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Irregular Depth Tiles: Automatically Generated Data Used for Network-
based Robotic Grasping in 2D Dense Clutter
Da-Wit Kim, HyunJun Jo, and Jae-Bok Song* �

Abstract: Recent advances in deep learning have enabled robots to grasp objects even in complex environments.
However, a large amount of data is required to train the deep-learning network, which leads to a high cost in
acquiring the learning data owing to the use of an actual robot or simulator. This paper presents a new form of grasp
data that can be generated automatically to minimize the data-collection cost. The depth image is converted into
simplified grasp data called an irregular depth tile that can be used to estimate the optimal grasp pose. Additionally,
we propose a new grasping algorithm that employs different methods according to the amount of free space in the
bounding box of the target object. This algorithm exhibited a significantly higher success rate than the existing
grasping methods in grasping experiments in complex environments.
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1. INTRODUCTION

Robot arms, which were previously able to perform
only certain tasks in confined spaces, can now organize
items in boxes in home environments and sort objects that
are irregularly placed at industrial sites. This is due to
the development of deep-learning technology that enables
machines to learn rules that are difficult to define by hu-
mans through data learning. In particular, deep learning-
based algorithms exhibit excellent performance in vari-
ous fields such as object recognition and text recognition
[1]. Additionally, deep learning has been used to perform
robotic grasping. Although grasping is the most basic task
of manipulation, it is a difficult problem to define clearly,
because contact with real objects is required. Therefore,
studies are being actively conducted to enable robots to
grasp objects using deep learning.

Deep learning-based robotic grasping can be catego-
rized into two groups. The first involves grasping an object
in a stable pose appropriate for the application [2, 3]. Rec-
ognizing and grasping the handle of a kettle to pour water
into a cup corresponds to this group. The second involves
grasping an object in a complex environment [4, 5]. Three-
dimensional (3D) bin picking, which is a representative
problem of robotic grasping, corresponds to this group. In
a complex environment, estimating the grasp pose requires
a large amount of data because several variables must be

considered, such as the shape of the target object and po-
sitions and number of surrounding obstacles.

Most high-performance deep learning-based grasping
algorithms use a large amount of data to train the network
[6, 7]. However, because it is difficult to collect such a
large amount of data, determining what data to use is crit-
ical. In one study based on supervised learning, the grasp-
ing quality was measured using a network trained with
grasp data collected with a simulator [7]. This method has
a high grasping success rate. However, it is difficult to col-
lect additional data for training, because millions of data
must be collected using the CAD models in a simulator.
In contrast, in one study based on reinforcement learning,
the network was trained by constructing a virtual environ-
ment in a simulator [8]. However, the training results for
the simulator were not identical to the real-world results,
owing to the differences between the two environments.

The novelty of the present work lies in the proposal of a
method for transforming a depth image into the optimized
data for grasping, as shown in Fig. 1(a), and a method for
generating data automatically to reduce the data collec-
tion cost. Because the optimized data are used, the net-
work structure for estimating the grasp pose is simple,
and the data are clearly distinguishable according to the
situation. Additionally, because the data have regularity,
the network can learn the rules and determine quickly and
accurately. Since this processing needs to know the area
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Fig. 1. (a) Process of grasping an object in dense clutter;
(b) comparison of our grasping method and the
principal component analysis (PCA)-based grasp-
ing method.

of the object on the RGB image, the pre-trained Mask R-
CNN model was used [9]. In the subsequent explanations,
it is assumed that an object mask is obtained using the
Mask R-CNN scheme. Fig. 1(b) presents the grasp poses
estimated in an actual complex environment. As shown,
the grasp poses estimated using the proposed method did
not cause interference with surrounding obstacles.

The remainder of this paper is organized as follows:
Section 2 describes how the depth image is transformed
into the optimized grasp data, and Section 3 describes
how the training data are generated automatically and how
the optimal grasp angle is estimated. Section 4 describes
the overall grasping algorithm, and Section 5 presents the
verification of the performance of the proposed grasping
method in a complex environment. Finally, conclusions
are drawn in Section 6.

