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Event-triggered Control for Switched Affine Linear Systems
Hongsheng Hu, Shipei Huang* � , and Zhengjiang Zhang

Abstract: Event-triggered control problem for switched affine linear systems with a state-dependent switching
law is addressed in this paper. By constructing a piecewise differential Lyapunov function with time-scheduled
matrices, an event-triggered scheme and a switching signal are proposed. The switching signal depends on the state
of the trigger instant. A sufficient condition is developed to ensure that the switched affine system exponentially
convergences to a small neighborhood of the desired equilibrium point. The proposed result is then generated to
a disturbance attenuation performance analysis. The results are presented in the form of linear matrix inequalities
(LMIs). Finally, two examples are provided to illustrate the effectiveness of the proposed results.
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1. INTRODUCTION

A switched system is a hybrid system which has re-
ceived the attention of scholars due to their applications
in many areas, such as physical systems, chemical pro-
cesses, aircraft control, networked control systems, and
so on [1]. Such system consists of a number of subsys-
tems and a logical law between them. The stability anal-
ysis and controller design of switched systems are im-
portant issues and have been studied by many scholars
in the past few decades [2–6]. For example, the litera-
ture [2] studied the stability analysis of switched linear
systems under switching conditions, and gave the nec-
essary and sufficient conditions for asymptotic stability.
A hidden Markov model-based nonfragile state estimator
was designed for switched neural network with probabilis-
tic quantized outputs in [3]. A multi-step and multi-class
Lyapunov functions method was proposed to investigate
the asymptotic stability of discrete-time switched systems
with time-varying switching signals in [4]. Static output
feedback control of switched systems with quantization
was investigated by utilizing a nonhomogeneous sojourn
probability approach in [5]. Considering that there exist
various disturbances in practical engineering, H∞ perfor-
mance or L2-gain performance analysis and control were
also investigated, and many important results were devel-
oped in the literature. For instance, combining the multiple
Lyapunov function method with the average dwell time
approach, sufficient conditions for asymptotically stabil-

ity with L2-gain performance were obtained in [6]. By
constructing a proper Lyapunov function, sufficient con-
ditions for the existence of nonstationary L2-L∞ filter for
Markov switching repeated scalar nonlinear systems with
randomly occurring nonlinearities was proposed in [7].

As a special class of switched systems, switched affine
systems have also received extensive attention. Many
practical systems can be described as switched affine sys-
tems, such as converters in power electronics, biochem-
ical systems and flight systems [8]. Such systems may
have several equilibrium points due to the existence of
affine terms, which makes the analysis and controller de-
sign of switched affine systems become more difficult.
Therefore, many scholars were devoted themselves to the
study of switched affine systems, and many important re-
sults are available in the literature [9–17]. For example,
the global stability of such systems was ensured by de-
termining the appropriate switching signal, and the guar-
anteed secondary cost was minimized in [8]. By using
the Lyapunov-Metzler inequality, a state feedback con-
troller was proposed for switched affine systems to en-
sure the practical stability of the desired equilibrium point
in [10]. A stability condition of discrete-time switched
affine systems was established by constructing the time-
varying quadratic Lyapunov function with the concavity
and convexity function centered on the minimax theory
in [13]. Linear matrix inequality (LMI) conditions for the
existence of a state feedback controller were proposed to
ensure the H∞ performance of the closed-loop system in
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[14]. A new method for estimating the attraction domain
of switched affine systems was developed, and sufficient
conditions for the practical asymptotic stability of the er-
ror system were obtained in [16].

On the other hand, the sampling data control was pro-
posed as the development of computer technology, mi-
crogrid technology and communication network. In recent
years, the sampling data control was applied to switched
systems [18–20]. As a further improvement of the tra-
ditional sampled-data system, the event-triggered control
was introduced. In the event-triggered control scheme, the
execution controller is generated by designing appropriate
event-triggered conditions. Compared with the sampled
data scheme, the event-triggered control is a typical ape-
riodic control, which can significantly reduce the number
of executions of control tasks while maintaining satisfac-
tory performance. At present, the event-triggered control
of switched systems was investigated in [21–33]. For in-
stant, under the asynchronous switching control scheme, a
set of event-triggered finite-time bounded controllers and
input-output finite-time stability controllers were designed
and sufficient conditions for event-based asynchronous
closed-loop systems with finite time bounded and input-
output finite time stability were proposed in [21]. An ex-
ponential stability condition was developed by design-
ing an event-triggered scheme with dynamic thresholds
and a switching signal in [22, 24, 25]. A state-dependent
switching law based on the event-triggered scheme was
proposed to reduce the conservatism of results in [30].
A hybrid quantization control strategy combining average
dwell time and event-triggered condition was proposed to
ensure exponential stability of switching system in [31].
In addition, in order to avoid behavior similar to Zeno,
the trigger time should be small enough to be consid-
ered in [32]. Sufficient conditions are presented to guar-
antee the H∞ performance of the closed-loop switched
system by using the average dwell time, the piecewise
Lyapunov function method and proposing decentralized
event-triggered scheme (DETMs) with switching struc-
ture in [33]. The average dwell time method was used to
establish sufficient conditions for L2-gain performance of
event-triggered switched systems in [34]. However, to the
best of our knowledge, there is no result reported on the
event-triggered control of switched affine systems, and the
main aim of this paper is to shorten such a gap.

In this paper, the event-triggered control of switched
affine system with a state-dependent switching law is
studied. An event-triggered scheme and a switching sig-
nal are proposed by constructing a piecewise differen-
tial Lyapunov function with time-scheduled matrices. The
switch only occurs at the trigger instant when the switch-
ing condition is satisfied. In order to ensure that the
switched affine system exponentially convergences to a
small neighborhood of the desired equilibrium point, we
develop a sufficient condition which has less conservative-

ness than that in [20], where the sampled data scheme and
a Lyapunov function with constant matrices were utilized.
Furthermore, we extend the proposed results to a distur-
bance attenuation performance analysis. The correctness
and effectiveness of the proposed results are verified by
an example of DC-DC converters and a numerical exam-
ple.

