and a Kalman state observer (KSO) is designed to estimate the states by minimizing the
trace of the error covariance matrix. Then, a KSO extended gradient-based iterative (KSO-EGI) algorithm and a
filtering based KSO-EGI algorithm are presented to estimate the unknown states and unknown parameters jointly
by the iterative estimation idea. The simulation results demonstrate the effectiveness of the proposed algorithms.
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1. INTRODUCTION

System identification is studying the theory and meth-
ods of establishing the mathematical models of systems
[1–5]. Due to the vast existence of nonlinear systems in
industry, there is increasing interest on the modeling, anal-
ysis, synthesis, and control of nonlinear systems [6–8]. Bi-
linear systems as a special class of nonlinear systems have
relatively simple model structures. Despite their simplic-
ity, they are capable of capturing the dynamics of a num-
ber of nonlinear systems, such as nuclear fission, heat ex-
changers and automobile braking systems. They provide
a higher degree of the approximation to nonlinear models
than traditional linear models. Moreover, a bilinear system
can be seen as a linear parameter-varying system with the
input signal as the scheduling parameter. In addition, the
bilinear systems exhibit makes their structure one of the
closest to linear systems. Thus, we can apply several tech-
niques and procedures that have been developed for linear
systems to bilinear systems [9].

Bilinear systems have attracted much interest in the
control and identification area [10]. There are several
approaches to identify bilinear systems. For example,
Lopes dos Santos et al. presented a subspace identification
method for the bilinear systems by regarding the bilinear
term as a second-order white noise process based on the

Picard decomposition [11]. The subspace methods require
a lot of computational cost because the matrix dimen-
sions grow exponentially with the system order increasing
[12–14]. Verdult and Verhaegen overcame this difficulty
and presented a kernel method depending on the dimen-
sion of the kernel matrix [15]. Another way for identifying
the bilinear systems is to utilize the maximum likelihood
principle, which can operate directly on the time domain
data. Li and Liu proposed a maximum likelihood itera-
tive method to identify the parameters of bilinear systems
with colored noise [16]. On the basis of the work in [16],
Hafezi and Arefi used the input-output representation of
bilinear systems and presented a recursive maximum like-
lihood algorithm for decreasing the computational burden
[17]. However, they only developed the parameter estima-
tion for bilinear systems, while the state estimation was
not taken into consideration. Thus, this paper studies the
combined estimation of the states and parameters for the
considered system.

The state-space model is an effective mathematical
model to describe the dynamic behaviors of physical sys-
tems. Compared with the transfer function models, The
state-space models show the relationship between the sys-
tem states and the input-output variables [18–20]. The
Kalman filter is regarded as the optimal filter for linear
state-space systems, and its various modifications, such
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as the extended Kalman filter and the unscented Kalman
filter are widely applied to estimate the unknown states
[21, 22]. Moreover, the estimation and compensation of
state-dependent nonlinearity were studied based on the
equivalent-input-disturbance approach for compensating
the effects of unknown external disturbances [23]. In ad-
dition, a linear-extended-state-observer based repetitive
control method was presented to enhance the disturbance-
rejection performance for the systems with aperiodic un-
certainties and disturbances [24]. Bilinear state-space sys-
tems are nonlinear but the Kalman filter is only suitable
for linear systems, therefore, it cannot be applied to bilin-
ear systems directly.

The bilinear system considered in this paper is dis-
turbed by the moving average noise, and the data filter-
ing technique is introduced to deal with the noise distur-
bance. Differing from the ways to handle the disturbance
in [25, 26], the filtering approach in system identification
changes the structure of the noise model, but does not
change the relationship between the inputs and outputs.
For the unknown states, a Kalman state observer (KSO) is
designed by means of replacing the unknown parameters
with their estimates and minimizing the trace of the error
covariance matrix. Then, a KSO extended gradient-based
iterative (KSO-EGI) algorithm is derived for estimating
the parameters and states jointly. To deal with the col-
ored noise and improve the estimation accuracy, a filter-
ing based KSO-EGI (F-KSO-EGI) algorithm is proposed
to filter the input-output data.

