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Classification of Hand Gestures Based on Multi-channel EMG by Scale
Average Wavelet Transform and Convolutional Neural Network

Do-Chang Oh*{> and Yong-Un Jo

Abstract: Predicting and accurately classifying intentions for human hand gestures can be used not only for ac-
tive prosthetic hands, rehabilitation robots, and entertainment robots but also for artificial intelligence robots in
general. In this paper, first of all, source data of three hand gestures of grasping and three hand gestures of sign
language are acquired by using the armband combined with eight SEMG (surface Electromyography) sensors. To
classify these hand gestures, basically simple CNN (convolutional neural network) models with raw data, short-time
Fourier transform (STFT), wavelet transform (WT), and scale average wavelet transform (SAWT) are applied, and
their performances are compared. Finally, it is shown that by using a CNN with SAWT images, the accuracy can
be improved up to 94.6% for selected hand gestures with higher accuracy and lower computational burden than

conventional multi-channel STFT or WT.
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1. INTRODUCTION

Robotics and artificial intelligence can be leveraged to
increase the autonomy of people living with disabilities.
This is accomplished, in part, by enabling users to seam-
lessly interact with robots to complete their daily tasks
with increased independence [1].

Electromyography (EMG)-based techniques have been
used to recognize hand gestures and estimate finger mo-
tion for various things such as non-verbal communication
with sign language and gesture based interfaces. They are
also very useful in assisting with system control [2]. EMG
signal is a biosignal with several potential applications,
including diagnosis of neuromuscular diseases, control of
systems such as prosthetics, robots, entertainment devices.
The use of the EMG signal with efficient recognition of
hand gestures can help develop a direct machine inter-
face, making it possible to increase the autonomy of peo-
ple with special needs [3-5].

The relationship between EMG signals and body move-
ments has not been established completely, though it is
known that the signals have a high correlation to body
movements. For data acquisition of EMG signals related
to upper limb movements, a surface EMG (sEMG) sensor
is typically used on a person’s forearm. In particular, Myo-
armband (Thalmic Labs Inc.) is a commercially available
sensor device that has often been used to predict human
hand gestures [1-4, 6, 7]. Many studies are mainly aimed

at rehabilitation of paralyzed patients and prosthetic assis-
tance of amputation patients. Therefore, it is necessary to
make the feature extraction and classification of the user’s
EMG signals obtained through the Myo-armband.

In recent years, studies on increasing accuracy and real-
time performance for hand gesture prediction and con-
trol have been actively conducted with the introduction of
machine learning and deep learning [1-11]. In [3], Fon-
seca et al. aimed at recognizing the hand gestures pat-
tern motivated by human-robot interaction. They used the
artificial neural network (ANN) with pre-processing for
the feature extraction. Asai et al. [2] showed the results
of classifying four hand gestures using the convolutional
neural network (CNN) with wavelet transform input data,
including an automatic labeling system. In [4], Na et al.
showed the CNN (AlexNet) based on spectrograms has a
higher classification accuracy than the support vector ma-
chine (SVM). Batzianoulis et al. proposed an EMG-based
learning approach that decodes the grasping intention at
an early stage of reach-to-grasp motion [5]. Atzori et al.
tested their proposed deep learning methods for natural
control of robotic hands via sSEMG using a large number
of intact subjects and amputees [8].

On the other hand, deep learning with a recurrent CNN
model was used for EMG-based estimation of limb move-
ment [9]. The end-to-end deep learning derived from the
time-frequency representation of EMG signals was pro-
posed for identifying normal and aggressive actions [10].
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Although the structure is complicated, the transfer learn-
ing augmented CNN scheme has been shown to enhance
three networks’ performance on the two datasets [1]. In
the previous work [11], a CNN model with two convolu-
tional layers and two fully connected layers was directly
constructed through function and parameter settings. Five
hand gestures were predicted using the SEMG input data
and the CNN model.