The remainder of the paper is organized as follows: The
problem formulation and preliminaries are given in Sec-
tion 2. Section 3 proposes the main results on the stabil-
ity and a disturbance attenuation performance of switched
affine systems. In Section 4, an example of DC-DC con-
verter and a numerical example are given to show the ef-
fectiveness of the proposed approach. At the end, we give
a conclusion for our work in Section 5.

Notations: Throughout this paper, R denotes the set of
real numbers. Rn stands for the n-dimension Euclidean
space and Rn×n is the n× n dimension Euclidean space.
The superscript “T ” stands for matrix transposition. The
“I” denotes the identity. For a square symmetric matrix,
P > 0 (P < 0) indicates that P is positive (negative) defi-
nite. I is the identity matrix. L2[0,∞)represents the space
of square summable functions on [0,∞).

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, we consider the following continuous-
time switched affine linear system:

ẋ = Aσ(t)x+bσ(t)+Eσ(t)ω(t), (1)

z(t) =Cσ(t)x(t)+Dσ(t)ω(t), (2)

where x(t), x(0) = x0 ∈ Rn, ∀t > 0 are the state of the
affine system and the initial condition, respectively. ω(t)∈
L2[0,∞) is the exogenous disturbance and the z(t) ∈ Rq is
the controlled output. The switching signal σ(t) : [0,∞)→
N = {1, 2, 3, ..., N} is a piecewise constant function with
N being the number of subsystems. Ai ∈ Rn×n and bi ∈ Rn,
i ∈ N, are constant matrices.

We give the unit simplex

Λ=

{
λ =[λ1,λ2, ...,λN ]∈RN, λi≥0,

N

∑
i=1

λi=1

}
, (3)

and define the following matrices

A(λ ) =
N

∑
i=1

λiAi, b(λ ) =
N

∑
i=1

λibi, λ ∈ Λ. (4)

The subset of Λ associated to Hurwitz matrices is given as
follows:

ΛH =

{
λ ∈ Λ : ∃P = PT > 0,

s.t. AT (λ )P+PA(λ )< 0

}
. (5)
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Fig. 1. General scheme of event-triggered switched con-
trol systems.

When bσ = 0, system (1) with ω(t)= 0 is the switched lin-
ear system so that all subsystems have a common equilib-
rium point xe = 0. Note that, whenever bi 6= 0 the switched
system presents several equilibrium points xe ∈ Xe ⊂ Rn

belonging to a set of attainable ones defined by

Xe =

{
xe ∈ Xe

∣∣∣∣∣xe =−A−1(λ )b(λ ),

A(λ ) ∈ H,λ ∈ Λ

}
. (6)

For system (1), the barycentric coordinates λ may not be
unique [20], i.e., there exist M vectors λ j ∈ Λe, j ∈ ℑ =
{1, 2, ..., M}, then l(λ j) = 0, j ∈ ℑ where

Λe = {λ ∈ Λ |∃xe ∈ Rn, s.t. A(λ )xe =−b(λ )} . (7)

In this paper, we will propose an event-triggered con-
trol scheme for system (1) and (2). In the event-triggered
control scheme, the switching signal is generated by de-
signing appropriate event-triggered conditions. Compared
with the sampled data scheme, event-triggered control is
a typical aperiodic control, which can significantly reduce
the number of executions of control tasks while maintain-
ing satisfactory closed-loop performance.

Fig. 1 shows a scheme of event-triggered switched con-
trol systems. It can be seen that the values of the system
state are available at trigger instants 0 = t0 < t1 < ... <
tk < ..., with lim

k→∞

tk = ∞. The value of σ(t) only changes at

the trigger instant tk if σ(tk+1) 6= σ(tk), otherwise it holds
its most recent value. The interval between two trigger
moments is no less than Ts, i.e., tk+1 − tk ≥ Ts. Because
the upper bound of the switching frequency is limited to
1/Ts, this constraint significantly prevents the chattering
phenomenon or the Zeno phenomenon of the switching
action.

In this paper, since the system state x(t) is only obtained
at the trigger instant, the switch only occurs at the trigger
instant when the switching condition is satisfied, that is,
the switching signal depends on the state of the trigger
instant.

The aim of this paper is to find an appropriate trigger
condition and a switching signal to enable the system at-
tach the equilibrium point xe = −A−1(λ )b(λ ) and has a
disturbance attenuation performance.

Through the state transition ξ (t) = x(t)−xe, system (1)
and (2) can be transformed into the following system:

ξ̇ (t) = Aσ(t)ξ (t)+ lσ(t)+Eσ(t)ω(t), ξ0 = 0, (8)

ze(t) =Cσ(t)ξ (t)+Dσ(t)ω(t), (9)

where lσ = Aσ xe +bσ for which ∑i∈N λili = 0, and ze(t) =
z(t)−Cσ(t)xe.

In this paper, the trigger time sequence {tk}k≥1 is gen-
erated by

tk = inf

{
t > tk−1 +Ts

∣∣∣∣∣e
T (t)Pj(t)e(t)

≥ ηξ
T (t)ξ (t)

}
, (10)

where η ∈ (0,1], Pj(t), j ∈ ℑ, are positive definite matri-
ces which will be determined later, and

e(t) = ξ (t)−ξ (tk−1), t ∈ [tk−1, tk). (11)

Remark 1: Due to the existence of the affine term, the
equilibrium point of system (1) with ω(t) = 0 is not zero
and may not be unique, which brings some difficulties in
the performance analysis and control design. In this pa-
per, system (1) is transformed into system (8) via a state
transformation. The event-triggered scheme (10) is con-
structed to reduce the unnecessary waste of data sampling
and communication resources. (11) implies that the inter-
val between two trigger moments is no less than Ts. A
smaller Ts may increase the trigger frequency and lead to
unnecessary waste of data sampling and communication
resources, while a larger Ts may make a bad performance
of the system. Thus the selection of Ts should be traded off
between the two factors.