The rest of this paper is organized as follows: Section 2
derives an identification model of the bilinear state-space
system. Section 3 proposes a filtering extended gradient-
based iterative (F-EGI) algorithm based on the data fil-
tering technique. Section 4 presents an F-KSO-EGI algo-
rithm. A KSO-EGI algorithm is given in Section 5. Sec-
tion 6 provides an example to demonstrate the effective-
ness of the proposed algorithms. Finally, some concluding
remarks are given in Section 7.

2. SYSTEM DESCRIPTION AND
IDENTIFICATION MODEL

First of all, let us introduce some notation. “X := A”
stands for “A is defined as X”; the symbol I (In) repre-
sents an identity matrix of appropriate size (n× n); z de-
notes a unit forward shift operator like zx(t) = x(t + 1)
and z−1x(t) = x(t − 1); the superscript T symbolizes the
vector/matrix transpose; θ̂ k denotes the estimate of θ at
iteration k; 1n represents an n-dimensional column vector
whose entries are all 1; tr[X ] denotes the trace of the square
matrix X ; col[X] represents the vector obtained by arrang-
ing the columns of the matrix X in order. Specifically, for
the matrix X = [xi, j] ∈ Rm×n, we have col[X ] = [x1,1, · · · ,
xm,1, x1,2, · · · , xm,2, · · · , x1,n, · · · , xm,n]

T ∈ Rmn. Some mate-
rials use vecX instead of col[X ].

Consider a bilinear state-space system disturbed by
the moving average noise, whose observability canonical
form is given by

x(t +1) = Ax(t)+Mx(t)u(t)+bu(t), (1)

y(t) = cx(t)+w(t), (2)

where x(t) := [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the state
vector, u(t) ∈ R and y(t) ∈ R are the system input and
output variables, and A ∈ Rn×n, M ∈ Rn×n, b ∈ Rn and
c ∈ R1×n are the system parameter matrices or vectors,

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
−an −an−1 −an−2 · · · −a1

 ∈ Rn×n,

b :=


b1

b2
...

bn

 ∈ Rn, M :=


m1

m2
...

mn

 ∈ Rn×n,ml ∈ R1×n,

c := [1,0, . . . ,0] ∈ R1×n,

and w(t) is a disturbance vector with a moving average
process of the white noise v(t), that is, w(t) := D(z)v(t),
E[v(t)] = 0, E[v2(t)] = σ 2, E[v(t)v(i)] = 0 (t 6= i), where
D(z) is a scalar polynomial in z−1 and its expression is

D(z) := 1+d1z−1 +d2z−2 + · · ·+dnz−n, di ∈ R.

The parameters ai, bi, mi j, di are to be identified from the
observation data u(t) and y(t). Without loss of generality,
assume that the dimension n of the system state is known,
y(t) = 0 and v(t) = 0 for t 6 0.

From (1) and (2), we have the following relations:

xi(t +1) = xi+1(t)+biu(t)+mix(t)u(t),

i = 1,2, · · · ,n−1, (3)

xn(t +1) =−
n

∑
i=1

aixn−i+1(t)+bnu(t)+mnx(t)u(t).

(4)

Referring to the method in [27] and multiplying both sides
of (3) and (4) by z−i and z−n, respectively, we have

x1(t) =−
n

∑
i=1

aixn−i+1(t−n)+
n

∑
i=1

biu(t− i)

+
n

∑
i=1

mix(t− i)u(t− i). (5)

Define the parameter vector ϑ and the information vector
ϕ(t) as

ϑ :=
[

θ

θ v

]
∈ Rn2+3n,
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θ := [aT,bT,mT]T ∈ Rn2+2n,

a := [a1,a2, · · · ,an]
T ∈ Rn,

b := [b1,b2, · · · ,bn]
T ∈ Rn,

m := col[MT] ∈ Rn2
,

θ v := [d1,d2, · · · ,dn]
T ∈ Rn,

ϕ(t) :=
[

φ(t)
φ v(t)

]
∈ Rn2+3n,

φ(t) := [φ T
a(t),φ

T
b(t),φ

T
m(t)]

T ∈ Rn2+2n,

φ a(t) := [−xn(t−n), · · · ,−x1(t−n)]T ∈ Rn,

φ b(t) := [u(t−1),u(t−2), · · · ,u(t−n)]T ∈ Rn,

φ m(t) := [xT(t−1)u(t−1),xT(t−2)u(t−2), · · · ,

xT(t−n)u(t−n)]T ∈ Rn2
,

φ v(t) := [v(t−1),v(t−2), · · · ,v(t−n)]T ∈ Rn.

