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Maximum Likelihood Iterative Algorithm for Hammerstein Systems with

Hard Nonlinearities

Yan Pu, Yongqing Yang*(® , and Jing Chen

Abstract: In this paper, we consider several iterative algorithms for Hammerstein systems with hard nonlinearities.
The Hammerstein system is first simplified as a polynomial identification model through the key term separation
technique, and then the parameters are estimated by using the maximum likelihood (ML) based gradient-based
iterative algorithm. Furthermore, an ML least squares auxiliary variable algorithm and an ML bias compensation
gradient-based iterative algorithm are developed to identify the saturation system with colored noise. Simulation
results are included to illustrate the effectiveness of the proposed algorithms.
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1. INTRODUCTION

Nonlinear system modeling widely exists in system
identification and has attracted a lot of attention in recent
years [1, 2], inlcuding bilinear systems [3, 4]. The well-
known nonlinear systems include the Hammerstein model
which is composed of a static nonlinear part followed by
a linear time invariant (LTI) part, and the Wiener model
is composed of a LTI part followed by a static nonlinear
part [5, 6]. They are already widely used in the field of
applications ranging from system modeling to chemical
processes. Nonlinearities can be roughly divided into two
types: the hard nonlinearity and the polynomial nonlinear-
ity. Compared with the polynomial nonlinearity, the hard
nonlinearity has various kinds of structures, which leads
to the difficulties to choose a general model structure to
represent data from the hard nonlinear system [7, 8]. The
saturation nonlinearity, one kind of hard nonlinearity, is
often encountered in engineer practice, and there exist lots
of controller design methods for systems with saturation
nonlinearity [9, 10]. Notice that a robust controller always
has the assumption that the parameters of the nonlinear
systems should be known in advance. However, there are
a few literatures on parameter identification of hard non-
linear systems [11]. The focus of this paper is to develop
some identification algorithms for such nonlinear systems
with different kinds of noises.

The existing estimation algorithms for nonlinear sys-
tems include the recursive algorithms [12], the iterative

algorithms [13] and the multi-innovation identification
methods [14]. Among these algorithms, the ML algorithm
has many optimal properties such as sufficiency, efficiency
and consistency [15], which makes the ML algorithm be
used widely in nonlinear system identification [16]. The
idea of the ML algorithm is that a likelihood function can
be constructed based on the input-output data and param-
eters, and then the estimators can be obtained by maxi-
mizing the likelihood functions. For instance, Schon and
Wills provided a maximum likelihood method for nonlin-
ear state-space systems [17], Vanbeylen proposed blind
maximum likelihood methods for Hammerstein systems
and Wiener systems [18, 19].

In this paper, some maximum likelihood based iter-
ative algorithms are proposed to identify the Hammer-
stein saturation systems with white and colored noises.
First, the complex Hammerstein saturation system is sim-
plified by utilizing the key term separation technique.
Then a maximum likelihood gradient-based iterative (ML-
GI) algorithm is presented to identify the Hammerstein
system with white noise. Furthermore, a maximum like-
lihood based least squares auxiliary variable algorithm
(ML-LSAV) algorithm and a maximum likelihood bias
compensation gradient-based iterative (ML-BCGI) algo-
rithm are developed for this nonlinear system with colored
noises. Compared with the ML-LSAV algorithm, the ML-
BCGI algorithm can get the unbiased parameters of the
Hammerstein saturation system with colored noise.

Briefly, the rest of this paper is organized as follows:
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Section 2 introduces a Hammerstein system with satura-
tion nonlinearity. The ML gradient-based iterative algo-
rithm is developed in Section 3. Section 4 discusses two
different algorithms for the saturation system with colored
noise, and the numerical examples are illustrated in Sec-
tion 5. Finally, conclusions are drawn to summarize this
paper in Section 6.

2. PROBLEM FORMULATION

The Hammerstein system which has saturation nonlin-
earity is shown in Fig. 1, and is written by

C(&)y(7) = D(&)x(7) +v(1),
(1) = n(u(7)),

in which {u(7)} and {%(7)} are the input and output se-
quence of the nonlinear part, and {u(7)} is taken as a
persistent excitation signal sequence with zero mean and
unit variance, the output sequence of the system is {y(7)},
and {v(7)} is a white noise sequence with zero mean,
C (Z_f ) and D({) are polynomials in the shift operator { !

