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Stabilization of Enforced Positive Switched Linear Systems with Bounded
Controls
Jinjin Liu �

Abstract: This paper is concerned with the controller synthesis issue for enforced positive switched linear systems
via output feedback. First, the stabilization problem is studied with output feedback under average dwell time
switching signal, and the controllers we proposed guarantee stability and positivity of the closed-loop systems.
Second, the output feedback stabilization issue is investigated by introducing special form of diagonal matrices,
and the constraints on states and control inputs are solved based on limited initial conditions. Then, the derived
conditions are described via linear programming, also extending the theoretical findings to constrained output issue.
Finally, the simulation results demonstrate the feasibility of the control strategy.
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1. INTRODUCTION

As we all know, it is inevitable to encounter situations
with constraint in practical control systems. It can be clas-
sified into three categories: first, the constraints on the
system state; second, the constraints on the control quan-
tity; third, the constraints on the system output. Gener-
ally speaking, the system is often subject to a variety of
constraints at the same time, and the emergence of these
constraints increases the difficulty to controller design and
system performance satisfaction [1,2]. Therefore, it is not
only great practical significance but also challenging to
study the control technology under constraint conditions.

When the systems states are confined within a “cone”
located in the positive orthant rather than in linear spaces,
such kind of systems are referred to as positive sys-
tems. The positivity constraint is inherent to many real
world systems, such as absolute temperature, concentra-
tions of chemical, number of living things, probability in
economics [3, 4]. As a special kind of positive systems,
switched positive linear systems (SPLSs) contain a finite
number of positive subsystems and a rule orchestrating
the switching among them. These systems have attracted
attention from many researchers because of widespread
application value in communication network [5], medical
treatment [6], multi-agent system [7] and so on.

From the theoretical perspective, the past decade has
witnessed an increasing interesting in stability analysis

and controller synthesis of positive systems and switched
systems. The stability analysis for positive systems with
continuous and discrete system is investigated by Rami et
al. [8]. Based on linear programming (LP), these papers
proposed linear copositive Lyapunov function method
which makes full use of the nonnegative nature of pos-
itive systems [8, 9]. Since then, a great deal of system-
atic research has been carried out, the stabilization of pos-
itive systems [10, 11], positive delay systems [12, 13], un-
certain positive systems [14], positive observer systems
[15–17], L1-gain problem [18], impulsive positive sys-
tems [19, 20]. For the research on such positive systems,
scholars have also made corresponding achievements in
fuzzy control [21, 22], fractional order system [23, 24],
event-triggered system [25] and so on. Some interesting
results on switched systems can be seen in [26–30]. As
a special positive system, SPLSs also attract people’s re-
search enthusiasm. It is divided into arbitrary switching
signal [31], dwell time switching signal [32, 33], aver-
age dwell time(ADT) switching signal [34, 35], mode-
dependent average dwell time switching signal [36, 37]
and state-dependent switching [38, 39].

On the other hand, it is sometimes difficult to obtain
the full information of state in engineering applications
because of restricting by measurement means of inter-
nal variable. Hence, it is necessary to investigate the out-
put feedback stabilization problem. For positive systems,
static output feedback stabilization problem was studied
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in [40] and the controller has one rank gains. By using the
singular value decomposition approach, the static output
feedback stabilization problem is concerned for systems
with interval uncertainties [41]. By means of linear pro-
gramming approach, state and output feedback controllers
for SPLSs with ADT switching are designed [42]. Refer-
ences [43, 44] considered constrained controller synthesis
issue of switched linear systems by state feedback. The
output-feedback controller synthesis issue for a class of
switched linear systems with constrained controls and out-
put is addressed by decomposing control gain matrix [45],
nevertheless the rank of gain matrix is not full.