Deep learning is a branch of the artificial neural net-
work. It has a unique hierarchical structure and the abil-
ity to extract high-level features. Deep learning networks
have been used widely in several applications, such as
medical diagnoses, biomedical signal classifications, and
speech and fault diagnosis [12—15]. On the other hand, to
extract the feature, frequency domain signals using the
Fourier transform and time-domain signals were used.
Since deep learning deals efficiently with images, scien-
tists have resorted to transforming signals into visual rep-
resentations based on time-frequency representation.

Time-frequency can disclose characteristic signal pat-
terns. It is also a powerful tool for characterizing medical
signals [1,2,4,9, 10, 12-18]. Two linear time-frequency
transformations are utilized on EMG signals as image in-
puts to the CNN architecture: the short-time Fourier trans-
form (STFT) spectrogram and the wavelet transform (WT)
scalogram. These types of images are another form of raw
signal feature representation [10].

The spectrogram images were used to train a CNN
for some medical identifying of diagnoses such as auto-
matic atrial fibrillation detection, arrhythmia, sleep disor-
der, motor impairment neural disorder, and clinical brain
death using time-frequency images of biosignal (ECG,
EEG, and EMG) [4, 9, 10, 13-15]. In addition, research
has been conducted to classify various human behaviors
using wavelet transformed scalogram image data and deep
learning [1,2, 10, 16-18].

In this paper, source data of three hand gestures of
grasping and three hand gestures of sign language are
acquired using the armband combined with eight SEMG
sensors. To classify these hand gestures, basic simple
CNN models with raw data, STFT, WT, and scale aver-
age wavelet transform (SAWT) are applied, and their per-
formances are compared. As a result, it is shown that by
using the newly proposed SAWT in this paper, the accu-
racy can be improved up to 94.6% for selected hand ges-
tures with a lower computational burden than conventional
multi-channel STFT [4] or WT [2].

2. MAIN RESULTS

2.1. Hand gesture data processing

To receive signals from the SEMG sensor and classify
the shape of hand gestures, we selected the hand ges-
tures that are most commonly formed to express human
intent or hold objects. Hand gesture selection can be done

Fist Pinch Card

(a) Hand gestures of grasping.

Ok Victory Good
-—
R —
(b) Hand gestures of expression.

Fig. 1. Selected hand gestures for grasping or intention ex-
pression.

in a variety of experimental ways, but here, as shown in
Fig. 1, six representative hand gestures to grasp objects
or to express human intention have been chosen as “fist”,
“pinch”, “card”, “ok”, “victory”, and “good”. There can
be many issues depending on the area of use, including
how many different hand gestures are classified, or how
precisely classified, or how quickly classified. In the case
of the active prosthetic hand, which can reflect the per-
son’s intention, it can be expected to play some necessary
roles in the three hand gestures of grasping and the three
hand gestures of expression.

EMG signals show some variability depending on the
subject and environment, but most of the rehabilitation
control devices using intention signals from EMG signals,
such as prosthetic hands and wearable robots, are custom-
made and need to be adjusted for one user. Here, by learn-
ing and testing from the three subjects’ data, classification
accuracy is improved and analyzed using the proposed
CNN classifier. Therefore, when receiving data using the
Myo armband in Fig. 1, the subject starts with their fin-
gers spread and performs the six selected gestures. Also,
it is performed 200 times per one gesture, 1200 times in
total. When one operation is taken once, 50-200 samples
are taken at intervals of 2 seconds and used as one dataset
of CNN (sampling frequency 5 Hz-125 Hz).

2.2. Scale average wavelet transform and CNN

The deep learning network has been considered in a
number of applications as a form of end-to-end learning
wherein feature extraction, pre-processing, and classifica-
tion are conducted directly. There are various classifica-
tion methods such as SVM (support vector machine), hid-
den Markov models, and the neural network for hand mo-
tion recognition and estimation. Since feature extraction
generally dominates classification performance, identify-
ing appropriate features is essential for successful classifi-
cation. Fig. 2 compares the source image (raw data) with
the image of STFT (short-time Fourier transform) and WT
(wavelet transform) for the fist gesture in Fig. 2. Here, the
horizontal axis is time (sample sequence), and the vertical
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Fig. 2. Comparison the source with STFT and WT.

axis is EMG amplitude (a), frequency (b), and scale (c),
respectively.