[£~'y(t) =y(t—1)] and
C)=1+c18 "+l P+ +en ™, (1
D) =14+di{ "+l 2+ +d, (T @)

The nonlinear part 1(u(7)) is shown in Fig. 2, and %(7)
can be expressed as

hla M(T) = r
(1) =n(u(r)) = {s(u(r)), —r<u(r)<rn, )
hy, u(’c) < —r,
v(T) i

@ [0 20 Jag ¥(7)

Fig. 1. The Hammerstein system.
X

h

Fig. 2. The saturation Hammerstein system.

where s(u(7)) = iu(T) + Bl (z) + - + Y (2), by =
NWr 4+t R by = (=) Fp(=r)? o+
Y (=P)", "1, 12, -+, Y, are the coefficients of the polyno-
mial, —r, r (r > 0) are the saturation points.

A switching function & (-) is employed as follows:

1, ifu(r) <0,

Sl = {0, if u(t) > 0, @)

and then () can be expressed as

X(t) =hi&[r+u(t)] + h&[r—u(t)]
+s[u(T)E[—r —u(7)]E[—r+u(t)]
=[pr+pr+-+ %" lr—u()]

=+ n=r)? 4+ (=)
% &[u(T) +r] + [nu(t) + pu(T) + -
+ Yt ()16 [—u(T) — r]&[—r+u(7)]
=nr(§[—u(t)+r+ (=D&[r+u(7)]) + pr’
x (E[-u(t) +r]+ (= 1)5[ (1) +r]) +--
+ %" (Elr —u(T)] + (=1)"E[r +u(7)])
+ [11u(t) + 11 (T) + -+ " (7))
x &[—u(t) —r|&lu(t) — 1]

n

+ Y 1) Efu(r) +1]

=

=i1y,~rf5 r—u(7)

+ i yiu! ()€ [—u(t) — r|&[u(t) — 7]

j=1
n
=L i
j=1

where f;(7) = &[r — u(t)] + (~1)J&[r+u(z)], i = 1, 2,
-,n)and g(7) = E[—u(t) — r]&[u(t) — r]. The equivalent
form of the Hammerstein system can be written by
y(7) =[1 =C(&)ly(7) +x(7)
+[D(S) — 1]x(7) +v(7). (©)

Substituting ¥(7) in (5) into (6) gives an analytic model

7))+ Zy,u! (5)

y(t)=— iciy(f —i)+x(7)+ idif(r —i)+v(7)

ne

:—Zc,y —1 —i—Zyjr fi(T

+ Z Y (1)g(T) + Zdii(r —i)4v(t). (7)

Let 0 be the parameter vector and ¢ () be the information
vector

. 2 n
yCnes N s
T n
7’)/rlvdlad27"'7dnd] ERO’

9: [Cl;C27"'

’y]”}/27...
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ng :=ne+ng +2n,

(P(T) = [—y(r— 1) (T 2) ) y(T nc)
fl(T)va( )7 7fn( ) (T)g(T)
W (1)g(7), -, u" (7)g (1), (T 1), -,

#(t—ng)]" € R™.

Then the Hammerstein system with saturation nonlinear-
ity can be expressed as a simple form

¥(7) = 0(7)"'6 +v(1). ®

3. THE ML ITERATIVE ESTIMATION
ALGORITHM

Given the data sets yy := {y(1), y(2), ---, ¥(N)}
and uy := {u(1), u(2,--- ,u(N))}, and v(7) is uncorre-
lated with u(i), y(i) for i < 7, the likelihood function
L(yn|un—1,0) is equal to the joint conditional probability
density function P(yy|uy—1,0), which can be expressed as

L(yn|un—1,0) = P(yn|un—1,6)
N ne 4
-11 p(—;c,-y(r—i)-l—f(r)+;dii(r—i)+v(r)
3132, 3T = Dsu(1), - u(z=1),0).
S - —_—

where [ is a constant. The ML estimate is obtained by
maximizing the likelihood function, i.e.,