The following definition will be used in the later sec-
tion.

Definition 1: System (8)-(9) is said to be exponentially
attracted to a small neighborhood of the equilibrium point
xe with a disturbance attenuation performance, if the fol-
lowing is satisfied:

(i) When ω(t)= 0, system (8)-(9) is said to be exponen-
tially attracted to a small neighborhood of the equi-
librium point xe.

(ii) Under zero initial conditions, the following inequal-
ity holds for all non-zero ω(t) ∈ L2[0,∞)∫

∞

0
e−ctze(t)T ze(t)dt ≤

∫
∞

0
γ

2
ω(t)T

ω(t)dt +d,

(12)

where c≥ 0, d ≥ 0 and γ > 0.

Remark 2: Since d is a constant, the inequality (12)
means that the output ze(t) caused by the disturbance ω(t)
will be limited. Thus, (12) can characterize the disturbance
attenuation performance to some extent. When c = 0 and
d = 0, (12) becomes∫

∞

0
ze(t)T ze(t)dt ≤

∫
∞

0
γ

2
ω(t)T

ω(t)dt.

Then, the system has a standard L2-gain γ .
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3. MAIN RESULTS

3.1. Stability analysis
In this section, we will propose a switching signal for

system (1) under the event-triggered scheme by construct-
ing a piecewise differential Lyapunov function with time-
scheduled matrices.

For system (1) under this case that the barycentric coor-
dinates λ may not be unique, Lyapunov functions Vj(ξ ) =
ξ T Pjξ are constructed for stability analysis in [20], where
Pj = PT

j > 0, j ∈ ℑ.
Now we divide the interval [0,Ts] into Γ ∈ N segments

described [ϕm, ϕm+1), m∈f= {0, 1, ..., Γ−1}, which are
of equal length ϕ = Ts/Γ, and ϕ0 = 0, ϕm = mϕ = mTs/Γ,
m = 0, 1, ..., Γ−1.

To obtain less conservativeness results, we propose
the following piecewise differential functions with time-
scheduled matrices:

Vj(t,ξ ) = ξ
T (t)Pj(t)ξ (t), j ∈ ℑ, (13)

where{
Pj(t) = (1−α(t))Pj,m +α(t)Pj,m+1,

α(t) = Γ(t− tk)/(tk+1− tk)−m,

t ∈ [tk +ϕm, tk +ϕm+1),

and {
Pj(t) = (1−α(t))Pj,Γ−1 +α(t)Pj,Γ,

α(t) = Γ(t− tk)/(tk+1− tk)− (Γ−1),

t ∈ [tk +Ts, tk+1).

It is easy to obtain that Pj(t+k ) = Pj,0 and Pj(t−k ) = Pj,Γ−1.
For ξ (tk) ∈ Rn, the quadratic form of the minimum

value is represented by the index set

Jmin(ξ (tk)) =

{
j ∈ ℑ

∣∣ξ T (tk)Pj,0 ξ (tk)

≤ ξ
T (tk)Pr,Γ−1ξ (tk),∀r ∈ ℑ

}
. (14)

Then, a switching signal is proposed as follows:

σ(t) = σ((ξ (tk)),J∗(ξ (tk))), t ∈ [tk, tk+1), (15)

where

σ((ξ (tk)),J∗(ξ (tk)))

∈ arg min
(i, j)∈N×Jmin(ξ (tk))

ξ
T (tk)Pj,0(Aiξ (tk)+ li).

The switching signal in (15) means that the switch only
occurs at the trigger moment when the switching condi-
tion is satisfied, and the value of the switching signal re-
mains the same during the interval between two adjacent
trigger moments. Therefore, the proposed switching sig-
nal satisfies that the interval between two adjacent switch-
ing instants is no less than Ts.

By (13), (14) and (15), a Lyapunov function candidate
is constructed for system (7)

V (t,ξ ) = ξ
T (t)Pj∗(t)ξ (t), (16)

where j∗ indicates the active index in the Lyapunov func-
tion V (t,ξ ).

Remark 3: By the definitions of Pj(t) and α(t), the
form of Pj(t) on the interval [tk +Ts, tk+1) is the same with
the one on the interval [tk + ϕΓ−1, tk + ϕΓ), which guar-
antees the continuity of Pj(t) at the instant tk +Ts. Actu-
ally, Pj(t) is a piecewise differentiable function, and this
leads to that the Lyapunov function (16) is piecewise dif-
ferentiable. (14) is introduced to ensure that the Lyapunov
function (16) is non-increasing at the trigger instant tk.

Before proposing the main results, we give the follow-
ing lemma.

Lemma 1: For system (8) with ω(t) = 0, if there exist
a piecewise differentiable function V (t,ξ ) in the form of
(16) and a continuous function w(t) with w(tk) = 0 and
w(t)> 0, ∀t ∈ (tk, tk+1), such that

V (t+k ,ξ (tk))≤V (t−k ,ξ (tk)), (17)

V̇ (t,ξ )+ ẇ(t)+2ς(V (t,ξ )+w(t))< βTs,

∀t ∈ (tk, tk+1), (18)

where ς and β are positive constants, then we have

|ξ (t)|2 ≤eig max
j∈ℑ,m∈f

(Pj,m) |ξ (0)|2 e−2ςTs/eig min
j∈ℑ,m∈f

(Pj,m)

+βTs/2ςeig min
j∈ℑ,m∈f

(Pj,m). (19)

Proof: Following the proof line of Theorem 2 in [20],
this lemma can be obtained. �

Remark 4: The condition (17) in Lemma 1 implies
that the function V (t,ξ ) is non-increasing at the trigger
instant tk. The function w(t) is introduced to ensure the
decrease of the function V (t,ξ ) at the triggered instant.
Actually, the condition (18) guarantees that V (ξ (tk+1))<
V (ξ (tk+1))+w(t−k+1)<V (ξ (tk)) whenever ξ (t) is outside
the attractive ellipsoid given by

φ
Ts :=

{
x∈Rn : min

{
eig min

j∈ℑ,m∈f
(Pj,m)

}
|x−xe|2≤

βTs

2ς

}
.