Inserting (5) into (2) gives

y(t) =φ
T
a(t)a+φ

T
b(t)b+φ

T
m(t)m+w(t)

=φ
T(t)θ +φ

T
v(t)θ v + v(t)

=ϕ
T(t)ϑ + v(t). (6)

Equation (6) is the identification model of the bilinear
state-space system in (1) and (2). In the information vector
ϕ(t), there are unknown states x(t − i) and the unknown
noise v(t− i), which makes it difficult to identify the pa-
rameter vector ϑ containing the parameters ai, bi, mi, j and
di. The objective of the next section is to use the iterative
identification idea and the filtering technique to derive the
parameter estimation algorithm, which can reduce the im-
pact of colored noise to the parameter estimates.

3. THE F-EGI ALGORITHM

The data filtering technique was used to eliminate
noises, and to reduce the noise-to-signal ratio in signal
processing. It has been employed to handle the parame-
ter estimation problem of systems with colored noises.

In this section, a filter L(z) is introduced to deal with the
colored noise. For the bilinear system in (1) and (2), if the
input-output data of the system are filtered through L(z) :=

1
D(z) , the identification model in (6) can be transformed
into two submodels. Then, we derive an F-EGI algorithm
to identify each submodel, respectively. This method can
reduce the influence of the colored noise to the parameter
estimates and improve the identification accuracy.

3.1. The filtered identification model
Define the filtered state x̄(t), the filtered input ū(t) and

the filtered output ȳ(t) as

x̄(t) :=
x(t)
D(z)

= x(t)+ [1−D(z)]x̄(t),

ū(t) :=
u(t)
D(z)

= u(t)+ [1−D(z)]ū(t),

ȳ(t) :=
y(t)
D(z)

= y(t)+ [1−D(z)]ȳ(t).

Multiplying both sides of (1) and (2) by the filter L(z)
gives

x̄(t +1) = Ax̄(t)+Mx̄(t)u(t)+bū(t), (7)

ȳ(t) = cx̄(t)+ v(t). (8)

From (7) and (8), we can get

x̄1(t) =−
n

∑
i=1

aix̄n−i+1(t−n)+
n

∑
i=1

biū(t− i)

+
n

∑
i=1

mix̄(t− i)u(t− i). (9)

Define the filtered information vector

φ̄(t) :=[−x̄n(t−n),−x̄n−1(t−n), · · · ,−x̄1(t−n),

ū(t−1), ū(t−2), · · · , ū(t−n),

x̄T(t−1)u(t−1), · · · , x̄T(t−n)u(t−n)]T.

Inserting (9) into (8) yields

ȳ(t) =x̄1(t)+ v(t)

=φ̄
T
(t)θ + v(t). (10)

The colored noise w(t) is expressed as

w(t) = φ
T
v(t)θ v + v(t). (11)

Equations (10) and (11) are the two new submodels of (6).
However, the polynomial D(z) is unknown, then the fil-
tered input ū(t) and output ȳ(t), the filtered state vector
x̄(t) and the colored noise w(t) are unknown. The filtered
information vector φ̄(t) contains these unknown items. In
the next subsection, we apply the iterative identification
idea to solve this difficulty. When a batch of measured data
are collected, we use all these data to update the parameter
estimates at each iteration [28,29]. The gradient search, is
applied to the parameter estimation and signal processing.
Then, an F-EGI algorithm is derived in the following.

3.2. The derivation of the F-EGI algorithm
On the basis of the two models in (10) and (11), we

define two quadratic criterion functions:

J1(θ) :=
1
2

p

∑
t=1

[ȳ(t)− φ̄
T
(t)θ ]2,

J2(θ v) :=
1
2

p

∑
t=1

[w(t)−φ
T
v(t)θ v]

2.