Oy = argmax L(yy|un—1,0).
0

Define the logarithm of L(yy|uy—1) as

l(yN\uN — 1, 9) = IHL(yN|llN -1 6)

N
—1nl—§1n27r—§1 nc ——Zv (10)

Letting the derivative of the log-likelihood function equal
to zero gives

3Z(YL|“N71,9)

do? =0,

62

whose solution is given by

A2 1 i 2
6 —NZv(r). (11)

Substituting (11) into (10) gives

N 1Y,
I(ywluy—1,0) =ki — = In— Y (1), (12)
2 N&

where k; =1Inl — % In27w — % The maximum value of (12)
can be achieved by minimizing the following cost function

N
J(6) = % PRECI (13)

The vector form of (13) can be written as

A 1
J(0) = E(YN —HN0)'(Yy —H\0)

éML7
in which Hy := [@(1), ¢(2), ---, ¢(N)] € R™*N and
Vi = (1)@, (V)] ERY.

The parameter estimate 6 by using the ML gradient-
based iterative (ML-GI) algorithm is as follows:

ék ék 1—&grad[ (kal)}

=bi 1+ Yy — (B ) 0]
=1y (A6 Ay Yy, (14)

where L is the convergence factor. In fact, in order to en-

sure the convergence of the parameter Oy, all the eigen-
. A Ak—1 .

values of the matrix [/ — [,LkH N (H ~ )] should be in the

unit circle, which means the value of L satisfies 0 < ;. <

2wl By ()Y

Since the unknown parameters ¥, 2, ---, %, r and in-
ner variables X(7 — i) are contained in the information vec-
tor @(7) , the parameter estimate 6 cannot be directly ob-
tained by the gradient-based iterative algorithm in (14).
The solution for this problem is to replace the unknown
variables with their estimates by using the iterative estima-
tion technique. The unknown variables are replaced with

their estimates. Define

PN (1) = [yt = 1), =y(t=2),+ ,—y(T—n),
A (0, (), A (),
(1)@ (1), (1)g 1 (1),
( )8 (1), K (7= 1), B (1-2),
X (t—ng)]" € R™,

ng :=ne+ng +2n,
~k—1

HN = [¢k71(1)7¢k71(2)7"' a(pkil(N)]'

Replacing the unknown parameters i, 5, - -
. . . ak—1 ok—1 ~—1

(5) with their estimates §*', 5~", .-, 9

the estimator % () can be computed by

, %, and r in
and 7_1, then

n

B =37

=

rk 1fk 1 i Ak I(T).
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Thus the ML-GI identification algorithm can be summa-
rized as follows:

Or = Oy + ey Yy — (Hy ' )0i], (15)

Yy =[(1),52), -y, (16)

By =1651(1,651(2) 9 (V) (17)

(1) =[—y(r—1),—y(t=2),--- ,—y(t—nc),
A0, A7 (), B (D),

(T)g ](T)vuz(f)gk_l(r)f" )
u'(1)g " (z )fk i(r=1),
(T =2), G (t—na)]", (18)

a

+Zn:ﬂ~‘_luj(r)gk‘l(r), (19)
j=1
te < 2{ A [Hy ()T (20)

Remark 1: The Hammerstein saturation system in this
section contains Gaussian white noise. However, we may
encounter colored noise models in some practical prob-
lems. Then the identification of Hammerstein saturation
systems with colored noise will be discussed in the next
section.

The flowchart of calculating the estimate 6 in the ML-
GI algorithm for the Hammerstein saturation nonlinear
system is presented in Fig. 3.

4. HAMMERSTEIN SATURATION SYSTEM
WITH COLORED NOISE

In this section, some identification methods for the
Hammerstein saturation system with colored noise are
proposed. Consider the system

v(7), 21

where G({) :=1+g18 " +g28 2+ +g,,{ ", the def-
inition of C(&),D(&) and the saturation nonlinearity part
are mentioned in Section 2.