Equation (19) means that ξ (t) exponentially converges to
the attractive ellipsoid. When Ts → 0, the ellipsoid be-
comes the equilibrium point and the system is exponen-
tially stable.

The main result on the stabilization of system (1) is pre-
sented by following theorem.

Theorem 1: Consider system (1) with ω(t) = 0 and
λ j ∈ Λe, j ∈ ℑ, for give scalar parameters ς > 0, µ j,r > 0,
r ∈ℑ, β > 0, if there exist matrices Qi > 0, Pj,m > 0, i∈N,
m ∈ f, such that the following matrix inequalities[

Ξ j,m +TsAT
i QiAi TsAT

i Qili +Ψ j,m

∗ TslT
i Qili−βTsI

]
≤0, (20)
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Ξ j,m+1 +TsAT

i QiAi TsAT
i Qili +Ψ j,m+1

∗ TslT
i Qili−βTsI

]
≤0, (21)Ξ j,m Ψ j,m −TsΘ j,0

∗ −βTsI TslT
i Pj,0

∗ ∗ T 2
s (Θ j,0−Qie−2ςTs/Ts)

≤0, (22)

Ξ j,m+1 Ψ j,m+1 −TsΘ j,0

∗ −βTsI TslT
i Pj,0

∗ ∗ T 2
s (Θ j,0−Qie−2ςTs/Ts)

≤0, (23)

then under the event-triggered scheme (10) and the
switching signal (15), the solution x(t) is exponentially
attracted to a small neighborhood of the equilibrium point
xe, where the neighborhood is given by the following ball

φ
Ts :=


x ∈ Rn :

min
{

eig min
j∈ℑ,m∈f

(Pj,m)

}
|x−xe|2≤

βTs

2ς

 , (24)

where

Ξ j,m = (A(λ j)−Ai)
T Pj,0 +Pj,0(A(λ j)−Ai)

+(Pj,m+1−Pj,m)Γ/Ts +
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0)

+AT
i Pj,m +Pj,mAi +2ςPj,m,

Ξ j,m+1 = (A(λ j)−Ai)
T Pj,0 +Pj,0(A(λ j)−Ai)

+(Pj,m+1−Pj,m)Γ/Ts+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0)

+AT
i Pj,m+1 +Pj,m+1Ai +2ςPj,m+1,

Ψ j,m = Pj,mli−Pj,0li,

Ψ j,m+1 = Pj,m+1li−Pj,0li,

Θ j,0 = (A(λ j)−Ai)
T Pj,0 +Pj,0(A(λ j)−Ai)

+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0).

Proof: Choose the following piecewise differentiable
function

V̄ (t) =V (t)+w(t),

where

w(t) = (tk+1− t)
∫ t

tk
e2ς(s−t)

ξ̇
T (s)Qiξ̇ (s)ds,

with Qi, i ∈ N, are positive definite symmetry matrices. It
is easy to obtain w(tk) = 0, w(t)≥ 0, ∀t ∈ [tk, tk+1).

Now let’s assumed at time tk the i-th system is activated,
i.e., σ(ξ (tk)) = i.

When t ∈ [tk +ϕm, tk +ϕm+1), we have

V̇ (t,ξ ) =ξ̇
T (t)Pj(t)ξ (t)+ξ

T (t)Pj(t)ξ̇ (t)

+ξ
T (t)Ṗj(t)ξ (t)

=2lT
i Pj(t)ξ (t)+ξ

T (t)(AT
i Pj(t)+Pj(t)Ai

+Γ(Pj,m+1−Pj,m)/(tk+1− tk))ξ (t)

≤2lT
i Pj(t)ξ (t)+ξ

T (t)(AT
i Pj(t)+Pj(t)Ai

+Γ(Pj,m+1−Pj,m)/Ts)ξ (t). (25)

When t ∈ [tk +Ts, tk+1), we have

V̇ (t,ξ )

= ξ̇
T (t)Pj(t)ξ (t)+ξ

T (t)Pj(t)ξ̇ (t)+ξ
T (t)Ṗj(t)ξ (t)

= 2lT
i Pj(t)ξ (t)+ξ

T (t)(AT
i Pj(t)+Pj(t)Ai

+Γ(Pj,Γ−Pj,Γ−1)/(tk+1− tk))ξ (t)

≤ 2lT
i Pj(t)ξ (t)+ξ

T (t)(AT
i Pj(t)+Pj(t)Ai

+Γ(Pj,Γ−Pj,Γ−1)/Ts)ξ (t). (26)

Set

θ(t) = e(t)τ−1(t) = (ξ (t)−ξ (tk))τ−1(t), (27)

with τ(t) = t− tk for all t ∈ [tk, tk+1).
According to the Jensen inequality, we get the following

inequality

ẇ(t)+2ςw(t)≤(Ts− τ(t)) [Aiξ (t)+ li]
T Qi [Aiξ (t)+ li]

− τ(t)θ T (t)Qiθ(t)e−2ςTs . (28)

From (25) and (28), we obtain, ∀ t ∈ [tk +ϕm, tk +ϕm+1),

V̇ (ξ (t))+ ẇ(t)+2ς(V (ξ (t))+w(t))−βTs

= ξ
T (t)((1−α(t))Ω j,m +α(t)Ω j,m+1

+(Ts− τ(t))AT
i QiAi)ξ (t)

+2ξ
T (t)(((1−α(t))Pj,m +α(t)Pj,m+1)li

+(Ts− τ(t))AT
i Qili)+(Ts− τ(t))lT

i Qili−βTsI

− τ(t)θ T (t)Qiθ(t)e−2ςTs , (29)

where

Ω j,m = AT
i Pj,m +Pj,mAi +(Pj,m+1−Pj,m)Γ/Ts +2ςPj,m,

Ω j,m+1 = AT
i Pj,m+1 +Pj,m+1Ai +2ςPj,m+1

+(Pj,m+1−Pj,m)Γ/Ts.

