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Pinning Synchronization of Stochastic T-S Fuzzy Delayed Complex Dy-
namical Networks with Heterogeneous Impulsive Delays
Huilan Yang, Lan Shu, Shouming Zhong, Tao Zhan, and Xin Wang* �

Abstract: In this paper, we deal with the exponential pinning synchronization (PS) of stochastic T-S fuzzy delayed
complex dynamical networks (FDCDNs) with heterogeneous impulsive delays. Unlike the existing works, a fuzzy
memory pinning impulsive control (FMPIC) approach is proposed. In order to conquer the difficulties of studying
such a general system, sufficient conditions that depend on the discrete-delay and distributed-delay impulsive effects
are obtained by employing the Lyapunov function, inequality techniques and stochastic analysis theory. It is shown
that the PS of FDCDNs can be achieved under the designed FMPIC. Numerical simulation on the basis of BA
scale-free coupled network is used to illustrate the effectiveness of the theoretical results.
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1. INTRODUCTION

Complex dynamical networks (CDNs) have been ex-
tensively researched over the past few decades because
of their potential applications in various fields of science
and engineering, such as sensor networks, communication
network and linear and nonlinear programming problems
[1–4]. Meanwhile, among all of the dynamical behavior
CDNs, synchronization has been a fascinating topic since
there exist some collective features in individual node nat-
urally. In addition, time delay is very common in natural
and man-made systems, and the existence of time delay
usually results in poor performance, including divergence,
oscillation, or even instability of CDNs [5–9]. Hence, the
synchronization of DCDNs have drawn noticeable atten-
tion, and a large number of outstanding results have been
reported in [10–15] and references cited therein.

It is well known that Takagi-Sugeno (T-S) fuzzy model
has good properties in analyzing, synthesizing, and approxi-
mating complex dynamical behaviors by a set of IF-THEN
rules, which can give local linear representation of the
nonlinear system. To this end, many well-known linear
system theories can be used to system analysis and syn-
thesis of nonlinear complex systems [16–20]. Moreover,
in many real-world and natural processes, the actual sig-

nal transmission between subsystems of coupled CDNs is
inevitably subject to stochastic perturbation from various
uncertainties [21, 22], which may lead to package loss or
transmitted signals not fully being detected and received
[23]. Naturally, in order to model more realistic CDNs, we
should take full account of all the aspects that are influen-
tial in studying the CDNs. So far, this issue has recently
attracted increasing attention, many literatures regarding
the synchronization of T-S fuzzy CDNs (FCDNs) related
to stochastic perturbation have been introduced and have
left many fruitful results [24–28]. For example, A truck-
trailer system is presented to the applicability of the T-S
fuzzy systems in [25]. Tang et al. [26] studied the T-S fuzzy
discrete-time CDNs with stochastic disturbances based on
the Lyapunov functional (LF) and some stochastic analysis
techniques (SATs) to ensure the mean-square synchroniza-
tion of the considered system. By employing Kronecker
product and SATs, delay-dependent synchronisation cri-
terions of stochastic T-S FCDNs were obtained in [27].
Moreover, because of interval type-2 (IT2) for the system
with strong uncertainty and nonlinearity, in order to reduce
the conservatism of obtained results [26, 27], on basis of
the parallel-distributed compensation (PDC) scheme, the
issue of synchronization of IT2 stochastic T-S FCDNs by
using fuzzy pinning control was addressed in [28].
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On the other hand, compared with continuous control
approach [29], the impulsive control has been validated
to CDNs since the impulsive control is activated only at
impulsive instants while the continuous control does so at
every moment [30]. Based on LF, SATs and a new lemma,
Yang et al. [31] investigated the synchronization of TS
FCDNs with stochastic effects via delayed impulsive dis-
tributed control, where the stochastic T-S FCDN was ap-
plied to small-world network coupled with time-delayed
Lorenz system. Meanwhile, in view of the control cost will
be expensive for the application point of view, the idea
of controlling a small portion of nodes, e.g., pinning im-
pulsive control (PIC) strategy was proposed by [32, 33].
Accordingly, the investigation of PIC of CDNs is very in-
teresting. Very recently, by using LF together with PIC,
pinning impulsive synchronization of a class of CDNs with
time-varying delay was solved in [34]. Moreover, a finite-
time synchronization condition for CDNs on time scales
under PIC was established in [35]. For other recent works,
please refer to [36–40] and references cited therein.