Let k = 1,2,3, . . . be an iterative variable, µk > 0 be the it-
erative step-size. θ̂ k and θ̂ v,k be the parameter estimates of
θ and θ v at iteration k. Using the negative gradient search
and minimizing J1(θ) and J2(θ v) get

θ̂ k = θ̂ k−1 +µ1,k

p

∑
t=1

φ̄(t)[ȳ(t)− φ̄
T
(t)θ̂ k−1], (12)
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θ̂ v,k = θ̂ v,k−1+µ2,k

p

∑
t=1

φ v(t)[w(t)−φ
T
v(t)θ̂ v,k−1]. (13)

Due to the unknown items ȳ(t), φ̄(t), w(t) and φ v(t) in
(12) and (13), the parameter estimates θ̂ k and θ̂ v,k cannot
be worked out. To cope with this problem, we use v̂k−1(t−
i) to construct the estimate of φ v(t) as

φ̂ v,k(t) := [v̂k−1(t−1), · · · , v̂k−1(t−n)]T ∈ Rn. (14)

Then, using the estimate θ̂ v,k := [d̂1,k, d̂2,k, · · · , d̂n,k]
T ∈ Rn

to construct the estimate of D(z) gives

D̂k(z) := 1+ d̂1,kz−1 + d̂2,kz−2 + · · ·+ d̂n,kz−n.

The estimates ˆ̄xk(t), ˆ̄uk(t) and ˆ̄yk(t) of x̄(t), ū(t) and ȳ(t)
are

ˆ̄xk(t) := x̂k(t)+ [1− D̂k(z)] ˆ̄xk(t)

= x̂k(t)−
n

∑
i=1

d̂i,k ˆ̄xk(t− i), (15)

ˆ̄uk(t) := u(t)+ [1− D̂k(z)] ˆ̄uk(t)

= u(t)−
n

∑
i=1

d̂i,k ˆ̄uk(t− i), (16)

ˆ̄yk(t) := y(t)+ [1− D̂k(z)] ˆ̄yk(t)

= y(t)−
n

∑
i=1

d̂i,k ˆ̄yk(t− i). (17)

Replacing x̄(t) and ū(t) in the information vector φ̄(t) with
their estimates ˆ̄xk(t) and ˆ̄uk(t) obtains

ˆ̄
φ k(t) :=[− ˆ̄xn,k−1(t−n),− ˆ̄xn−1,k−1(t−n), · · · ,

− ˆ̄x1,k−1(t−n), ˆ̄uk−1(t−1), ˆ̄uk−1(t−2), · · · ,
ˆ̄uk−1(t−n), ˆ̄xT

k−1(t−1)u(t−1),
ˆ̄xT

k−1(t−2)u(t−2), · · · ,
ˆ̄xT

k−1(t−n)u(t−n)]T ∈ Rn2+2n. (18)

Then, the estimate of w(t) can be calculated by

ŵk(t) = y(t)− φ̂
T

k(t)θ̂ k−1, (19)

where the estimate φ̂ k(t) of φ(t) is defined as

φ̂ k(t) :=[−x̂n,k−1(t−n),−x̂n−1,k−1(t−n), · · · ,
− x̂1,k−1(t−n),u(t−1),u(t−2), · · · ,
u(t−n), x̂T

k−1(t−1)u(t−1),

x̂T
k−1(t−2)u(t−2), · · · ,

x̂T
k−1(t−n)u(t−n)]T ∈ Rn2

. (20)

After that, v̂k(t) can be calculated by

v̂k(t) = ŵk(t)− φ̂
T

v,k(t)θ̂ v,k−1. (21)

Replacing ȳ(t), φ̄(t), w(t) and φ v(t) in (12) and (13) with
ˆ̄yk(t), ˆ̄

φ k(t), ŵk(t) and φ̂ k(t), we can obtain

θ̂ k = θ̂ k−1 +µ1,k

p

∑
t=1

ˆ̄
φ k(t)[ ˆ̄yk(t)− ˆ̄

φ
T
k(t)θ̂ k−1], (22)