By utilizing the key term separation technique, the non-
linear system can be transformed as

— ic,-y(r — l) + Z 'erjfj(f)
i=1 j=1
+Zg,

14

—+ Zdi.f(f — l)

+i7ju’(f T—i)+v(1). (22)
j=1

Let ¥ and y(7) be the parameter vector and informa-

tion vector, respectively,

R 2 n
V= [617627"' 7cn[.a71"772r ol SN Yy

( Start: set the data length N )

‘ Initialize: k =1 ‘

l

Collect y(t) and u(7), 1=1,2,--- 7N‘

l

‘ Form Yy ‘

|

‘ Compute %1 ()

]

‘ Form ¢, ,(t) and A}y ' ‘

I

‘ Choose ‘

l

‘ Update 0 ‘

‘ Obtain the estimate vector 9k ‘

!

( o )

Fig. 3. The flowchart of the ML-GI algorithm for .

7n7d17d27"'7dnd7glag27"'7gng]T7 (23)
ny = n;+ng+ng+2n,
W(T) = [_y(T_l)a_ (T 2)7 7—y(T—}’lc)7

S1(2), fa(2), - fa(7),u(T)g(T),

uz(f)g(f) - u'(7)g(7),x(1—1),
(T 2) (T_nd)av(f_l)a
WE=2), () ERY.  (4)

Then, the system can be written as
¥() = ¥ ()9 +v(x). (25)

4.1. The maximum likelihood least squares auxiliary
variable algorithm
Case 1: Define the stacked information matrix ¥(N)(
N is the data length), the stacked noise vector V(N) and
the stacked output vector Y (N) as

Y(N) :=[y(1),5(2), ,y(N)]" € R,
P(N) = [w(1),y(2),-, w(N)] € R™,
V(N) = [v(1),v(2),--- ,»(N)]" € R".

The vector form of the model (25) can be written by

Y(N) =¥ (N)9 +V(N). (26)
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The cost function is
J(%) = %[Y(N) —¥(N)S][Y (N) —¥'(N)9].

Letting the derivative of the cost function equal to zero
gives

aJ (v

oI _y,

2% |

Then, the parameter estimate is

B = [¥(N)¥'(N)]""¥(N)Y (N). (27)

However, the information vector y(T) contains the
noise v(T — i), which means that y(7) is relevant to v(7).
So that E{[¥(N)¥"(N)]""W(N)V(N)} # 0. Then

E(d) = E{[¥(N)¥"(N)] "¢(N)Y (N)}
=E{[¥(N)¥" (V)] "¢(N)[Z(N)" 9 +V(N)]}
= O+ E{[¥(N)¥'(N)] " (N)V(N)}
# 0. (28)
Thus the parameter estimate of ¥ is biased. To overcome

this problem, let w(t) = D(z)v(7), and define the informa-
tion vector ¥\, (¢) and the vector 9,, as

By = [01,02,"'7CnL,771r772r2,"',}’nr",
Y%, Y disday e dy )T €R™,
v,(1) == [—y(t— 1), —y(t—2),"-+,—y(T—n),
J1(2), (), fu(T),u(7)g(7),
W (1)g(7), - u"(v)g(7), %(T— 1),
X(t=2), -, x(t—ny)]" € R™,
Y(N) = [y(1),(2),-- ,y(N)]" € RY,
P (N) = [, (1), ¥,,(2), -, v, (N)] € R,
W(N) := [w(1),w(2),--- ,w(N)]" € RY,
where w(t) = v() + 51, g (7 ).

Then, the system (22) can be written as

4

y(t)=— ic,-y(r —i)+x(t)+ Z’dif(r —i)+w(T)
=y, (7) 0 +w(T), (29)
where

Blw(r)] = E[v(z) + égivm—

N+ Y gEl(T-i]=0.  (0)
i=1

w(t)=v(t)+gv(t—1)+gv(t—2)+
+gngv(’t*ng),
w(t—1)=v(t—1)+gv(t—2)+gv(t—3)+

+gnyv(f_ 1 _ng)7
W(T_])]#Q (31)

covw(1),

which means w(7) is a colored noise.
The vector form of the model (29) can be expressed as
Y(N) =W, (N)D,, +W(N),
where E{[¥,,(N)¥,,(N)] ¥, (N)W(N)} # 0. Then we
can get E(D,) # ¥, that is to say, the estimate ©,, of
¥ is still biased.