It should be noted that the impulsive effects in these pub-
lished works such as in [31,38,40] are only discrete delays,
which have been studied by a large number of researchers.
However, in real life, such as financial markets, fishery
industry and population dynamics, we need to consider
distributed-delay dependent impulsive effects. The main
difference between discrete-delay and distributed-delay
impulses is that the jumps of systems states of distributed-
delay depend on the accumulation of the system states
over a history time period, while discrete-delay utilizes
the states at each impulsive instant or the states at his-
tory time. For example, as shown in [41, 42], in order to
keep the financial market stable, at some times, new in-
terest rates should be artificially controlled in taking the
interest rates during a history time period as a reference.
Therefore, the distributed-delay dependent impulse is in-
troduced such that the overall impact of calculation for the
new interest rates more accurately. Although distributed-
delay dependent impulse is featured with such advantages,
the research of FMPIC synchronization of stochastic T-S
FDCDNs with heterogeneous impulsive delays is still a
difficult task, which is the motivation of this paper.

Motivated by the above discussions, we devote to in-
vestigating the issue of PS for stochastic T-S FDCDNs in
this paper. The main contributions can be summarized as
follows: 1) The heterogeneous time-varying coupling de-
lays and impulsive delays are taken into account. 2) Based
on LF, inequality techniques and SATs, sufficient condi-
tions that depend on the discrete-delay and distributed-
delay impulsive effects are established. 3) Furthermore,
in order to solve the difficulties of studying such general
system, an FMPIC approach is designed to guarantee the
exponential PS of the considered stochastic T-S FDCDNs.
This approach is a more general method than these results
[31–33, 36–38, 40] in the previous approach.

Notations: Let In denote the n× n identity matrix. ℜn

denotes n-dimensional Euclidean space, ℜn×n is the set
of all n×n real matrices. For any symmetric matrices X
and Y , the notation X > Y(X ≥ Y) means that the matrix
X −Y is positive definite (nonnegative). Symbol ⊗ stands
for Kronecker product and diag{. . .} denotes the block di-
agonal matrix. λmin(X ) and λmax(X ) are the minimum and
maximum eigenvalues of X . The superscript T denotes
matrix or vector transposition. ‖ · ‖2 refers to the induced
matrix 2-norm. Let (Ω,F ,{Ft}t≥0,P) be a complete prob-
ability space with filtration {Ft}t≥0 satisfying the usual
conditions(i.e., the filtration contains all P-null sets and is
right continuous) and E{·} denotes the expectation oper-
ator with respect to the given probability measure P. N †

denotes the set {1,2, . . . ,N}.

2. PRELIMINARIES

Consider the following stochastic T-S FDCDNs with r
rules:

Plant Rule s: If z1(t) is Ms1, z2(t) is Ms2, ..., zp(t) is
Msp,

then

dxi(t) = [Asxi(t)+Bsxi(t− τ1(t))+ c1

N

∑
j=1

cs
i jx j(t)

+ c2

N

∑
j=1

ds
i jx j(t− τ2(t))]dt

+σs(xi(t),xi(t− τ3(t)))dw(t), i ∈N †,

xi(t) = φi(t), ∀t ∈ [−τ
∗,0],

(1)



dyi(t) = [Asyi(t)+Bsyi(t− τ1(t))+ c1

N

∑
j=1

cs
i jy j(t)

+ c2

N

∑
j=1

ds
i jy j(t− τ2(t))+ui(t)]dt

+σs(yi(t),yi(t− τ3(t)))dw(t), i ∈N †,

yi(t) = ψi(t), ∀t ∈ [−τ
∗,0],

(2)

where z`(t) denotes the premise variable and Ms` is the
fuzzy set, ` = 1, 2, . . ., p, s = 1, 2, . . ., r, r is a posi-
tive integer. xi(t) = (xi1(t), xi2(t), . . ., xin(t))T ∈ ℜn and
yi(t) = (yi1(t), yi2(t), . . ., yin(t))T ∈ℜn stand for the mas-
ter state vector and the slave state variable of the ith node,
respectively. τϑ (t) is the time-varying delay satisfying
τϑ ≤ τϑ (t) ≤ τϑ , max{τϑ} = τ∗, in which τ∗, τϑ , τϑ

(ϑ = 1, 2, 3) are the positive scalars. c1 and c2 are coupling
strengths. Matrices As ∈ℜn×n, Bs ∈ℜn×n are known real
matrices, Cs = (cs

i j)N×N and Ds = (ds
i j)N×N with the sum

of each row being zero are the non-delayed and delayed
outer couplings of the whole networks. ui(t) is a control
input to be designed later. σs(·, ·) : ℜn×ℜn→ℜn×m is a
Borel function. w(t) = (w1(t), w2(t), . . ., wm(t))T is an m-
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dimensional Brownian motion defined on a complete prob-
ability space (Ω, F , {Ft}t≥0,P) satisfying E{dw(t)}= 0,
E{dw(t)2}= dt. φi(tT ) and ψi(t) are the initial conditions.