µ1,k 6 2λ
−1
max

[ p

∑
t=1

ˆ̄
φ k(t)

ˆ̄
φ

T
k(t)
]
, (23)

θ̂ v,k = θ̂ v,k−1 +µ2,k

p

∑
t=1

φ̂ v,k(t)[ŵk(t)− φ̂
T

v,k(t)θ̂ v,k−1],

(24)

µ2,k 6 2λ
−1
max

[ p

∑
t=1

φ̂ v,k(t)φ̂
T

v,k(t)
]
, (25)

where λmax[X ] is the maximum eigenvalue of the real sym-
metric matrix. Equations (14)–(25) form the F-EGI algo-
rithm for estimating the parameters of the bilinear system.

Remark 1: In the following, we give a brief discus-
sion about how to choose the iterative step-sizes in this
algorithm. Equations (22) and (24) can be seen as the
discrete-time systems of θ̂ k and θ̂ v,k. In order to ensure
the convergence of θ̂ k and θ̂ v,k, it is required that all the
eigenvalues of matrices [In2+2n−µ1,k ∑

p
t=1

ˆ̄
φ k(t)

ˆ̄
φ

T
k(t)] and

[In−µ2,k ∑
p
t=1 φ̂ v,k(t)φ̂

T

v,k(t)] are inside the unit circle, and
there is no duplicate eigenvalue on the unit circle. Thus,
µ1,k and µ2,k in (23) and (25) are the conservative choices
of the iterative step-sizes.

Based on the parameter estimates obtained by the filter-
ing extended gradient-based iterative algorithm, we will
design a state observer to estimate the state vector in the
next section.

4. THE F-KSO-EGI ALGORITHM

In the previous section, it is assumed that the states are
known to derive the F-EGI algorithm. In fact, the state
vector x(t) is unknown and a bilinear state observer is de-
signed to estimate the state vector based on the Kalman
filtering principle. Then, the parameters and states are es-
timated by the F-KSO-EGI algorithm.

Give the state x(t) an initial value, and use the parame-
ter estimates obtained by the F-EGI algorithm in (14)–(25)
to construct the estimates Âk, M̂k and b̂k of the system pa-
rameter matrices/vector A, M and b. By means of the idea
of the Kalman filtering, we design the state observer of the
filtered system in (7) and (8) in the following:

x̂k(t) = ˆ̄xk(t)+ d̂1,k ˆ̄xk(t−1)+ d̂2,k ˆ̄xk(t−2)+ · · ·
+ d̂n,k ˆ̄xk(t−n), (26)

ˆ̄xk(t +1) = Âk ˆ̄xk(t)+ M̂k ˆ̄xk(t)u(t)+ b̂k ˆ̄uk(t)

+Lk(t)[ ˆ̄yk(t)− c ˆ̄xk(t)], (27)

= [Âk + M̂ku(t)−Lk(t)c] ˆ̄xk(t)+ b̂ku(t)

+Lk(t) ˆ̄yk(t), (28)
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Lk(t) =
[Âk + M̂ku(t)]Pk(t)cT

cPk(t)cT +σ 2 , (29)

Pk(t +1) = [Âk + M̂ku(t)]Pk(t)[Âk + M̂ku(t)]T

−Lk(t)cPk(t)[Âk + M̂ku(t)]T, (30)

Âk =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
−ân,k −ân−1,k −ân−2,k · · · −â1,k

 , (31)

M̂k =


m̂1,k

m̂2,k
...

m̂n,k

 , b̂k =


b̂1,k

b̂2,k
...

b̂n,k

 , (32)

where x̂k(t) := [x̂1,k(t), x̂2,k(t), · · · , x̂n,k(t)]T ∈ Rn, Lk(t) ∈
Rn is the optimal gain vector, and Pk(t +1) ∈ Rn×n is the
state estimation error covariance matrix, σ 2 is the noise
variance.