Case 2: The key to solve the problem in Case 1 is to
construct the auxiliary variable information vector which
is irrelevant with the noise vector. The maximum likeli-
hood based least squares auxiliary variable (ML-LSAV)
algorithm is proposed in this section.

Define the auxiliary variable information vector y,(7)
to replace y,,(7) in (29) as

V(1) =[u(t—1),u(t=2), - u(t—n),
fi(7), fa(t )7"'7fn(7)au( )&(7),
(0)g(7), -, u"(7)g(7),

X(t—1),x (r—2),~~-,x(r—nd)]TeR”°.

Remark 2: The auxiliary variable information vector
yi(7) is constructed by using the irrelevant variables
u(t —i) to replace the output y(7 — i) in the w-information
vecter ¥, (7).

Define the new stacked information matrix ¥},(N) as

Wi (N) =y (1), v (2), -, Wi(N)| € RMXN
where B, := [c1, €2, <+, Cus s Yo o s s o,
s Yoo di, da, -+, dn,|" € R™. The vector form of the

model can be written as Y (N) = ¥}/ (N)9,,+ W (N). Then
we get the estimate O, = [ (N)¥! (N)] "W (N)Y (N).
Since the auxiliary variable information vector is irrele-
vant with the noise vector, the expectation

E{[¥], (V) 2, (N)] "W, (N)W (N)} = 0. (32)
We get the expectation of the estimate D as

E(D,,) =E{[¥},(N)¥},(N)] ¥, (V)Y (N)}
=E{[¥},(N)¥,,(N)]""¥, (V)
X [P, (N) B +W(N)]}
= +E{[¥,, (N) ¥}, (N)] ", (N)W (N)}
=0,

which means that 13:1 is unbiased.

Remark 3: Although the ML-LSAV algorithm can get
the unbiased estimates of ¢y,¢2,: -+ ,¢,, and dy,d, -+ ,d,,,
it cannot estimate the parameters of the colored noise

81,82, 18n,-



2884 Yan Pu, Yongging Yang, and Jing Chen

4.2. Maximum likelihood bias compensation gradient-
based iterative algorithm

To overcome the limitation of the ML-LSAV algorithm,
a maximum likelihood bias compensation gradient-based
iterative (ML-BCGI) algorithm is developed to identify
all the parameter estimates of the nonlinear system with
colored noise. Since the unmeasurable noise variables
v(T — i) are contained in the information vector y(7), the
unknown noise variables can be replaced by their esti-
mates in the information vector. Let ¥(7) and {(7) denote
the estimates of v(7) and y(7) at time 7, respectively. Let
D « be the iterative estimate of ¢ at iteration k, and comput-
ing the estimates of v;(7) by using the parameter estimate
at iteration k — 1 gets

(7)) = ¥(7) —

The estimate of © using the maximum likelihood
gradient-based iterative algorithm is as follows:

Vi ()01, T=1,2,--- N

S =0 — %gfﬂd[f(ﬁk—l)]

=B 1+ P (V)Y (N) = (N) D]
:{Skfl‘f'.uklilkfl(N)[lPT(N) lPk [(N)]®
+ e (NV(N), (33)

where p; > 0 is the convergence factor. Let ¢, = '13;c -
and ¢;_; = ¥4_1 — ¥. From Equation (33), we have

e =21 + P (N )li’ 1(N)éx—1
—Htk‘i’k (N ) (N),
=1 — WY (N) T (V)2
+ w1 (N)V(N), (34)

where I € R™*" is the identity matrix.

From (34), the estimate Uy in (33) is biased. The idea
of the ML-BCGI algorithm is to compensate the bias
w1 (N)V(N) of the estimate ¥ into the gradient-
based iterative algorithm, and B can be expressed as

D =D 1+ e 1 (N)[Y (V) — ‘i‘Ll (N) i1

— [.Lk\i'k_1 (N)Vk_l (N)

Then, the estimate of the ML-BCGI algorithm is unbiased.
Furthermore, the parameters of the colored noise can also
be estimated.