By utilizing the singleton fuzzifier, product inference,
and the center average defuzzifier, the final stochastic T-S
fuzzy systems (1) and (2) are described as

dxi(t) =
r

∑
s=1

hs(z(t))[Asxi(t)+Bsxi(t− τ1(t))

+ c1

N

∑
j=1

cs
i jx j(t)+ c2

N

∑
j=1

ds
i jx j(t− τ2(t))]dt

+
r

∑
s=1

hs(z(t))σs(xi(t),xi(t− τ3(t)))dw(t)

dyi(t) =
r

∑
s=1

hs(z(t))[Asyi(t)+Bsyi(t− τ1(t))

+ c1

N

∑
j=1

cs
i jy j(t)

+ c2

N

∑
j=1

ds
i jy j(t− τ2(t))+ui(t)]dt

+
r

∑
s=1

hs(z(t))σs(yi(t),yi(t− τ3(t)))dw(t),

(3)

where hs(z(t)) stands for the normalized membership func-
tion satisfying 0 ≤ hs(z(t)) ≤ 1 (s = 1, 2, . . ., r) and
∑

r
s=1 hs(z(t)) = 1.
Let ei(t) = yi(t)− xi(t), i ∈ N † as the synchronization

error, then we have

dei(t) =
r

∑
s=1

hs(z(t))[Asei(t)+Bsei(t− τ1(t))

+ c1

N

∑
j=1

cs
i je j(t)

+ c2

N

∑
j=1

ds
i je j(t− τ2(t))+ui(t)]dt

+
r

∑
s=1

hs(z(t))σ s(ei(t),ei(t− τ3(t)))dw(t),

ei(t) = ϕi(t), ∀t ∈ [−τ
∗,0],

(4)

where σ s(ei(t), ei(t − τ3(t))) = σs(yi(t), yi(t − τ3(t)))−
σs(xi(t), xi(t− τ3(t))) and ϕi(t) = ψi(t)−φi(t).

In this paper, the following assumptions, definitions and
lemmas are useful in deriving our main results.

Assumption 1: There exist nonnegative constants ρ1s,
ρ2s such that

trace{[σs(x,y)−σs(x̄, ȳ)]T [σs(x,y)−σs(x̄, ȳ)]}
≤ ρ1s(x− x̄)T (x− x̄)+ρ2s(y− ȳ)T (y− ȳ) (5)

holds for all s = 1, 2, . . ., r, and any x, x̄, y, ȳ ∈ℜn.

Definition 1: The stochastic T-S fuzzy system (4) is
said to be mean square exponentially stable if there exist a
pair of positive constants M ≥ 1 and α such that

E(‖e(t)‖2)≤M sup
−τ∗≤s≤0

E(‖ϕ(s)‖2)e−α(t−t0), t ≥ t0.

(6)

Definition 2: If system (4) satisfies the following con-
dition:

lim
t→∞
‖ei(t)‖= lim

t→∞
‖yi(t)− xi(t)‖= 0, i ∈N †. (7)

then the T-S FCDNs (3) are said to achieve synchroniza-
tion.

Lemma 1: IfX ,Y ,Z are real matrices with appropriate
dimensions, then there exists scalars δ > 0, ε > 0 such that
the following inequality holds

(X +Y+Z)T (X +Y+Z)
≤ (1+δ )X TX +(1+δ

−1)(1+ ε)YTY
+(1+δ

−1)(1+ ε
−1)ZTZ. (8)

Proof: The inequality (8) can be derived straightfor-
wardly based on [lemma 2.1, 38] X TY+YTX ≤ δX TX +
δ−1YTY . Hence, the proof is omitted here.

Lemma 2 [31]: Consider the following impulsive dif-
ferential inequalities:

D+V (t)≤ αV (t)+α1{V (t)}τ1 +α2{V (t)}τ2

+ · · ·+αℵ{V (t)}τℵ
, t 6= tk, t ≥ 0,

V (t+k )≤ βkV (t−k )+β
1
k {V (t−k )}τ1 +β

2
k {V (t−k )}τ2

+ · · ·+β
ℵ

k {V (t−k )}τℵ
, k ∈ Z+,

V (t) = ϕ(t), t ∈ [t0− τ, t0],

where α ∈ ℜ, αi ≥ 0, βk ≥ 0, β i
k ≥ 0, τ i ≥ 0 (i = 1, 2,

. . ., ℵ) and the function V (t) ∈ PC(R, R+), {V (t)}τ i =
sup

t−τ i≤s≤t
V (s), {V (tk)}τ i = sup

tk−τ i≤s<tk
V (s). Suppose that

βk +
ℵ

∑
i=1

β
i
k < 1,

α +
∑

ℵ

i=1 αi

βk +∑
ℵ

j=1 β
j

k

+
ln(βk +∑

ℵ

j=1 β
j

k )

tk+1− tk
< 0,

then exist M > 1 and λ > 0 such that

V (t)≤ sup
t0−τ≤s≤t0

V (s)Me−λ (t−t0), t ≥ 0,

where τ = max{τ i, i = 1,2, . . . ,ℵ}.