2. IRREGULAR AVERAGE FILTERS

In the previous deep learning-based robotic grasping
method developed in our laboratory, the depth image was
converted into a simple form to solve the problem with a
large amount of data [10]. In the corresponding work, the
modified average filter (MAF) shown in Fig. 2 was pro-
posed. The MAF divides the depth image of the object
and its surroundings into several areas and replaces the
pixel values of each area with the average pixel value of
the area. All areas are then resized to 20×20 pixels. The
depth image simplified by the MAF is called a “depth tile”
because it is similar to a tile.

In this study, an irregular average filter (IAF) is pro-

Fig. 2. Concept of modified average filtering.

Fig. 3. Concept of irregular average filtering.

posed, which is an advanced form of the MAF. It trans-
forms a depth image into a simple but grasp-optimized
form. Fig. 3 describes the operation of the IAF. The depth
image is divided into 17 areas from ‘a’ to ‘q’ with an ob-
ject at the center, and the pixel values of each area are
replaced by the average pixel values of the area. Then, re-
sizing is performed such that each area has a constant size.
The depth image processed by the IAF is similar to depth
tiles that are irregular in shape; thus, it is denoted as the
“irregular depth tile” (IDT) herein. Because the IDT is di-
vided into a larger number of sections than the depth tile,
the environment around the object can be described more
elaborately.

3. GRASP POSE ESTIMATION MODEL

A grasp pose estimation model (GPEM) is proposed to
estimate the optimal grasp angle. The network architecture
is shown in Fig. 4. Two pairs of convolutional and pooling
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Fig. 4. GPEM (grasp pose estimation model).

Fig. 5. Typical IDTs according to the grasp angle.

Table 1. List of angles.

Index Angle (◦) Index Angle (◦)
1 −67.5 5 22.5
2 −45 6 45
3 −22.5 7 67.5
4 0 8 90

layers extract features from the depth image and estimate
the optimal grasp angle through the fully connected lay-
ers. The grasp angle is between −90◦ and 90◦ because the
gripper is symmetrical.

The GPEM requires an IDT as an input and the grasp
angle as an output for training. Although it is possible to
randomly generate IDTs and label the grasp angles in an
obstacle-free direction one-by-one, this method takes con-
siderable time and effort. Therefore, in the present study,
the training data were automatically generated by setting
the grasp angle first and creating an IDT having no ob-
stacles in that direction. Fig. 5 shows the typical IDTs ac-
cording to the eight different grasp angles defined in Ta-
ble 1. The angle was set at 22.5◦ intervals because this
interval was suitable for clearly distinguishing the area of
the IDT. As shown in Fig. 5, an IDT can be classified into
an obstacle area, non-obstacle area, and object area. Nu-
merous combinations of obstacle and non-obstacle areas
are possible for each grasp angle, and all the combinations
are automatically generated for training. Fig. 6 shows ex-
amples of some cases.

Fig. 7 shows the procedure of automated data genera-

Fig. 6. Examples of possible IDTs.

Fig. 7. Procedure of automated data generation.

tion. First, one angle is selected randomly from the eight
angles in Table 1. Then, one case is selected by consid-
ering various combinations. After the angle and case are
selected, the pixel values are specified according to the
obstacle and non-obstacle areas. The pixel values of the
obstacle area are 50–100 smaller than those of the non-
obstacle area because the obstacle has smaller depth val-
ues than the non-obstacle area. Additionally, the depth val-
ues of the object area are set randomly to generate the data
for objects of various heights.

The automatically generated data having pairs of IDTs
and optimal grasp angles can be used for training. In
this study, 90000 IDTs were generated, and the hyper-
parameters for training were set as shown in Table 2.

The following mean squared error (MSE) was used as
the loss function for training, and the RMSprop algorithm
was used as the optimizer [11].

L =
1
n ∑(ŷ− y)2, (1)

where n is the number of data, ŷ is the predicted output of
the neural network, and y is the label representing the cor-
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Table 2. Hyper-parameters.

Parameter Value
Learning rate 0.01

Epoch 30
Steps per epoch 2000

Batch size 1000

rect answer. The reason for using the MSE as a loss func-
tion is that the network estimates a single value that can
be compared with the label directly. It took approximately
5 min to complete the training with the aforementioned
settings (using GTX 1080 Ti).