Motivated by above discussion, in this paper, we inves-
tigate the stabilization issue of enforced positive switched
linear systems with bounded controls under ADT switch-
ing scheme. Based on the calculation technique of matrix,
the output feedback stabilization issue is investigated by
introducing special form of diagonal matrices. The main
advantages of the method we proposed include: i) the con-
trollers we establish for stabilization of enforced positive
switched linear systems under ADT switching scheme sat-
isfy bounded condition; ii) the rank of controller gain ma-
trix we designed is full, which can make full use of the
whole information of the output matrix and overcome the
limitation on the rank of controller gain; iii) all the pro-
posed conditions are formulated as linear inequalities, thus
the controller parameters can be determined by linear pro-
gramming, which is powerful for solving higher dimen-
sion problems than LMI. The rest of paper is organized
as follows: In Section 2, problem formulation and some
preliminaries are given. Output feedback stabilization and
stabilization with bounded controls are discussed in Sec-
tions 3 and 4, respectively. Section 5 solved constrained
output problem. Two numerical examples are shown in
Section 6. The paper is concluded in Section 7.

Notations: Rm×n denotes the set of all m× n matri-
ces with entries from the field of real numbers R. Rn =
Rn×1 stands for the set of n dimensional column vec-
tors. Further, a matrix A is nonnegative(negative) if all
of its elements are nonnegative and can be denoted by
A � 0(A ≺ 0), and a vector λ is nonnegative(negative) if
all of its elements are nonnegative and can be denoted by
λ � 0(λ ≺ 0). Second, the main advantage of the method
we proposed is the rank of controller gain matrix we de-
signed is full, which can make full use of the whole infor-
mation of the output matrix and overcome the limitation
on the rank of controller gain. On the other hand, the stabi-
lization issue of enforced positive switched linear systems
with bounded controls under ADT switching scheme is
also our advantage.

2. PROBLEM FORMULATION

Consider the following switched linear systems{
ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t),
y(t) =Cσ(t)x(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rs are system
state, input and output respectively. σ(t) : [0,∞)→ P =
{1,2, . . . ,N} is switching signal, and N is the number of
the subsystems. When σ(t) = p, p-th subsystem is active,
Ap = [api j] ∈ Rn×n, Bp = [bpi j] ∈ Rn×m and Cp = [cpi j] ∈
Rs×n are subsystem matrices. The purpose of this paper is
to design constrained output feedback controller

u(t) = Gpy(t), (2)

subject to the corresponding closed-loop system with ini-
tial condition x0 � 0,

ẋ(t) = Acpx(t) (3)

is positive and asymptotically stable under ADT switching
signal. Here Gp ∈Rm×s is output feedback gain matrix and
Acp is given by

Acp = Ap +BpGpCp, ∀p ∈ P. (4)

Next, some definitions and lemmas are listed for our
further study.

Definition 1 [4]: The continuous-time linear system

ẋ(t) = Ax(t) (5)

is said to be positive if for the nonnegative initial condi-
tion, the corresponding trajectory of system x(t) � 0 for
all t ≥ 0, where A ∈ Rn×n.

Lemma 1 [4]: System (5) is positive if and only if A
is a Metzler matrix, i.e. all the off-diagonal entries of the
matrix A are nonnegative.

Remark 1: As the switching signal is right continu-
ous at switching instants, the positivity condition of linear
time-invariant system can be easily extended to switched
system. Clearly, the closed-loop system (3) is positive if
system matrix Acp is Metzler for each p ∈ P.

Definition 2 [13]: Let σ(t) be a switching signal and
Nσ (t1, t2) be the switching number of σ(t) in time interval
[t1, t2]. If there exist two constants N0 ≥ 0 and τ∗ > 0 such
that

Nσ (t1, t2)≤ N0 +(t2− t1)/τα ,

then τα is an ADT of the switching signal σ(t) and N0 is
the chatter bound.

Lemma 2 [37]: If exist vector λp� 0 and constant γ > 0
such that (Ap+γI)λp ≺ 0, a SPLS ẋ(t) = Apx(t) is asymp-
totically stable under ADT switching signal τα > τ∗α =
ln µ

γ
, where µ = max λp

λq
for (p,q) ∈ P×P.