In summary, the ML-BCGTI algorithm for the Hammer-
stein system with colored noise can be expressed as

S = Ot — Wit (N)V i1 (N) + e

X W (V)Y (N) =W () Dy, (35)
Y(N)=[y(1),5(2),- 7y(N)] (36)
Vit (N) = [Be1 (1), 9%-1(2),-+ e (V)] (37

‘ijk—l(N):w/kfl(l)aﬁ/k—l(z)v“'7il\lk—1(N)]7 (38)
V(o) =[—v(t—1),—y(t=2), -, —y(T—nc),
Alk_l(T)7 Z(_I(T)f" 7fr]f_l(r)a
(1)@ (1), (1)g (1),
u"(7) g (1), K1 (t - 1),
)?k,l(r—Z) ,xk,l(’c }’ld)
\’/’\kfl(f 1) Vi 1(T 2)
B (T—ng)l", (39)
Bea(r) =Y 77 A 7 (T)
j=1
+ Z 7l (1) (v), (40)
=1
Deo1(7) = y(1) — Wiy (1) Decrs 41
{9/(71 _[C]{ ! Cg 1,"'761};(__]7 1_]rkf17
7/2( lrkfl""’%:(_lrzflﬁ/lc_l
,/2(—1 7/’(—1 dllc—l d12(—1 . dk 1
g1{—17g1£—1’.“’gﬁ;1]77 (42)
e < 2{Aama Wi 1 (N) P (N} (43)

Remark 4: The ML-BCGI algorithm can not only es-
timate the parameters cy, ¢z, -+, Cne, d1, da, -+, dyg, but
also obtain the parameters g1, g2, - -, gng» Which means
that it is more effective than the ML-LSAV algorithm.

Remark 5: The ML-BCGI algorithm has heavy com-
putation efforts. We can use the stochastic average gradi-
ent algorithm to reduce the computation burden and keep
the convergence rate unchanged in our future research.

Remark 6: Compared with the traditional LS and GI
algorithms, both the ML-LSAV and the ML-BCGI algo-
rithms proposed in this paper can obtain the unbiased pa-
rameter estimates. The proposed algorithm in this paper
can combine other recursive schemes [20-22], the parti-
cle filtering algorithms [23,24], and the iterative schemes
[25] to study the identification problems other linear and
nonlinear systems [26—30].

The implementation of the ML-BCGI algorithm in-
volves the following steps.

1) Let k = 1, %(t) = 1/po, B9 = 1/po with 1 being a
column vector whose entries are all unity and py = 10°.

2)Lett=1,y(t) =0,u(1)
positive number €.

3) Collect the input-output data (7) and y(7), and form
Y(N) by (36).

4) Compute X;_1(7) by (40) and ¥;_1(7) by (41), T =1,
2,---,N.Form V,_{(N) by (37).

5) Form §,_,(t) by 39), t=1,2, ---,
by (38). Choose L according to (43).

6) Update the parameter estimate f?k by (35).

7) Compare {9k with 1A9k_1, if the value is less than or

=0, 7 <0, and give a small

N. Form ¥, '
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( Start: set the data length N )

I

Initialize: k =1

!

Collect u(7) and y(7), 7 =1,2,--- \N

I

Form Y (N)
|
(

Compute /4'(7) and g (1)

k:=k+1

Compute %;_;(7) and (1)

I

i
Form V;_;(N)

!

Form ¥, () and ‘i’f{]

!

Choose

I

Update By

No

Yes

Obtain the estimation vector 1.A9,C

( D

Fig. 4. The flowchart of the ML-BCGI algorithm for 9.

equal to &, then obtain the ) « and terminate the procedure;
otherwise, let k = k+ 1 and go to Step 4.

The flowchart of calculating the parameter estimate By
in the ML-BCGI algorithm for the Hammerstein satura-
tion nonlinear system is presented in Fig. 4.