Time-domain features such as EMG, EMG integration,
mean, and variance have been used to capture stationary
conditions of EMG activity, and time-frequency domain
features by STFT and wavelet transform have been used
to capture transient conditions. We use CNN as a classi-
fier to estimate hand gestures from EMG signals. CNN is
a kind of multi-layer neural network that shows success-
ful results in image classification, classification for EMG
signal is treated as a 2D image recognition problem. The
2D images obtained by the wavelet transform of EMG sig-
nals are input data of CNN. The structure of CNN is based
on 2-hidden layers and 2-fully connected layers, as shown
in Fig. 3. To improve system performance, various tech-
niques such as Relu activation function, Xavier initializa-
tion function, and dropout were applied. In Fig. 3, CNN
inputs are shown as EMG raw image data and wavelet
transform image data, and they are explained in detail
later.

sEMG signals were processed using continuous-time
wavelet transform (CTWT). CTWT is a time-frequency
analysis method that quantifies temporal changes in the
frequency content of non-stationary signals without losing
resolution in time or frequency [17]. CTWT of the input
signal x(¢) is defined as the inner product,

W (a,b) = [ ix(t)w;b(z)dt, a0, (1)

where the basis function v, ; () is the mother wavelet, fea-

Conv & Relu

tured by scale and translation parameters (time shifting),
a and b, respectively.

Vap(t) = %w (t_ab) : 2

W.5(t) is obtained by the mother wavelet function y(¢) at
time b and scale a. In terms of frequency, the multiresolu-
tion analysis provides the global information of the signal
corresponding with low frequencies and the detailed in-
formation associated with high frequencies.

In discrete-time wavelet transform (DTWT), a signal is
analyzed with a small number of scales with varying trans-
lations at each scale. A critical sampling of the CTWT
W (a,b) is obtained by substituting a by j and b by k in
(2), where j and k are integers representing the scale and
translation. Upon this substitution, y; «(¢) is a discrete set

Wixlt) = %w(%) 3)

of child wavelets for a given mother wavelet y(z). The
term critical sampling is used to ensure that a minimum
number of wavelet coefficients are retained to represent
all the information present in the original function. The

integral with 7 can be replaced with the formula of discrete
sum; thus, DTWT is

Z . n—k

e J

) “

In CTWT, transform coefficients are found for every
(a,b) combination, whereas in DTWT, transform coeffi-
cients are found only at very few points.

Fig. 4 shows wavelet scalograms according to the
change of scale parameter for 8-channel data of the fist
hand gesture.

The horizontal axis represents 200 samples for 2 sec-
onds as a shift parameter, and the vertical axis represents
the scale change as a frequency variation. The smaller the
scale value, the higher the time resolution and the lower
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Fig. 3. The structure of CNN with EMG image data.
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Fig. 4. Wavelet scalogram for fist hand gesture.
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Fig. 5. SAWT on scalogram (red line graph).

the frequency resolution, and vice versa. In addition, we
have further enhanced the feature by averaging the scalo-
gram values according to scale value change to make the
features of the image more prominent.

If the number of scale and input sequences is J and N,
the scale average wavelet transform (SAWT) is defined as
follows:

n—k
J

1 &S
k) sawr = j Z Z )s (5)
where k (k =0, 1, 2, ..., N — 1) is the time shifting param-
eter, j is the j-th scale parameter (j =1, 2, ..., J) and n
n=0,1,2, .., N—1)is the sequence number of mother
function and input, and these parameters are all integers.

In Fig. 5, the average value (red line graph) of scalo-
gram data from j =1 to j =200 (J = 200) is plotted on
the scalogram for the fist gesture. Hereafter, this averaged
method is referred to as the Scale Average Wavelet Trans-
form (SAWT). In Fig. 6, it shows the formation of one
frame image consisting of §-channel image data generated
by SAWT.