Remark 2: Assume that D ∈ Rn is a closed set which
includes x(t), that is, η ∈ D means that ‖η‖ is bounded.
If x̂k(t) ∈ D, then x̂k(t) is the state estimate at the itera-
tion k and current time t; if x̂k(t) /∈ D, then let x̂k(t) :=
x̂k−1(t). The choice of the gain vector Lk(t) is such that
[Âk + M̂ku(t)− Lk(t)c] in (28) has its eigenvalues inside
the unit circle or its eigenvalues most close to the unit cir-
cle.

Remark 3: The following gives the derivation of the
state estimation algorithm. According to the design idea of
the observer, suppose that the state observer is in the form
of (27). The state estimation error is defined as ek(t) :=
x(t)− x̂k(t). Define the state estimation error covariance
matrix Pk(t) := E[ek(t)eT

k(t)]. The aim is to choose an op-
timal gain vector Lk(t) to minimize the sum of the squares
of the estimation errors. The sum is defined by

Je(t) :=E[(x1(t)− x̂1,k(t))2]+E[(x2(t)− x̂2,k(t))2]

+ · · ·+E[(xn(t)− x̂n,k(t))2]

=E{tr[ek(t)eT
k(t)]}= tr[Pk(t)],

where tr[Pk(t)] denotes the trace of the state error covari-
ance matrix Pk(t). The above derivation means that our
goal is to minimize tr[Pk(t)]. Therefore, Lk(t) in (29) is
the optimal gain vector which makes the state estimation
error covariance matrix minimum.

Equations (14)–(25) and (26)–(32) form the F-KSO-
EGI algorithm. The steps involved in the F-KSO-EGI al-
gorithm for bilinear systems are listed as follows:

1) To initialize: Give the data length p, the parameter es-
timation accuracy ε . Let θ̂ 0 = 1n2+2n/p0, θ̂ v,0 = 1n/p0,
x̂0(t) = ˆ̄x0(t) = 1n/p0, ˆ̄y0(t) = ˆ̄u0(t) = 1/p0, ŵ0(t) =
v̂0(t) = 1/p0, p0 = 106, t = 1,2, · · · , p.

2) Let k = 1, collect the input-output data u(t) and y(t),
t = 1,2, · · · , p.

3) Form the information vectors φ̂ k(t) and φ̂ v,k(t) using
(20) and (14). Compute µ2,k, ŵk(t) and v̂k(t) by (25),
(19), and (21), t = 1,2, · · · , p.

4) Update the parameter estimate θ̂ v,k by (24).
5) Compute ˆ̄yk(t) and ˆ̄uk(t) using (17) and (16), form

ˆ̄
φ k(t) by (18), t = 1,2, · · · , p. Compute µ1,k using (23).

6) Update the parameter estimate θ̂ k by (22).
7) Construct Âk, M̂k and b̂k using (31) and (32).
8) Let t = 1, set x̂k(1) = 1n/p0, Pk(1) = In.
9) Compute the gain vector Lk(t) and the error covariance

matrix Pk(t +1) by (29) and (30).
10) Compute ˆ̄xk(t + 1) using (27) and the system state es-

timation vector x̂k(t) using (26).
11) If t 6 p−1, increase t by 1 and go to Step 9; otherwise,

go to the next step.
12) If ‖θ̂ k− θ̂ k−1‖+ ‖θ̂ v,k− θ̂ v,k−1‖ > ε , then, increase k

by 1 and go to Step 3; otherwise, obtain the parameter
estimates θ̂ k and θ̂ v,k, terminate this process.

Remark 4: The proposed algorithm offers a connection
between the identification problem and the state estima-
tion problem. One can indeed use the system identifica-
tion as a technique to find the desired observer gain, and
an optimal observer gain is identified simultaneously with
the system model.

5. THE KSO-EGI ESTIMATION ALGORITHM

To show the superiority of the F-KSO-EGI algorithm,
we generalize the KSO-EGI algorithm for identifying the
parameter vector ϑ and the state vector x(t) of bilinear
systems with moving average noise.

Consider p data from t = 1 to t = p. Define the stacked
output vector Y (p) and the stacked information matrix
Φ(p) as

Y (p) :=


y(1)
y(2)

...
y(p)

∈Rp, Φ(p) :=


ϕT(1)
ϕT(2)

...
ϕT(p)

∈Rp×(n2+3n).