3. MAIN RESULTS

3.1. Synchronization with FMPIC
In the FMPIC scheme, we assume that the fuzzy impul-

sive controllers share the same premise parts as in (3). That
is to say, the impulsive controller for rule ϑ is designed by
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Plant Rule ϑ : If z1(t) isMϑ1, z2(t) isMϑ2, . . . , zp(t)
isMϑ p,

then

ui(t) =



∞

∑
k=1

[dϑ

1,kei(t−k )+dϑ

2,kei(tk−ζ1(tk))

+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds]δ (t− tk),

i ∈ D†
k and ]D†

k = ∂k,

0, i /∈ D†
k ,

(9)

where dϑ

1,k, dϑ

2,k and dϑ

3,k denote the impulsive control gains
to be designed, δ (·) is the Dirac delta function. ζi(t) is the
impulsive delay of controller, which satisfies ζ

i
≤ ζi(t)≤

ζ i (i = 1, 2), τ = max{τ∗, ζ j} ( j = 1, 2). In addition, we
assume that the impulsive time instant is generated by
using a zero-order hold (ZOH) function with a sequence
of hold times 0 = t0 < t1 < t2 < · · · < tk < · · · , tk → ∞ as
k→ ∞. Moreover, ∂k denotes the number of nodes to be
controlled at impulsive instant tk. The set D†

k is defined as
follows: we can reorder the vector states e1(tk), e2(tk), . . .,
eN(tk) such that ‖e`1(tk)‖ ≥ ‖e`2(tk)‖ ≥ . . .≥ ‖e`∂k(tk)‖ ≥
‖e`(∂k+1)(tk)‖ ≥ . . .≥ ‖e`N(tk)‖ at the impulsive instant tk,
then we have D†

k = {`1, `2, . . ., `∂k} and ]D†
k = ∂k.

Then, the final FMPIC is represented by

ui(tk) =
r

∑
ϑ=1

hϑ (z(tk))(dϑ

1,kei(t−k )+dϑ

2,kei(tk−ζ1(tk))

+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds), i ∈ D†

k . (10)

Thus, we yield the following error system under FMPIC
(10),

dei(t) =
r

∑
s=1

hs(z(t))[Asei(t)+Bsei(t− τ1(t))

+ c1

N

∑
j=1

cs
i je j(t)+ c2

N

∑
j=1

ds
i je j(t− τ2(t))]dt

+
r

∑
s=1

hs(z(t))σ s(ei(t),ei(t− τ3(t)))dw(t),

t 6= tk,

∆ei(tk) =
r

∑
ϑ=1

hϑ (z(tk))[dϑ

1,kei(t−k )+dϑ

2,kei(tk−ζ1(tk))

+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds], i ∈ D†

k ,

ei(t) = ϕi(t), ∀t ∈ [−τ,0].
(11)

Now, with the help of FMPIC and LF approach, Theo-
rems 1-2 can be derived.

Theorem 1: Suppose that Assumption 1 holds, if there
exist positive scalars κ1, κ2, δ , δ such that the following

inequalities hold for all ϑ = 1, 2, . . ., r:

qk = 1+
∂k

N
(qk−1)+(1+δ

−1)(1+δ )d
2
2,k

+(1+δ
−1)(1+δ

−1
)ζ

2
2d

2
3,k < 1,

p+
κ
−1
1 b+ c2κ

−1
2 d +ρ2

qk
+

lnqk

tk+1− tk
< 0, (12)

where qk = (1 + δ )d
2
1,k, d1,k = max

ϑ

{|1 + dϑ

1,k|}, d2,k =

max
ϑ

{|dϑ

2,k|}, d3,k = max
ϑ

{|dϑ

3,k|}, p = a + κ1 + 2c1c +

c2κ2d + ρ1. Then, the stochastic T-S FCDNs (3) can
achieve synchronization under the FMPIC (10).

Proof: Consider the following LF

V (t) =
N

∑
i=1

eT
i (t)ei(t). (13)

First of all, when t = tk, we have

V (tk) =
N

∑
i=1

eT
i (tk)ei(tk)

= ∑
i∈D†

k

eT
i (tk)ei(tk)+ ∑

i/∈D†
k

eT
i (tk)ei(tk)

= ∑
i∈D†

k

{ r

∑
ϑ=1

hϑ (z(tk))[(1+dϑ

1,k)ei(t−k )

+dϑ

2,kei(tk−ζ1(tk))+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds]T

}
×
{ r

∑
ϑ=1

hϑ (z(tk))[(1+dϑ

1,k)ei(t−k )

+dϑ

2,kei(tk−ζ1(tk))+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds]

}
+ ∑

i/∈D†
k

eT
i (t
−
k )ei(t−k ). (14)

Let Xϑ
i,1 = ∑

r
ϑ=1 hϑ (z(tk))(1 + dϑ

1,k)ei(t−k ), Xϑ
i,2 =

∑
r
ϑ=1 hϑ (z(tk))dϑ

2,kei(tk−ζ1(tk)), Xϑ
i,3 = ∑

r
ϑ=1 hϑ (z(tk))dϑ

3,k∫ tk
tk−ζ2(tk)

ei(s)ds.