Fig. 7 shows graphs of scalograms with scale values
f/2 and 2f, and SAWT up to 2f, respectively, while re-
peating the fist operation twice for 4 seconds, where f
is the sampling frequency (100 Hz). Also, the reason for
choosing two channels of ch. 5 and ch. 6 is because it is

WT
W‘"’M‘W > m Average

50 5 00 125 150 175 200

Y

Fig. 6. 8-channel image data generated by SAWT.

ozs | —Ch5 —Ch6

S 301 351 1

(c) J = 2f , SAWT

Fig. 7. Wavelet transform with scale f/2 and 2f, and
SAWT up to 2f.

possible to compare which channel is more active for a
certain gesture and classify gestures from the result of the
feature.

When the scale is relatively small f/2, the first graph
exhibits detailed motion, whereas the overall trend is dif-
ficult to see. In the case of 2 f with a large scale, the overall
trend is easy to see but includes detailed noise. Therefore,
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Fig. 8. Difference between ch.5 and ch.6 in WT and
SAWT.

in the last graph, WT data is averaged over the scale axis
so that the trend and detail are properly included.

Also, as shown in Fig. 8, when the average value of a
scalogram is used, it is easy to distinguish between chan-
nel 5 which is relatively active and channel 6, which is not
activated from the difference of the SAWT between two
channels.

3. EXPERIMENTAL RESULTS

3.1.

In the experiment, SAWT was performed using the
“Morlet” mother function, the upper bounds of scale value
are selected as f/2, f, 2f, and 4f, where f is the EMG
sampling frequency from 25 Hz to 125 Hz. Since human
hand gesture signal has a very low frequency band, the
sampling frequency of EMG signal reaches up to 150 Hz
or less. Here, sampled the EMG signals were obtained be-
low 125 Hz considering the band frequency and overfitting
of CNN. Therefore, the scale value can be minimum (2.5,
5, 10, 20) to maximum (62.5, 125, 250, 500). The x-axis
is the sampling frequency and the y-axis represents deep
learning test accuracy (%). In Fig. 9, Original is EMG raw
data without WT, and J = f/2, f, 2f, and 4f are accuracy
data obtained by applying SAWT to each upper bound of

Sampling frequency and scale bound of SAWT

100%
90%
80% -
70%
60%
50% -
40%
30%
20% -
10%
0%

Test Accuracy

20

25
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scale value.

At all sampling frequencies in Fig. 9, accuracy was the
lowest for scale J = f/2 and the highest for J = 2. Also,
Since sampling frequency is high, and the number of data
increases, test accuracy tends to increase to a certain level
and fall again. The highest accuracy of the original is 86%
at 25 Hz, 81.3% at 50Hz for J = f/2, 94% at 100 Hz for
J =2f, and 93.4% at 100 Hz for J=4f. As a result, for all
frequencies, SAWT with J = 2f shows higher test accu-
racy than other scale value bound cases. When the scale
value bound is 2 f, and the sampling frequency is 100Hz,
the highest test accuracy of 94% is obtained.

The confusion matrix showing the accuracy of the out-
put class estimated for the target class is shown in Fig. 10.
Note that if the target is “victory”, it may be wrongly rec-
ognized as an image of “ok” or “card”. Especially, the
“victory” was frequently seen as “ok”.

3.2.  CNN performances with different input images

Data were collected from one female and two males un-
der the same conditions (electrode position, arm position,
posture). All the subjects performed 200 times per one
gesture at 100Hz sampling rate, and STFT, WT, SAWT
(J = 200) are obtained by using raw data received from
8ch Myo-armband, and four types of input images are
composed in a time domain and time-frequency domain.
Similar to the methods of [2] and [4], the raw data, STFT,
and WT data are each made of one corresponding input
image, completed in the form of a 2x4 block matrix us-
ing eight images of each channel. In the case of SAWT,
input image size is greatly reduced because the scale aver-
age is calculated for each channel [2,4]. Of course, this is
an advantage in reducing the computational burden of the
system, and as the number of channels decreases, the size
of input data can be further reduced.