4. GRASPING ALGORITHM

The bounding box, which is obtained as a result of ob-
ject segmentation, is composed of a target object area and
free space, as shown in Fig. 8. If the amount of free space
is large, there may be obstacles as well as an object inside
the bounding box. Therefore, in this study, the free-space
ratio of the object was derived through the following pro-
cess. First, the major axis of the object mask was found
using principal component analysis (PCA) [12]. In PCA,
the major axis corresponds to the longest axis of the object
mask. To obtain a bounding box that fits the object, the ob-
ject mask was rotated so that the major axis was aligned
with the vertical axis. Then, the free-space ratio r f was
defined as

r f =
Abox −Aob j

Abox
×100 (%), (2)

where Abox and Aob j represent the areas of the bounding
box and the object, respectively. Note that the area is com-
puted using the number of pixels of the mask.

In this study, the situations are classified into two cases
based on r f = 30%. The first case (r f < 30%) is shown in
Fig. 9. In this case, because there is insufficient free space
in the bounding box, the bounding box itself is consid-
ered as the object area corresponding to h in Fig. 3. Then,

Fig. 8. Bounding box and object.

Fig. 9. Grasp pose estimation (free-space ratio < 30%).

Fig. 10. Procedure of area division.

applying the IAF to the bounding box creates the corre-
sponding IDT, which is given as an input to the GPEM.

In the second case (r f > 30%), there may be obstacles
other than the object inside the bounding box because of
the sufficient free space. Therefore, it is necessary to esti-
mate the grasp pose more elaborately by dividing the ob-
ject. In this case, the object area is divided into several
subareas along the major axis as shown in Fig. 10. The
subareas that fit the object area can be obtained by cutting
the object mask along the major axis. Note that the grasp
success rate increases when the grasp pose lies along the
minor axis of the object. Therefore, after the angle of the
major axis is determined via PCA, the image is rotated
such that the major axis is vertical. The number of subar-
eas in the rotated mask is obtained by

s = round(Nma jor/Ndiv), (3)

where s represents the number of subareas (s = 6 in Fig.
10), Nma jor is the maximum number of pixels of the ma-
jor axis, and Ndiv is the number of vertical pixels of the
subarea (Ndiv = 30 in this study), which happens to be the
height of the subarea. The width of the subarea is the dif-
ference between the maximum and minimum positions in
the x-axis for preventing the object from coming out of the
bounding box and being recognized as an obstacle. The
IAF is then applied to each of the subareas, as described
in Section 2. Note that each subarea corresponds to the
area h in Fig. 3.

Because the object is divided into several subareas,
a criterion is needed to determine which of the esti-
mated grasp poses will be the most stable. To this end,
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Fig. 11. Object area and environment area.

a grasping-quality (GQ) function is defined such that a
larger GQ value leads to a higher grasping success rate.
That is, the GQ function increases as the depth differ-
ence between the object and the environment increases,
and the grasp position is located near the center of the ob-
ject. Therefore, the GQ function well reflects the charac-
teristics of humans grasping objects stably.

Suppose that the object area is divided into n subareas,
as shown in Fig. 11. The depth difference d(i) for subarea
i is defined as

∆d(i) = denv(i)−dob j(i), (4)

where denv(i) represents the average of the depth of the
area outside subarea i, and dob j(i) represents the average
of the depth of subarea i. The depth difference of (4) is
usually positive because the distance is measured from the
camera. Then, the GQ function of subarea i is defined as

GQ(i) =

{
∆d(i) if 1 < i < n,

r×∆d(i) if i = 1 or n,
, (5)

where r is the discount factor for the edge areas which
ranges between 0 and 1. If the robot grasps the edge of the
object, it may fail to grasp the object firmly, owing to the
weight of the object. Thus, the discount factor is used to
account for the disadvantage in such a case. In this study,
by setting r to 0.9, a certain subarea can be selected if it
has a larger depth difference than other subareas, even if it
is an edge area. Through this process, the robot performs
grasping in the subarea having the maximum GQ. Fig. 12
shows the procedure of dividing the object area and per-
forming grasping. The application of the IAF to the di-
vided subareas creates n IDTs. The GPEM estimates the
optimal grasp angle by taking each IDT as an input, and
the best grasp angle with the highest GQ value is selected
through the GQ function evaluation.