By using Lemma 1,

∑
i∈D†

k

(Xϑ

i,1 +Xϑ

i,2 +Xϑ

i,3)
T (Xϑ

i,1 +Xϑ

i,2 +Xϑ

i,3)

≤ (1+δ ) ∑
i∈D†

k

{Xϑ

i,1}T{Xϑ

i,1}

+(1+δ
−1)(1+δ ) ∑

i∈D†
k

{Xϑ

i,2}T{Xϑ

i,2}

+(1+δ
−1)(1+δ

−1
) ∑

i∈D†
k

{Xϑ

i,3}T{X `
i,3}, (15)

where

{Xϑ

i,1}T{Xϑ

i,1}
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=
r

∑
ϑ=1

r

∑
`=1

hϑ (z(tk))h`(z(tk))(1+dϑ

1,k)(1+d`
1,k)

× eT
i (t
−
k )ei(t−k )

≤
r

∑
ϑ=1

r

∑
`=1

hϑ (z(tk))h`(z(tk))[(1+dϑ

1,k)
2/2

+(1+d`
1,k)

2/2]eT
i (t
−
k )ei(t−k )

=
r

∑
ϑ=1

hϑ (z(tk))(1+dϑ

1,k)
2eT

i (t
−
k )ei(t−k ),

{Xϑ

i,2}T{Xϑ

i,2}

=
r

∑
ϑ=1

r

∑
`=1

hϑ (z(tk))h`(z(tk))dϑ

2,kd`
2,keT

i (tk−ζ1(tk))

× ei(tk−ζ1(tk))

≤
r

∑
ϑ=1

hϑ (z(tk))(dϑ

2,k)
2eT

i (tk−ζ1(tk))ei(tk−ζ1(tk)),

{Xϑ

i,3}T{Xϑ

i,3}

=
r

∑
ϑ=1

r

∑
`=1

hϑ (z(tk))h`(z(tk))dϑ

3,kd`
3,k

∫ tk

tk−ζ2(tk)
eT

i (s)ds

×
∫ tk

tk−ζ2(tk)
ei(s)ds

≤
r

∑
ϑ=1

hϑ (z(tk))(dϑ

3,k)
2
∫ tk

tk−ζ2(tk)
eT

i (s)ds∫ tk

tk−ζ2(tk)
ei(s)ds

≤
r

∑
ϑ=1

hϑ (z(tk))ζ̄2(dϑ

3,k)
2
∫ tk

tk−ζ2(tk)
eT

i (s)ei(s)ds.

Additionally, since

1
N−∂k

∑
i/∈D†

k

eT
i (t
−
k )ei(t−k )≤

1
N

N

∑
i=1

eT
i (t
−
k )ei(t−k ).

Then, we have

V (tk)≤ ∑
i∈D†

k

[
(1+δ )d

2
1,keT

i (t
−
k )ei(t−k )

+(1+δ
−1)(1+δ )d

2
2,keT

i (tk−ζ1(tk))

× ei(tk−ζ1(tk))+(1+δ
−1)(1+δ

−1
)ζ 2d

2
3,k

×
∫ tk

tk−ζ2(t)
eT

i (s)ei(s)ds
]
+ ∑

i/∈D†
k

eT
i (t
−
k )ei(t−k )

≤[1+ ∂k

N
(qk−1)]

N

∑
i=1

eT
i (t
−
k )ei(t−k )

+(1+δ
−1)(1+δ )d

2
2,k

N

∑
i=1

eT
i (tk−ζ1(tk))

× ei(tk−ζ1(tk))+(1+δ
−1)(1+δ

−1
)ζ 2d

2
3,k

×
N

∑
i=1

∫ tk

tk−ζ2(tk)
eT

i (s)ei(s)ds

≤[1+ ∂k

N
(qk−1)]V (t−k )+(1+δ

−1)(1+δ )

×d
2
2,k{V (t−k )}ζ 1

+(1+δ
−1)(1+δ

−1
)ζ

2
2

×d
2
3,k{V (t−k )}ζ 2

, (16)

where qk = (1 + δ )d
2
1,k, d1,k = max

ϑ

{|1 + dϑ

1,k|}, d2,k =

max
ϑ

{|dϑ

2,k|}, d3,k = max
ϑ

{|dϑ

3,k|}.
Taking mathematical expectations of both sides for the

(17), one has

E{V (tk)} ≤[1+
∂k

N
(qk−1)]E{V (t−k )}

+(1+δ
−1)(1+δ )d

2
2,kE{V (tk)}ζ 1

+(1+δ
−1)(1+δ

−1
)ζ

2
2d

2
3,kE{V (t−k )}ζ 2

.