5. NUMERICAL EXAMPLES

Example 1: Consider the following Hammerstein sys-
tem with saturation nonlinearities:
D(¢) 1
¥(7) = =5 %(7) + == v(9),
c(&) c(&)
the saturation nonlinearities are shown in Fig. 2 with r =
0.4, =038, =-0.5,and 5 = 0.95, and

0
0 100 200 300 400 500 600 700 800
k

Fig. 5. The estimation errors & versus k of Example 1.

C({)=1+ciz ' =1+0.65",
D({)=do+diz =140.02377",
(1) = nu(t) +pu*(7) + pu’(7)

= 0.80u(7) — 0.50u*(7) +0.954° (1),
0 = [c1,d1,B1, B2, 71, 12, B3
Bi=—nr+npr’—mpr,
B = ylr—H/zrz + }/21’3

¢(7) = (r—1),x(z—1),8(r+u(1)),&(r - u(1)),
u(T)6 (—r—u(7))§(=r+u(1)),
u(v)?E(—r —u(t))€ (u(t) — 1),
u(7)*E(—r —u(t)E(~r+u(7))]".

The input {u(7)} is taken as a persistent excitation sig-
nal sequence and satisfies N(0, 1), and {v(7)} is taken as
a white noise sequence and satisfies N(0,0.12). Table 1
lists the numerical results of the Hammerstein system with
saturation nonlinearities. The parameter estimation errors
5:=/6—0]|/||6|| are shown in Fig. 5.

Example 2: Consider the Hammerstein system pro-
posed in Example 1 with colored noise:

10) = G0+ o)
G)=1+g1z'=1+0.707"",

w(t) =0.70v(t— 1) +v(1),

B, = [c1,d, B, B, 1 1, 13,81

v, (1) =D(r—1),x(t—1),8(u(7) +r),§(r—u(1)),
u(t)&(—r—u(7))&(—r+u(r)),
u(t)*&(—u(t) — )& (u(t) —r),

u() & (—r—u(7)& (—r+u(1)),v(z—1)]".

The input {u(7)} and {v(7)} are the same as those in
Example 1. Applying the traditional LS algorithm and
the ML-LSAV algorithm to identify the parameters of the
Hammerstein saturation system with colored noise, the pa-
rameter estimates and their errors are shown in Table 2.
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Table 1. The Hammerstein system with saturation nonlinearities based ML-GI algorithm estimates and errors.

k 4 d, Bi " j2) 4 3(%)
10 0.53710 -0.64422 -0.40545 0.25225 0.89985 0.91658 0.99029 99.26874
90 0.63087 -0.10716 -0.46148 0.29853 0.77206 0.39264 0.97708 56.91015
180 0.64987 0.01579 -0.46019 0.29995 0.77628 0.03292 0.97632 33.65879
270 0.65303 0.03384 -0.45998 0.30018 0.77888 -0.18557 0.97551 19.93603
360 0.65316 0.03266 -0.46000 0.30016 0.78036 -0.31959 0.97471 11.55901
450 0.65283 0.02914 -0.46005 0.30012 0.78127 -0.40213 0.97394 6.47230
540 0.65253 0.02630 -0.46009 0.30008 0.78185 -0.45304 0.97320 3.50328
630 0.65231 0.02437 -0.46012 0.30005 0.78223 -0.48448 0.97248 2.06142
720 0.65217 0.02313 -0.46014 0.30003 0.78250 -0.50389 097177 1.78378
True values 0.65000 0.02300 -0.46080 0.30080 0.80000 -0.50000 0.95000

Table 2. The Hammerstein saturation system with colored noise based LS and ML-LSAV algorithm estimates and errors.

k ci d, B B N e e 0(%)
2 0.70588 -0.08667 -0.46238 0.29878 0.78882 -0.51251 0.97608 8.00021
LS 4 0.70670 -0.08602 -0.46243 0.29873 0.78885 -0.51301 0.97587 7.98827
20 0.70672 -0.08600 -0.46243 0.29873 0.78885 -0.51303 0.97587 7.98797
2 0.64957 0.02300 -0.46237 0.29878 0.78881 -0.51248 0.97601 1.95645
ML-LSAV 4 0.65033 0.02282 -0.46243 0.29873 0.78884 -0.51299 0.97580 1.95850
20 0.65033 0.02282 -0.46243 0.29873 0.78884 -0.51300 0.97580 1.95853
True values 0.65000 0.02300 -0.46080 0.30080 0.80000 -0.50000 0.95000