From (14) and (15), we have

2ξ
T (tk)Pj,0(A f ξ (tk)+ l f )

−2ξ
T (tk)Pj,0(Aiξ (tk)+ li)≥ 0, j ∈ ℑ, (30)

ξ
T (tk)(Pj,0−Pr,Γ−1)ξ (tk)≤ 0, ∀r ∈ ℑ. (31)

It is easy to obtain from (27) that

ξ (tk) = ξ (t)− τ(t)θ(t). (32)

For simplicity, we denote τ = τ(t) and θ = θ(t). Multi-
plying the left and right sides of (30) by λ j yields

2ξ
T (tk)Pj,0(A(λ j)−Ai)ξ (tk)−2ξ

T (tk)Pj,0li ≥ 0.
(33)
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Substituting (32) into (31) leads to

(ξ (t)− τθ)T

[
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0)

]
(ξ (t)− τθ)

= ξ (t)T (
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))ξ (t)

−2τξ (t)T (
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ

+ τ
2
θ

T (
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ ≥ 0. (34)

From (33) and (34), we have

φ(t) =ξ
T (t)((A(λ j)−Ai)

T Pj,0 +Pj,0(A(λ j)−Ai)

+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))ξ (t)

−2τξ
T (t)(A(λ j)−Ai)

T Pj,0

+Pj,0(A(λ j)−Ai)+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ(t)

+τ
2
θ

T (t)((A(λ j)−Ai)
T Pj,0+Pj,0(A(λ j)−Ai)

+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ(t)

+2τlT
i Pj,0θ(t)−2ξ

T (t)Pj,0li ≥ 0. (35)

Combining (29) and (35) leads to, ∀ t ∈ [tk + ϕm, tk +
ϕm+1),

V̇j(ξ (t))+ ẇ(t)+2ς(Vj(ξ (t))+w(t))−βTs +φ(t)

= ξ
T (t)(AT

i Pj(t)+Pj(t)Ai +
Γ

Ts
(Pj,m+1−Pj,m)

+2ςPj,m +(A(λ j)−Ai)
T Pj,0 +Pj,0(A(λ j)−Ai)

+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0)+(Ts− τ(t))AT
i QiAi)ξ (t)

−2τξ
T (t)(A(λ j)−Ai)

T Pj,0 +Pj,0(A(λ j)−Ai)

+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ(t)+2τlT
i Pj,0θ(t)

+2ξ
T (t)(Ts− τ(t))AT

i Qili +Pj(t)li−Pj,0li)

+(Ts− τ(t))lT
i Qili−βTsI

− τ(t)θ T (t)Qiθ(t)e−2ςTs + τ
2
θ

T (t)((A(λ j)−Ai)
T Pj,0

+Pj,0(A(λ j)−Ai)+
M

∑
r=1

µ j,r(Pr,Γ−1−Pj,0))θ(t),

(36)

i.e.,

V̇ (ξ (t))+ ẇ(t)+2ς(V (ξ (t))+w(t))−βTs +φ(t)

= zT (Ψ1
i (τ)+Ψ

2
i (τ))z, t ∈ [tk, tk +Ts),

where z = [ξ T 1 θ T ]T and

Ψ
1
i (τ) =

Ψ11
i (λ ,τ) Ψ12

i (τ) −τΘ j,0

∗ Ψ13
i (τ) τlT

i Pj,0

∗ ∗ Ψ14
i (Ts,τ)

 , (37)

Ψ
2
i (τ) =

Ψ21
i (λ ,τ) Ψ22

i (τ) −τΘ j,0

∗ Ψ13
i (τ) τlT

i Pj,0

∗ ∗ Ψ14
i (Ts,τ)

 , (38)

where

Ψ
11
i (λ ,τ) = Ξ j,m +(Ts− τ(t))AT

i QiAi,

Ψ
12
i (τ) = (Ts− τ(t))AT

i Qili +Ψ j,m,

Ψ
22
i (τ) = (Ts− τ(t))AT

i Qili +Ψ j,m+1,

Ψ
13
i (τ) = (Ts− τ(t))lT

i Qili−βTsI,

Ψ
14
i (Ts,τ) =−τQie−2ςTs + τ

2
Θ j,0,

Ψ
21
i (λ ,τ) = Ξ j,m+1 +(Ts− τ(t))AT

i QiAi.

It follows from (20)-(23) that

Ψ
1
i (0)≤ 0, Ψ

2
i (0)≤ 0,

Ψ
1
i (Ts)≤ 0, Ψ

2
i (Ts)≤ 0.

Since Ψi(τ) ∈ co{Ψi(0),Ψi(Ts)},
where

Ψi(τ) = Ψ
1
i (τ)+Ψ

2
i (τ), ∀τ ∈ [0,Ts],

we obtain

zT
Ψi(0)z≤ 0, (39)

zT
Ψi(Ts)z≤ 0. (40)

From (37)-(41), we obtain, ∀ t ∈ [tk +ϕm, tk +ϕm+1),

V̇j(ξ (t))+ẇ(t)+2ς(Vj(ξ (t))+w(t))−βTs+φ(t)≤0.

Since φ(t)≥ 0, when ∀ t ∈ [tk +ϕm, tk +ϕm+1), we get

V̇j(ξ (t))+ ẇ(t)+2ς(Vj(ξ (t))+w(t))≤ βTs. (41)

Similarly, it can be obtained that (41) holds for t ∈ [tk +Ts,
tk+1). Thus (41) is satisfied for t ∈ [tk, tk+1).