(17)

On the other hand, when t ∈ [tk−1, tk), the weak infinitesi-
mal operator L of the stochastic process along the evolu-
tion of V (t) yields

LV (t)

= 2
r

∑
s=1

hs(z(t))[
N

∑
i=1

eT
i (t)(Asei(t)

+Bsei(t− τ1(t)))+ c1

N

∑
i=1

N

∑
j=1

eT
i (t)c

s
i je j(t)

+ c2

N

∑
i=1

N

∑
j=1

eT
i (t)d

s
i je j(t− τ2(t))]

+
N

∑
i=1

1
2

trace(
r

∑
s=1

hs(z(t))σ T
s (ei(t),ei(t− τ3(t)))

×2I
r

∑
s=1

hs(z(t))σ s(ei(t),ei(t− τ3(t)))). (18)

In view of Assumption 1 and the condition ∑
r
s=1 hs(z(t)) =

1,

1
2

trace(
r

∑
s=1

hs(z(t))σ T
s (ei(t),ei(t− τ3(t)))2I

×
r

∑
s=1

hs(z(t))σ s(ei(t),ei(t− τ3(t))))

=
1
2

trace(
r

∑
s=1

r

∑
ϑ=1

hs(z(t))hϑ (z(t))2

×σ
T
s (ei(t),ei(t− τ3(t)))σ ϑ (ei(t),ei(t− τ3(t))))

≤ 1
2

trace(
r

∑
s=1

r

∑
ϑ=1

hs(z(t))hϑ (z(t))

× [σ T
s (ei(t),ei(t− τ3(t)))σ s(ei(t),ei(t− τ3(t)))

+σ
T
ϑ (ei(t),ei(t− τ3(t)))σ ϑ (ei(t),ei(t− τ3(t))))])

=
r

∑
s=1

hs(z(t))trace(σ̄ T
s (ei(t),ei(t− τ3(t)))
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× σ̄s(ei(t),ei(t− τ3(t))))

≤
r

∑
s=1

hs(z(t))[ρ1seT
i (t)ei(t)

+ρ2seT
i (t− τ3(t))ei(t− τ3(t))]. (19)

In addition, it is calculated that

2
N

∑
i=1

eT
i (t)Bsei(t− τ1(t))

≤
N

∑
i=1

κ1eT
i (t)ei(t)

+κ
−1
1

N

∑
i=1

eT
i (t− τ1(t))BT

s BseT
i (t− τ1(t))

≤
N

∑
i=1

κ1eT
i (t)ei(t)

+κ
−1
1 b

N

∑
i=1

eT
i (t− τ1(t))eT

i (t− τ1(t)), (20)

2c1

N

∑
i=1

N

∑
j=1

eT
i (t)c

s
i je j(t)

= 2c1

N

∑
i=1

N

∑
j=1

cs
i j

n

∑
`=1

eT
i`(t)e j`(t)

= 2c1

N

∑
i=1

N

∑
j=1

n

∑
`=1

eT
i`(t)c

s
i je j`(t)

= 2c1

n

∑
`=1

(e`(t))TCse`(t)

≤ 2c1c
N

∑
i=1

eT
i (t)ei(t), (21)

and

2c2

N

∑
i=1

N

∑
j=1

eT
i (t)d

s
i je j(t− τ2(t))

≤ 2c2

N

∑
i=1

N

∑
j=1
‖eT

i (t)‖|ds
i j|‖e j(t− τ2(t))‖

≤ c2

N

∑
i=1

N

∑
j=1
|ds

i j|(κ2eT
i (t)ei(t)

+κ
−1
2 eT

j (t− τ2(t))eT
j (t− τ2(t)))

≤ c2κ2d
N

∑
i=1

eT
i (t)ei(t)

+ c2κ
−1
2 d

N

∑
i=1

eT
i (t− τ2(t))eT

i (t− τ2(t)), (22)

where b = max
s
‖Bs‖2, c = max

s
‖Cs‖, d = max

s,i
∑

N
j=1 |ds

i j|,

d = max
s, j

∑
N
i=1 |ds

i j|.
Substituting (20)-(23) into (19), we have

LV (t)≤2
r

∑
s=1

hs(z(t))[
N

∑
i=1

eT
i (t)(Asei(t)

+Bsei(t− τ1(t)))+ c1

N

∑
i=1

N

∑
j=1

eT
i (t)c

s
i je j(t)

+ c2

N

∑
i=1

N

∑
j=1

eT
i (t)d

s
i je j(t− τ2(t))]

+
r

∑
s=1

hs(z(t))[
N

∑
i=1

ρ1eT
i (t)ei(t)

+
N

∑
i=1

ρ2eT
i (t− τ3(t))ei(t− τ3(t))]