Table 3. The Hammerstein saturation system with colored noise based GI algorithm estimates and errors.

k i d, B B " j2) ¥ 81 0(%)
10 0.64022 -0.63714 -0.05252 0.28206 0.92393 0.94303 0.99270 0.99897 96.33431
90 0.61356 -0.52717 -0.46057 0.29830 0.78405 0.54962 0.97965 0.98906 70.38676
180 0.62094 -0.40320 -0.46010 0.29876 0.78252 0.23208 0.98030 0.97854 51.47935
270 0.62654 -0.30827 -0.45969 0.29916 0.78530 0.00833 0.98156 0.96840 38.32828
360 0.63084 -0.23523 -0.45935 0.29950 0.78737 -0.14921 0.98288 0.95854 29.29608
450 0.63413 -0.17885 -0.45907 0.29978 0.78883 -0.26003 0.98423 0.94892 23.19423
540 0.63668 -0.13520 -0.45885 0.30000 0.78984 -0.33791 0.98560 0.93947 19.13919
630 0.63865 -0.10132 -0.45867 0.30018 0.79054 -0.39259 0.98698 0.93018 16.46585
720 0.64018 -0.07495 -0.45853 0.30031 0.79100 -0.43094 0.98837 0.92101 14.68384
True values 0.65000 0.02300 -0.46080 0.30080 0.80000 -0.50000 0.95000 0.70000

Applying the GI algorithm and the ML-BCGI algorithm
to identify the parameters of this system, the parameter
estimates and their errors are shown in Tables 3 and 4, and
the parameter estimation errors & := |7, — 9% ||/||0%]]
are shown in Figs. 6 and 7.

From Tables 2-4 and Figs. 6-7, we can get the following
conclusions:

1) The ML-LSAV algorithm can get the unbiased system
parameters cy, ¢2, -*-, ¢n, and dy, da, -+, d,,, but it
cannot estimate the parameters of the colored noise g,
g21 Y gﬂg .

2) The ML-BCGI algorithm can get the unbiased estimate

of the Hammerstein system with colored noise.
3) Although the ML-LSAV algorithm has heavy compu-
tational burden, it can get the estimate quickly.

4) Comparing with the traditional LS and GI algorithms,
the proposed algorithms are more effective.

6. CONCLUSIONS

In this paper, some identification algorithms are pro-
posed for Hammerstein saturation systems with white
noise and colored noise. The ML-GI algorithm is intro-
duced for the Hammerstein systems with white noise. For
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Table 4. The Hammerstein saturation system with colored noise based ML-BCGI algorithm estimates and errors.

k i d Bi B h je) v 81 6(%)
10 0.62766 -0.14471 | -0.45009 0.30053 0.91672 0.93370 0.99196 0.99590 | 85.26650
90 0.63630 -0.06327 | -0.45719 0.30089 0.78474 0.48721 0.97865 0.96013 | 59.10552
180 0.64156 -0.01329 | -0.45692 0.30118 0.78551 0.14309 0.97833 0.92158 | 39.31867
270 0.64430 0.01172 -0.45677 0.30134 0.78813 -0.08797 0.97832 0.88436 | 26.09624
360 0.64561 0.02279 -0.45669 0.30141 0.78990 -0.24327 0.97830 0.84837 17.18695
450 0.64614 0.02645 -0.45667 0.30143 0.79110 -0.34776 0.97829 0.81356 11.08946
540 0.64627 0.02641 -0.45667 0.30143 0.79192 -0.41816 0.97826 0.77987 6.81799
630 0.64621 0.02477 -0.45668 0.30141 0.79248 -0.46565 0.97822 0.74728 3.78162
720 0.64606 0.02259 -0.45670 0.30138 0.79288 -0.49774 0.97816 0.71573 1.93714
True values | 0.65000 0.02300 -0.46080 0.30080 0.80000 -0.50000 | 0.95000 0.70000
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