Define a quadratic cost function

J3(ϑ) :=
1
2
‖Y (p)−Φ(p)ϑ‖2.

Let µk > 0 be the iterative step-size. ϑ̂ k represents the esti-
mate of ϑ at iteration k. Using the negative gradient search
and minimizing J3(ϑ) get

ϑ̂ k =ϑ̂ k−1−µkgrad[J3(ϑ̂ k−1)]

=ϑ̂ k−1 +µkΦ
T(p)[Y (p)−Φ(p)ϑ̂ k−1]. (33)

For the reason that the information vector ϕ(t) in Φ(p)
contains the unknown state vector x(t − i) and the noise
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v(t− i), the parameter estimate ϑ̂ k cannot be calculated by
(33) directly. The scheme is to replace x(t− i) and v(t− i)
with their estimates x̂k−1(t− i) and v̂k−1(t− i) at iteration
k−1. Referring the derivation in the F-EGI algorithm, the
following yields the EGI algorithm to estimate the param-
eter vector ϑ for the bilinear system:

ϑ̂ k = ϑ̂ k−1 +µkΦ̂
T

k(p)[Y (p)− Φ̂k(p)ϑ̂ k−1], (34)

µk 6 2λ
−1
max[Φ̂

T

k(p)Φ̂k(p)], (35)

Y (p) = [y(1),y(2), · · · ,y(p)]T, (36)

Φ̂k(p) = [ϕ̂k(1), ϕ̂k(2), · · · , ϕ̂k(p)]T, (37)

ϕ̂k(t) = [φ̂
T

a,k(t),φ
T
b(t), φ̂

T

m,k(t), φ̂
T

v,k(t)]
T, (38)

φ̂ a,k(t) = [−x̂n,k−1(t−n), · · · ,−x̂1,k−1(t−n)]T, (39)

φ b(t) = [u(t−1),u(t−2), · · · ,u(t−n)]T, (40)

φ̂ m,k(t) = [x̂T
k−1(t−1)u(t−1), · · · ,

x̂T
k−1(t−n)u(t−n)]T, (41)

φ̂ v,k(t) = [v̂k−1(t−1), · · · , v̂k−1(t−n)]T, (42)

v̂k(t) = y(t)− ϕ̂
T
k(t)ϑ̂ k, (43)

ϑ̂ k = [â1,k, â2,k, · · · , ân,k, b̂1,k, b̂2,k, · · · , b̂n,k,

m̂1,k, m̂2,k, · · · , m̂n,k, d̂1,k, d̂2,k, · · · , d̂n,k]
T. (44)

Similarly, minimizing the trace of the error covariance ma-
trix and referring to the state estimation algorithm in (26)–
(32), we can summarize the Kalman state observer:

x̂k(t +1) = Âkx̂k(t)+ M̂kx̂k(t)u(t)+ b̂ku(t)

+Lk(t)[y(t)− cx̂k(t)− φ̂
T

v,k(t)θ̂ v,k], (45)

Lk(t) =
[Âk + M̂ku(t)]Pk(t)cT

σ 2 + cPk(t)cT
, (46)

Pk(t +1) = [Âk + M̂ku(t)]Pk(t)[Âk + M̂ku(t)]T

−Lk(t)cPk(t)[Âk + M̂ku(t)]T, (47)

Âk =

[
0 In−1

−ân,k −âk

]
, (48)

âk = [ân−1,k, ân−2,k, · · · , â1,k], (49)

M̂k = [m̂T
1,k, m̂

T
2,k, · · · , m̂T

n,k]
T, (50)

b̂k = [b̂1,k, b̂2,k, · · · , b̂n,k]
T. (51)

Equations (34)–(44) and (45)–(51) form the KSO-EGI al-
gorithm for estimating the states and parameters simulta-
neously. The proposed algorithm in this paper can com-
bine other estimation algorithms [30–34] to study the pa-
rameter estimation issues for linear and nonlinear systems
[35–40] and can be applied to other control and schedule
areas such as the information processing and transporta-
tion communication systems [41–47].