≤
r

∑
s=1

hs(z(t))[(a+κ1 +2c1c+ c2κ2d +ρ1)

×
N

∑
i=1

eT
i (t)ei(t)

+κ
−1
1 b

N

∑
i=1

eT
i (t− τ1(t))ei(t− τ1(t))

+ c2κ
−1
2 d

N

∑
i=1

eT
i (t− τ2(t))eT

i (t− τ2(t))

+ρ2

N

∑
i=1

eT
i (t− τ3(t))ei(t− τ3(t))]

≤pV (t)+κ
−1
1 b{V (t)}τ1 + c2κ

−1
2 d{V (t)}τ2

+ρ2{V (t)}τ3 , (23)

where p= a+κ1+2c1c+c2κ2d+ρ1, a=max
s
‖As‖, ρ1 =

max
s

ρ1s, ρ2 = max
s

ρ2s.

Then, based on (24)

E{LV (t)} ≤pE{V (t)}+κ
−1
1 bE{V (t)}τ1

+ c2κ
−1
2 dE{V (t)}τ2 +ρ2E{V (t)}τ3 .

(24)

Therefore, according to (18) and (25), all the conditions of
Lemma 2 are satisfied. This completes the proof. �

Remark 1: Compared with early results studied by [31,
38, 40], the impulsive effects in these references are only
discrete delays. However, in real life, such as financial
markets, fishery industry and population dynamics, we
need to consider distributed-delay dependent impulsive
effects, in which the jumps of systems states of distributed-
delay depend on the accumulation of the system states
over a history time period. Therefore, it is important to
consider the heterogeneous impulsive delays effects in T-S
FDCDNs.

Remark 2: When dϑ

2,k = 0, dϑ

3,k = 0 in controller (9),
the FMPIC approach for the synchronization of stochastic
T-S FDCDNs is reduced to the conventional fuzzy impul-
sive control (FIC) method studied in [32, 34, 36] and the
references therein.

In what follows, a result is presented in the case of free
delayed impulsive effects.
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3.2. Synchronization with FPIC
Now, under the fuzzy pinning impulsive control (FPIC),

we can get the following error system:

dei(t) =
r

∑
s=1

hs(z(t))[Asei(t)+Bsei(t− τ1(t))

+ c1

N

∑
j=1

cs
i je j(t)+ c2

N

∑
j=1

ds
i je j(t− τ2(t))]dt

+
r

∑
s=1

hs(z(t))σ s(ei(t),ei(t− τ3(t)))dw(t),

t 6= tk,

∆ei(tk) =
r

∑
ϑ=1

hϑ (z(tk))dϑ

1,kei(t−k ), i ∈D†
k ,

ei(t) = ϕi(t), ∀t ∈ [−τ,0].
(25)

Theorem 2: Suppose that Assumption 1 holds, if there
exist positive scalars κ1, κ2, such that the following in-
equalities hold for all ϑ = 1, 2, . . ., r:

q̃k = 1+
∂k

N
(qk−1)< 1, (26)

p+
κ
−1
1 b+ c2κ

−1
2 d +ρ2

q̃k
+

lnq̃k

tk+1− tk
< 0, (27)

where p = a+κ1+2c1c+c2κ2d+ρ1. Then, the stochastic
T-S FCDNs (3) can achieve synchronization under the
FPIC.

Proof: Consider the same LF as in (14) for error system
(26).

As analysed in Theorem 1, when t = tk, one has

V (tk) =
N

∑
i=1

eT
i (tk)ei(tk) = ∑

i∈D†
k

eT
i (tk)ei(tk)

+ ∑
i/∈D†

k

eT
i (tk)ei(tk)

= ∑
i∈D†

k

r

∑
ϑ=1

hϑ (z(tk))(1+dϑ

1,k)e
T
i (t
−
k )

×
r

∑
`=1

h`(z(tk))(1+d`
1,k)ei(t−k )

+ ∑
i/∈D†

k

eT
i (t
−
k )ei(t−k )

≤ ∑
i∈D†

k

r

∑
ϑ=1

hϑ (z(tk))(1+dϑ

1,k)
2eT

i (t
−
k )ei(t−k )

+ ∑
i/∈D†

k

eT
i (t
−
k )ei(t−k )

=
r

∑
ϑ=1

hϑ (z(tk))(1+dϑ

1,k)
2

N

∑
i=1

eT
i (t
−
k )ei(t−k )

+(1−d
2
1,k) ∑

i/∈D†
k

eT
i (t
−
k )ei(t−k )

Fig. 1. Chaotic behavior of the Lorenz system (30).