Four types of input images for deep learning are ob-
tained from three subjects. Using the proposed CNN
model, 83% (200 sets) of each subject’s data is trained
and the remaining 17% (40 sets) is tested. Table 1 shows
the test accuracy(%) when CNN models with four dif-

& 8
8 8 & .
8 Original (raw data)
| )=f/2, SAWT
m J=f, SAWT
| )=2f, SAWT
W )=4f, SAWT
50 100 125

Sampling Frequency (Hz)

Fig. 9. CNN test accuracy at all sampling frequencies.
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Train Confusion Matrix

Table 1. Test accuracy(%) for three subjects.

L| 200 0 0 0 0 0 100%
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o | e oo o T (I tl.OIl. The maximum accuracy was 94.6% (EMG sensor is
8% 0% 4% 0% 2% 22% 6% different from Myo-armband) [10]

1 2 3 4 5 6
Target Class

Fig. 10. SAWT up to 2f confusion matrix.

ferent input images were applied to three subjects (A,
B, and C). STFT includes cases with four different win-
dow lengths and overlap lengths (window length—overlap
length in Table 1 and Fig. 11, and WT includes three dif-
ferent widths (scales) range. Fig. 11 graphically shows the
test average accuracy. As a result, when compared with
raw data (89.44%), STFT (92.5%), and WT (92.1%), the
CNN model with SAWT (J =200) input image showed
the highest average accuracy of 93.89% (the maximum ac-
curacy is 94.6%).

EMG input image to CNN mainly uses STFT and WT
in the time-frequency domain rather than using raw data
in the time domain. In the case of using STFT, large input
data and complex network model are used, but the accu-
racy result for ten kinds of gesture classification is good
at 94% [4]. Literature [2] shows the results of classifying
four hand gestures with 83% accuracy using WT data, in-
cluding an automatic labeling system. On the other hand,

This paper focuses on showing the superiority of
SAWT. Notably, the CNN approach using the SAWT pre-
sented in this paper has higher accuracy with less data size
than the three cases of raw data, STFT data, and conven-
tional WT under the same experimental condi-tions. How-
ever, as in many pieces of literature, experimental condi-
tions may vary, such as the number and shape of gestures,
the type and size of input data, the number of subjects,
and SEMG sensors. Therefore, it is difficult to compare
the results with previous studies directly.

In Fig. 12, all data from the three subjects are learned
and the test accuracy of each subject is shown for the CNN
with SAWT (J = 200) image.

In single-user applications, such as personal prosthe-
ses or wearable robots, learning from many subjects’ data
may yield higher or lower test accuracy than the individual
subjects, even though it depends on the subject. However,
when the proposed method is applied to a multi-user robot,
the overall test accuracy should be high, and the deviation
of the individual accuracy be small. In future research, it is
necessary to experiment, analyze, and improve with more
subjects to expand the application of the CNN algorithm
or increase verification reliability.
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Fig. 12. CNN test accuracy for all subjects training and
individual testing with SAWT image.

4. CONCLUSION

Source data of three hand gestures of grasping and three
hand gestures of expression were acquired by using the
armband combined with eight SEMG sensors. To clas-
sify these hand gestures, raw data, WT, and SAWT (scale
average wavelet transform) images were applied, and a
basic deep learning classifier CNN was used. In conclu-
sion, it was demonstrated that by using a CNN with the
newly proposed SAWT, the accuracy could be improved
to 94.6% for selected hand gestures with higher accuracy
and lower computational burden than conventional multi-
channel STFT or WT.

Human EMG data collected in real-time according to
the user’s environment is not stable. Therefore, in the
future, we will study hand gestures classification based
on real-time collected data and SAWT, and also define
human work schedules and study classification of hand
movements based on them. Furthermore, we need to study
whether deep learning classifiers can learn more people’s
data to find and classify features in specific hand gestures
from each EMG signal.
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