5. EXPERIMENTS

To verify the performance of the IDT-based grasping
algorithm, experiments were performed in which a robot
emptied a workbench where objects were placed close to-
gether. In the first experiment, only objects with a small
free-space ratio were used, as shown in Fig. 13(b). In the

Fig. 12. Grasp pose estimation (free-space ratio r f ≥
30%).

Fig. 13. (a) Experimental set-up, (b) test objects with free-
space ratios (r f ) less than 30%, and (c) test objects
with various free-space ratios.

second experiment, objects with both small and large free-
space ratios were mixed together, as shown in Fig. 13(c).
RealSense D435, an RGB-D camera manufactured by In-
tel, was used to acquire the RGB images of the objects,
and UR5 was used as a robot arm to perform grasping,
as shown in Fig. 13(a). In each experiment, the robot at-
tempted to grasp five randomly chosen objects, and a total
of 20 experiments were conducted. The five objects were
placed close to each other in a ransom arrangement, and
the objects that were grasped successfully were removed
from the workbench.

In both experiments, three grasp pose estimation meth-
ods were compared; the PCA-based method, the MAF-
based method, and the proposed IDT-based method. In the
PCA-based method, PCA was applied to the object mask
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Table 3. Experimental results.

Object name Success rate
IDT-based MAF-based PCA-based

Brown brick 100 90 70
Sprite 90 80 60
Apple 100 100 60

Baseball 100 100 70
Plum 100 100 80

Red block 90 70 70
Board eraser 100 90 70
Tomato soup 90 70 70
Green box 90 90 80

Yellow duckie 90 80 60
Spoon 90 60 30

Banana 90 40 10
Dumbbell 100 40 30

Clamp 100 50 30

obtained through Mask R-CNN and the robot grasped the
center of the object in the direction of its minor axis. In the
MAF-based method, modified average filtering was ap-
plied to the depth image and the grasp pose was estimated
from the processed image [10]. In the first experiment con-
sisting of 100 trials involving objects with a small free-
space ratio, the IDT-based method succeeded 95 times,
while the PCA-based and MAF-based methods succeeded
69 times and 87 times, respectively. In the second experi-
ment consisting of 100 trials involving objects with small
and large free-space ratios, the IDT-based method suc-
ceeded 96 times, while the PCA-based and MAF-based
methods succeeded 51 times and 72 times, respectively.
Table 3 lists the grasping success rate for each object. As
indicated by the results, the IDT-based grasping was far
more successful than the PCA-based grasping and MAF-
based grasping for all the objects. For the objects with a
large free-space ratio (i.e., the spoon, banana, dumbbell,
and clamp), the difference in performance was particularly
large.

Fig. 14 shows the results of the IDT-based and MAF-
based grasp pose estimation. In the IDT-based method,
more accurate grasping was possible because the scheme
considered the free-space ratio of the object. On the
contrary, in the MAF-based method, inappropriate grasp
poses were estimated for objects such as banana and
clamp since the space within the object was not consid-
ered.

6. CONCLUSION

An IDT-based grasping method for complex environ-
ments was proposed. The depth image is converted into
simplified grasp data using the proposed IAF, and the data
for various situations can be automatically generated to

Fig. 14. Results of (a) IDT-based method and (b) MAF-
based method.

reduce the time and cost for data collection. Additionally,
elaborate grasping is possible owing to area division and
the GQ function. For objects having small free space, the
95% success rate of the IDT-based method was far bet-
ter than the 69% success rate of the PCA-based method.
Additionally, when objects having small free space were
mixed with objects having large free space, the 96% suc-
cess rate of the IDT-based method was significantly bet-
ter than the 51% success rate of the PCA-based method.
The results indicate that the IDT-based grasping method
achieves robust performance by considering the free space
of the target object and the depth difference of the sur-
rounding environment. In the future, the proposed ap-
proach will be extended to 3D cluttered environments to
solve the 3D bin picking problem.
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