≤[1+ ∂k

N
(qk−1)]V (t−k ), (28)

where qk = d
2
1,k, d1,k = max

ϑ

{|1+dϑ

1,k|}.
Next, with the same lines as in proof of the Theorem 1, we
have Theorem 2 immediately. This concludes the proof.�

Remark 3: With the help of the LF, inequality tech-
niques and SATs, the PS criteria of stochastic T-S FD-
CDNs are presented. Different from the existing works in
the literature such as [33, 36, 37], the DCDNs with hetero-
geneous impulsive delays of this paper are composed of
stochastic disturbance and T-S fuzzy model, which make
the addressed model general and practical.

4. NUMERICAL SIMULATION

In this section, a numerical example is given to illustrate
the effectiveness of the derived results.

Consider the delayed Lorenz system as the node dynam-
ics, which is described by

ẋ1(t) =−10x1(t)+10x2(t− τ1(t)),

ẋ2(t) = 28x1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)− (8/3)x3(t− τ1(t)),

(29)

where τ1(t) = 1/6. Fig. 1 depicts the chaotic behavior of
the delayed Lorenz system with the initial value (x1(t),
x2(t), x3(t))T = (1, 0.7, 0.5)T . Now, the system (30) can
be represented by a T-S fuzzy model:

Rule 1: IF x1(t) is h1(x1(t)), THEN

ẋ(t) =A1x(t)+B1x(t− τ1(t)).

Rule 2: IF x1(t) is h2(x1(t)), THEN

ẋ(t) =A2x(t)+B2x(t− τ1(t)),

where x(t) = (x1(t), x2(t), x3(t))T . The membership func-
tions for rules 1 and 2 are given as h1(x1(t)) = (1 +
x1(t)/d)/2, h2(x1(t)) = 1−h1(x1(t)) with d = 20, and

A1 =

−10 0 0
28 −1 −d
0 d 0

 , A2 =

−10 0 0
28 −1 −d
0 −d 0

 ,
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B1 = B2 =

0 10 0
0 0 0
0 0 −8/3

 .
Next, consider the following T-S fuzzy error system with

N = 30 under FMPIC (10),

dei(t) =
2

∑
s=1

hs(x1(t))[Asei(t)+Bsei(t− τ1(t))

+ c1

30

∑
j=1

cs
i je j(t)+ c2

30

∑
j=1

ds
i je j(t− τ2(t))]dt

+
2

∑
s=1

hs(x1(t))σ s(ei(t),ei(t− τ3(t)))dw(t),

t 6= tk,

∆ei(tk) =
2

∑
ϑ=1

hϑ (x1(tk))
[
dϑ

1,kei(t−k )

+dϑ

2,kei(tk−ζ1(tk))

+dϑ

3,k

∫ tk

tk−ζ2(tk)
ei(s)ds

]
, i ∈ D†

k ,

ei(t) = ϕi(t), ∀t ∈ [−τ,0].
(30)

where c1 = c2 = 0.01, σ s(ei(t), ei(t − τ3(t))) = 0.1 ∗
diag(ei1(t), ei2(t), ei3(t − τ3(t))), τ2(t) = 0.015, τ3(t) =
0.01, ζ1(t) = 0.5∗ |sin(t)|, ζ2(t) = 0.1∗ tanh(t). Thus we
have ζ̄2 = 0.1 and ρ1s = ρ2s = 0.01. In addition, in the ex-
ample, the delayed and non-delayed topological structure
is given as a BA scale-free network with m0 = 3, m = 3 and
N = 30. When we consider the other parameters δ = 0.5,
δ = 1, κ1 = 15, κ2 = 1.5, the number of pinning node ∂k =
16 and the length of the interval tk+1− tk = 0.01(k ∈ Z+),
by using the Theorem 1, we can compute the impulsive
control gains d̄1,k = d̄2,k = d̄3,k = 0.1(k ∈Z+) which satisfy
the conditions (12)-(13).

Specially, when we choose d1
1,k = −1.1, d2

1,k = −0.9,
d1

2,k = 0.1, d2
2,k = 0.05, d1

3,k = −0.1, d2
3,k = −0.08. Under

the random initial condition, the corresponding simulation
results can be seen in Fig. 2, which show the trajectories
of the synchronization errors ei1(t), ei2(t), and ei3(t), i = 1,
2, . . ., 30. It is verified that the FDCDNs (31) can achieve
synchronization.

5. CONCLUSION

This paper considered a general class of stochastic T-
S FDCDNs with heterogeneous impulsive delays effects.
Different from the existing works, we proposed an FMPIC
approach. In order to overcome the difficulties of studying
such a general system, sufficient conditions that depend on
the discrete-delay and distributed-delay impulsive effects
were obtained by employing the LF, inequality techniques
and SATs. It is shown that the PS of FDCDNs can be

Fig. 2. Trajectories of the synchronization errors ei1(t),
ei2(t) and ei3(t) (i = 1, 2, ..., 30) under FMPIC.

achieved by using the designed FMPIC. Finally, numerical
simulation on basis of BA scale-free coupled network is
used to show the effectiveness of the theoretical results.
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