From (17), we have

V (ξ (t+k ), t
+
k ) =ξ

T (t+k )Pj(t+k )ξ (t
+
k )

≤ξ
T (t−k )P j(t−k )ξ (t

−
k ) =V (ξ (t−k ), t

−
k ).
(42)

By Lemma 1, we get

|ξ (t)|2 ≤eig max
j∈ℑ,m∈f

(Pj,m) |ξ (0)|2 e−2ςTs/eig min
j∈ℑ,m∈f

(Pj,m)

+βTs/2ςeig min
j∈ℑ,m∈f

(Pj(t)),
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i.e., the solution x(t) is exponentially attracted to a small
neighborhood of the equilibrium point xe, where the
neighborhood is given by the following ball

φ
Ts :=


x ∈ Rn :

min
{

eig min
j∈ℑ,m∈f

(Pj,m)

}
|x−xe|2≤

βTs

2ς

 . (43)

�
Remark 5: It should be noted that [20] gives the sta-

bilization result for switched affine systems by using a
sampled data control scheme and a switched Lyapunov
functions with constant matrices. The proposed result in
Theorem 1 is more general than that in [20] since the
event-triggered control scheme and the piecewise differ-
ential Lyapunov function (16) with time-scheduled matri-
ces is adopted in this paper. When Pj,m = Pj, m = 0, 1,
..., Γ− 1, and regardless of the event-triggered condition,
Theorem 1 reduces to Theorem 2 in [20].

Since the switched piecewise differential Lyapunov
function is used in this paper, A(λ j) is not required to be
Hurwitz. When there is only one j, we have the following
corollary.

Corollary 1: Consider system (1) with ω(t) = 0 and
λ j ∈ Λe, j = 1, for give scalar parameters ς > 0, β > 0,
if there exist matrices Qi > 0, Pm > 0, i ∈ N, m ∈ f, such
that matrix inequalities hold[

Ξm +TsAT
i QiAi TsAT

i Qili +Ψm

∗ TslT
i Qili−βTsI

]
≤ 0, (44)[

Ξm+1 +TsAT
i QiAi TsAT

i Qili +Ψm+1

∗ TslT
i Qili−βTsI

]
≤ 0, (45)Ξm Ψm −TsΘ0

∗ −βTsI TslT
i P0

∗ ∗ T 2
s (Θ0−Qie−2ςTs/Ts)

≤ 0, (46)

Ξm+1 Ψm+1 −TsΘ0

∗ −βTsI TslT
i P0

∗ ∗ T 2
s (Θ0−Qie−2ςTs/Ts)

≤ 0, (47)

Ξm = (A(λ )−Ai)
T P0 +P0(A(λ )−Ai)

+(Pm+1−Pm)Γ/Ts +AT
i Pm +PmAi +2ςPm,

Ξm+1 = (A(λ )−Ai)
T P0 +P0(A(λ )−Ai)+2ςPm+1

+(Pm+1−Pm)Γ/Ts +AT
i Pm+1 +Pm+1Ai,

Ψm = Pmli−P0li,

Ψm+1 = Pm+1li−P0li,

Θ0 = (A(λ )−Ai)
T P0 +P0(A(λ )−Ai),

then under the event-triggered scheme (10) and the
switching signal (15), the solution x(t) is exponentially
attracted to a small neighborhood of the equilibrium point
xe, where the neighborhood is given by the following ball

φ
Ts :=

{
ξ ∈ Rn : ξ

T Pmξ ≤ βTs

2ς

}
. (48)

3.2. Disturbance attenuation performance analysis
In this subsection, we will investigate the disturbance

attenuation performance of system (1) and (2).
Theorem 2: Consider system (1)-(2) and λ j ∈ Λe, j ∈

ℑ = {1, 2, ..., M} , for give scalar parameters ς > 0 and
β > 0, if there exist matrices Qi > 0, Pj,m > 0, i ∈ N, m ∈
f, such that the following matrix inequalities hold

ϒ j,m +CT
i Ci

+TsAT
i QiA

TsAT
i Qili

Pj,mEi +CT
i Di

+TsAT
i QiEi

∗ TslT
i Qili−βTsI TslT

i QiEi

∗ ∗ DT
i Di− γ2I
+TsET

i QiEi


≤ 0, (49)

ϒ j,m+1 +CT
i Ci

+TsAT
i QiA

TsAT
i Qili

Pj,m+1Ei +CT
i Di

+TsAT
i QiEi

∗ TslT
i Qili−βTsI TslT

i QiEi

∗ ∗ DT
i Di− γ2I

+TsET
i QiEi


≤ 0, (50)
ϒ j,m +CT

i Ci 0 ∗ Pj,mEi +CT
i Di

∗ −βTs ∗ ∗
∗ ∗ −TsQie−2ςTs ∗
∗ ∗ ∗ DT

i Di− γ2I


≤ 0, (51)
ϒ j,m+1 +CT

i Ci 0 ∗ Pj,m+1Ei +CT
i Di

∗ −βTs ∗ ∗
∗ ∗ −TsQie−2ςTs ∗
∗ ∗ ∗ DT

i Di− γ2I


≤ 0, (52)

where

ϒ j,m = AT (λ j)Pj,m +Pj,mA(λ j)

+(Pj,m+1−Pj,m)Γ/Ts +2ςPj,m,

ϒ j,m+1 = AT (λ j)Pj,m+1 +Pj,m+1A(λ j)

+(Pj,m+1−Pj,m)Γ/Ts +2ςPj,m+1.

then system (1) is exponentially attracted to a small neigh-
borhood of the equilibrium point xe with a disturbance at-
tenuation performance under the trigger scheme (10) and
the switching signal (15).

Proof: Equations (49)-(52) imply that (20)-(23) are sat-
isfied. By Theorem 1, system (1) with ω(t) = 0 is expo-
nentially attracted to a small neighborhood of the equilib-
rium point xe.