Remark 5: From the above steps, we can see that for
each iterative calculation of ϑ̂ k, the state estimate x̂k(t) is
recursively calculated p times from t = 1 to t = p.

6. EXAMPLE

Consider the following bilinear system:

x(t +1) =
[

0 1
0.31 0.32

]
x(t)+

[
0.18
0.14

]
u(t)

+

[
0.18 0.10
0.08 0.07

]
x(t)u(t),

y(t) = [1, 0]x(t)+w(t),

w(t) = D(z)v(t)

= v(t)+0.80v(t−1)+0.27v(t−2).

The parameter vector to be identified is

ϑ =[a1,a2,m11,m12,m21,m22,b1,b2,d1,d2]
T

=[−0.32,−0.31,0.18,0.10,0.08,0.07,0.18,0.14,

0.80,0.27]T.

In simulation, the input {u(t)} is taken as a random
binary sequence generated by the Matlab function
u=idinput([datalength,1], ’rbs’, [0,0.25], [-0.7,0.7]), and
{v(t)} as a white noise sequence with zero mean and vari-
ance σ 2 = 0.202, {w(t)} is the moving average process of
the white noise {v(t)}. Take the data length p = 1000 and
let the maximum iterative number kmax = 50. The output
is generated by simulating the model with the input signal.
The simulated input-output data are recorded and shown
in Fig. 1 (Samples 1 to 300).

Apply the F-KSO-EGI algorithm in (14)–(25) and (26)–
(32) to estimate the state vector x(t) and parameter vector
ϑ of this bilinear system. The states x1(t) and x2(t), their
estimates x̂1,k(t) and x̂1,k(t) against t are shown in Figs. 2
and 3. From Figs. 2 and 3, it can be found that the state
estimates approach their true values with t increasing.

Taking the noise variances σ 2 = 0.152 and σ 2 =
0.202, respectively, we apply the F-KSO-EGI algorithm
to estimate this bilinear system. The parameter estimates
and their estimation errors δ := ‖ϑ̂ k −ϑ‖/‖ϑ‖× 100%
against k of the F-KSO-EGI algorithm with different noise
variances are shown in Fig. 4. From the parameter estima-
tion error curves in Fig. 4, it can be concluded that the
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Fig. 1. The input and output signals against t.
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Fig. 2. State x1(t) and its estimate x̂1,k(t) against t for the
F-KSO-EGI algorithm.
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Fig. 3. State x2(t) and its estimate x̂2,k(t) against t for the
F-KSO-EGI algorithm.
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Fig. 4. The F-KSO-EGI estimation errors δ against k with
different variances.

smaller noise variance results in more accurate parameter
estimates.

In Fig. 5, the iterative step-sizes µ1,k and µ2,k in the F-
KSO-EGI algorithm against k are given to show their be-
haviors. It is obvious that the iterative step-sizes µ1,k and
µ2,k gradually become stable for large k, so the parameter
estimation algorithm is effective. Furthermore, the behav-
ior of the observer gain Lk(t) = [L1,k(t),L2,k(t)]T ∈ R2 in
the F-KSO-EGI algorithm is shown in Fig. 6 when the it-
erative number k = 30.
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Fig. 5. The iterative step-sizes µ1,k and µ2,k against k for
the F-KSO-EGI algorithm.
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Fig. 6. The observer gain Lk(t) against t for the F-KSO-
EGI algorithm (k = 30).

7. CONCLUSIONS

In this paper, a state estimator is designed to estimate
the system states, and an F-KSO-EGI algorithm and a
KSO-EGI algorithm are proposed to realize the combined
estimation of parameters and states for bilinear systems
with the moving average noise. Compared with the KSO-
EGI algorithm, the F-KSO-EGI algorithm has smaller es-
timation errors by employing the data filtering technique.
The filtering-based iterative methods proposed in this pa-
per can combine other methods and strategies to study the
parameter estimation problems of different systems with
colored noises [48–54] and can be applied to other fields
[55–61] such as information processing and communica-
tion networked systems and so on.
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