Next, we will focus on the disturbance attenuation per-
formance. For any non-zero ω(t) ∈ L2[0,∞) and zero ini-
tial conditions, we construct the indicator function as fol-
lows:

J(t−k+1)
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=
∫ tk+1

tk

[
( ˙̄V (ξ (t))+2ςV̄ (ξ (t))−βTs)+ ze(t)T ze(t)

− γ
2
ω(t)T

ω(t)
]
dt, (53)

where t ∈ [tk, tk+1), V̄ (ξ (0)) = 0 under zero initial condi-
tions.
From (15), we get

min
i∈N

(2ξ (t)T Pj(t)(Aiξ (t)+ li))

= min
i∈N

(ξ (t)T (AT
i Pj(t)+Pj(t)Ai)ξ (t)+2ξ (t)T Pj(t)li),

which implies

ξ (t)T (AT
i Pj(t)+Pj(t)Ai)ξ (t)+2ξ (t)T Pj(t)li

≤
M

∑
j=1

λ
j(ξ (t)T (AT

i Pj(t)+Pj(t)Ai)ξ (t)

+2ξ (t)T Pj(t)li)

= ξ (t)T (AT (λ j)Pj(t)+Pj(t)A(λ j))ξ (t). (54)

From (8)-(9), (25) and (28)-(29), we have

˙̄V (ξ (t))+ ze(t)T ze(t)− γ
2
ω(t)T

ω(t)

= GT [∆1
i (τ)+∆

2
i (τ)]G,

where G = [ξ T (t) 1 θ T (t) ωT (t)]T , τ = τ(t) and

∆
1
i (τ) =


∆11

i (τ) ∆12
i (τ) ∗ ∆14

i (τ)
∗ ∆22

i (τ) ∗ ∆24
i (τ)

∗ ∗ ∆33
i (τ) ∗

∗ ∗ ∗ ∆44
i (τ)

 , (55)

∆
2
i (τ) =


∆211

i (τ) ∆12
i (τ) ∗ ∆214

i (τ)
∗ ∆22

i (τ) ∗ ∆24
i (τ)

∗ ∗ ∆33
i (τ) ∗

∗ ∗ ∗ ∆44
i (τ)

 , (56)

∆
11
i (τ) = ϒ j,m +CT

i Ci +(Ts− τ(t))AT
i QiA,

∆
12
i (τ) = (Ts− τ(t))AT

i Qili,

∆
22
i (τ) = (Ts− τ(t))lT

i Qili−βTsI,

∆
33
i (τ) =−τ(t)Qie−2ςTs , ∆

24
i (τ)=(Ts−τ(t))lT

i QiEi,

∆
14
i (τ) = Pj,mEi +CT

i Di +(Ts− τ(t))AT
i QiEi,

∆
44
i (τ) = DT

i Di− γ
2I +(Ts− τ(t))ET

i QiE,

∆
211
i (τ) = ϒ j,m+1 +CT

i Ci +(Ts− τ(t))AT
i QiA,

∆
214
i (τ) = Pj,m+1Ei +CT

i Di +(Ts− τ(t))AT
i QiEi.

It follows from (50)-(53) that ∆1
i (0) ≤ 0,∆2

i (0) ≤ 0,
∆1

i (Ts)≤ 0 and ∆2
i (Ts)≤ 0, which implies ∆1

i (τ)+∆2
i (τ)≤

0.
Then we have

˙̄V (ξ (t))+2ςV̄ (ξ (t)+ ze(t)T ze(t)− γ
2
ω(t)T

ω(t)

−βTs ≤ 0. (57)

Multiplying both sides of (58) by e−(ρ−2ς)t , with ρ being
a positive constant satisfying ρ > 2ς , we have

e−(ρ−2ς)t( ˙̄V (ξ (t))+2ςV̄ (ξ (t))−βTs

+ ze(t)T ze(t)− γ
2
ω(t)T

ω(t))≤ 0. (58)

It follows that∫
∞

0
e−(ρ−2ς)tze(t)T ze(t)dt

≤
∫

∞

0
e−(ρ−2ς)t

γ
2
ω(t)T

ω(t)dt

−
∞

∑
k=0

∫ t−k+1

t+k
e2ςt( ˙̄V (ξ (t))+2ςV̄ (ξ (t)))dt

+
∫

∞

0
e−(ρ−2ς)t

βTsdt

≤
∫

∞

0
e−(ρ−2ς)t

γ
2
ω(t)T

ω(t)dt +
∫

∞

0
e−(ρ−2ς)t

βTsdt

−
∞

∑
k=0

(e2ςtk+1V̄ (ξ (tk+1))− e2ςtkV̄ (ξ (t+k ))). (59)

Noting from (14) that

V̄ (ξ (t+k+1))≤ V̄ (ξ (t−k+1)), k = 1,2...,

we have∫
∞

0
e−(ρ−2ς)tze(t)T ze(t)dt

≤
∫

∞

0
e−(ρ−2ς)t

γ
2
ω(t)T

ω(t)dt

+
∫

∞

0
e−(ρ−2ς)t

βTsdt

−
∞

∑
k=0

(e2ςtk+1V̄ (ξ (t−k+1))− e2ςtkV̄ (ξ (t+k )))

−
∞

∑
k=0

e2ςtk+1(V̄ (ξ (t+k+1))−V̄ (ξ (t−k+1)))

≤
∫

∞

0
e−(ρ−2ς)t

γ
2
ω(t)T

ω(t)dt +
∫

∞

0
e−(ρ−2ς)t

βTsdt

+V̄ (ξ (t0))−V̄ (ξ (∞)). (60)

Since V̄ (ξ (t0)) = 0 and V̄ (ξ (∞))> 0, we obtain from (61)
that ∫

∞

0
e−(ρ−2ς)tze(t)T ze(t)dt

≤
∫

∞

0
e−(ρ−2ς)t

γ
2
ω(t)T

ω(t)dt +βTs/(ρ−2ς). (61)

It follows that∫
∞

0
e−ctze(t)T ze(t)dt ≤

∫
∞

0
γ

2
ω(t)T

ω(t)dt +d, (62)

where c = ρ−2ς and d = βTs
c .

This completes the proof. �
Remark 6: In Theorem 2, we present the result on the

disturbance attenuation performance characterized by (62)
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for system (1) and (2) under the event-triggered scheme.
When there is no event-triggered mechanism, i.e., Ts→ 0,
(57) becomes

˙̄V (ξ (t))+2ςV̄ (ξ (t)+ ze(t)T ze(t)− γ
2
ω(t)T

ω(t)≤ 0,

which leads to∫
∞

0
ze(t)T ze(t)dt ≤

∫
∞

0
γ

2
ω(t)T

ω(t)dt.

Then the system has a standard L2-gain γ .
Remark 7: In this paper, we divide the interval [0,Ts]

into Γ segments. A larger Γ is favorable to reduce the con-
servativeness of the results, but will increase the number
of variables and inequalities in Theorems 2, which may
increase the computational complexity. Thus the selection
of Γ should be traded off between the two factors.

4. NUMERICAL EXAMPLES

In this section, we will give two examples to show the
effectiveness of the proposed results.

Example 1: Consider an example used in [20] with ma-
trices as follows:

A1 = A3 =

−3 −6 3
2 2 −3
1 0 −2

 , A2 =

 1 3 3
−1 −3 −3
0 0 −2

 ,
b1 =−b3 =

[
−35 0 0

]T
, b2 =

[
0 0 0

]T
.

In order to show the advantage of the proposed method,
we give the same parameters with those in [20], i.e.,

λ
1 = λ

4 =
[
0.5 0 0.5

]T
,

λ
2 = λ

3 =
[
0 1 0

]T
,

β = 2.5×103, ς = 0.5×10−3.

By Theorem 1, we find that inequalities (20)-(23) are fea-
sible for any trigger intervals with Ts ≤ 0.7 s, while the
conditions of Theorem 2 in [20] are found to be feasible
only for Tmax ≤ 3.2× 10−2 s. This demonstrates that the
proposed method in this paper is less conservative than
that presented in [20].

Example 2: Consider a DC-DC converter shown in
Fig. 2. The model of the DC-DC converter has the form

ẋ(t) = Āσ(t)x(t)+ b̄σ(t)+Eσ(t)ω(t),

where x =
[
x1 x2

]T , σ(t) = {1, 2}, x1 is the inductor cur-
rent and x2 is the capacitor voltage,

Ā1 =

[
0 0
0 −1/RC

]
, b̄1 =

[
U/L

0

]
,

Ā2 =

[
0 −1/L

1/C −1/RC

]
, b̄2 =

[
0
0

]
,

Fig. 2. Buck-boost converter.

E1 =
[
1/L 0

]T
, E2 =

[
0 0

]T
.

Let the capacitor voltage be the performance output,
i.e., z = x2, C1 =C2 = [0 1] and D1 = D2 = [0 0].

Choose U = 12 V, R = 35 Ω, L = 100 mH, and C = 450
µF. It is easy to verify that A(λ ) is Hurwitz for λ 1 = [0.6
0.4]T and xe = [1.29 18]T .

In order to deal with large numerical values and avoid
ill conditioned matrix inequalities, we use the time scale
change t = ϑ t ′ with ϑ = 104, then the model of the DC-
DC converter can be described as system (8) with Ai =
ϑ−1Āi and li = ϑ−1(Āixr + b̄i).

For the numerical test, we choose M = 1, β = 2.0×
10−1, ς = 280, Ts = 0.0005 s and Γ = 4, then solving the
matrix inequalities in Theorem 2 yields

P11 =

[
1.8727 −5.4×10−4

−5.4×10−4 2.1792

]
,

P12 =

[
1.7329 −5.3×10−4

−5.3×10−4 2.0184

]
,

P13 =

[
1.6029 −5.1×10−4

−5.1×10−4 1.8686

]
,

P14 =

[
1.4818 −4.9×10−4

−4.9×10−4 1.7293

]
,

P15 =

[
1.3691 −4.8×10−4

−4.8×10−4 1.5995

]
,

Q1 =

[
739.82 0.0057
0.0057 806.06

]
,

Q2 =

[
806.063 5.2×10−7

5.2×10−7 806.064

]
,

γ = 10.03.

By applying the proposed method in this paper, the event-
triggered condition is designed as follows:

eT (t)P(t)e(t)≥ 0.01ξ
T (t)ξ (t),

where

tk+1 = inf
{

t > tk +Ts | eT (t)P(t)e(t)≥ 0.01ξ
T (t)ξ (t)

}
.

Since

argminξ (tk)T P(tk)(ϑ Āiξ (tk)+ϑ li)
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Fig. 3. The evolution of system state and the attraction ball
(24).

Fig. 4. The triggered instants of the event-triggered mech-
anism.

= argminξ (tk)T P(tk)(Aiξ (tk)+ϑ li),

the switching signal can be constructed as follows:

σ(ξ (tk)) ∈ arg min
i=1,2

ξ
T (tk)P0(Aiξ (tk)+ li).

Fig. 3 shows the evolution of system state and the attrac-
tion ball (24). The event-triggered instants are shown in
Fig. 4. The switching signal of the system is shown in
Fig. 5. The initial value is x =

[
0 0

]T and the distur-
bance is{

ω(t) = sin(960πt), 0≤ t ≤ 0.06,

ω(t) = 0 t > 0.06.

It can be seen from Fig. 3 that the inductor current and
the capacitor voltage are convergent to a small neighbor-
hood of the equilibrium point xe, which demonstrates the
correctness of the results.

Fig. 5. The evolution of the switching signal.

5. CONCLUSION

In this paper, the event-triggered control problem for
switched affine linear systems has been studied. A stability
criterion is proposed to ensure that the switched affine sys-
tem exponentially converges to a small neighborhood of
the desired equilibrium point. An event triggering scheme
and a state-dependent switching signal are proposed by
constructing a piecewise differential Lyapunov function
with time-scheduled matrices. We also present the result
on the disturbance attenuation performance analysis. In
future work, we will focus on the controller design and
robust control for the considered systems. We will also
extend the proposed results to switched affine nonlinear
systems.
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