Lemma 3 [40]: Consider a SPLS ẋ(t) = Apx(t), if exist
vector λp� 0 and constant γ > 0 such that (Ap+γI)λp≺ 0
set up for 0 � x0 � λp, then the state trajectory of SPLS
satisfies that 0� x(t)� λp for p ∈ P.



Stabilization of Enforced Positive Switched Linear Systems with Bounded Controls 609

3. OUTPUT FEEDBACK STABILIZATION

In this section, we consider output feedback stabiliza-
tion of switched linear systems. Unlike the other issues,
we request that the closed-loop system not only asymptot-
ically stable and positive under ADT switching signal.

Theorem 1: Consider system (1), if exist a constant γ >
0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s satisfying the following linear programming
inequalities

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n, (6)

n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n, (7)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p . (8)

Proof: First, using the notations of (4), one can obtain

acpi j = api j +
s

∑
l=1

m

∑
k=1

bpikgpklcpl j, ∀1≤ i, j ≤ n. (9)

Multiplying both sides of (9) by dp, it follows that

acpi jdp = api jdp +
s

∑
l=1

m

∑
k=1

bpikgpklcpl jdp.

From (8), zpk j = gpk jdp holds. Owing to the fact that mul-
tiplication of numbers satisfies the commutative property,
then

acpi jdp = api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j.

Utilising (6), acpi jdp ≥ 0 sets up for 1 ≤ i 6= j ≤ n. Thus,
the formula acpi j ≥ 0 is true for 1≤ i 6= j ≤ n due to dp >
0. This implies Acp is Metzler matrix, so the closed-loop
(3) system is positive by Lemma 1. Next, the following
part focuses on the proof of asymptotically stable. Define
the vector dvp = [dp,dp, . . . ,dp]

T ∈ Rn and based on the
calculation technique of matrix, it yields

[Acpdvp]i =
n

∑
j=1

[(api j +
s

∑
l=1

m

∑
k=1

bpikgpklcpl j)dp]

=
n

∑
j=1

api jdp +
n

∑
j=1

n

∑
l=1

m

∑
k=1

bpikzpklcpl j.

Then, we can get (Acp + γI)dvp = (Ap + BpGpCp +
γI)dvp ≺ 0 from (7). Hence the closed-loop system is

asymptotically stable by Lemma 2. This completes the
proof. �

Remark 2: The output feedback stabilization problem
we think about is to find controller subject to the closed-
loop system positive and asymptotically stable, even if the
open-loop system is not positive at all. In other words,
this issue can be interpreted as enforcing the system to
be positive. Under this circumstance, the system is called
enforced positive.

4. STABILIZATION WITH BOUNDED
CONTROLS

In the following, we divide this section into three kinds
of condition and establish output feedback controllers
which are limited to the prescribed bounds.

4.1. Sign-restricted controls
In this subsection, the stabilization issue for switched

linear systems is investigated with nonnegative or negative
controls. First we focus on the condition of u(t)� 0.

Theorem 2: Consider system (1), if exist a constant γ >
0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s such that

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n,

(10)
n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n, (11)
s

∑
l=1

zpilcpl j ≥ 0, ∀1≤ i≤ m,1≤ j ≤ n, (12)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p .

Proof: Combining (10) and (11), the closed-loop sys-
tem (3) is positive and asymptotically stable following the
same reasoning as Theorem 1. From (12), it is easy to see
that ZpCp = GpCpdp � 0. Recalling the fact that dp > 0,
it follows GpCp � 0. Thus, we have u(t) = Gpy(t) =
GpCpx(t)� 0. �

Remark 3: We are obligated to act on the system by
only nonnegative inputs since practical factors for in-
stance, the control law can be pressure, heating or volt-
age, etc. Next we consider the u(t)� 0 condition of output
feedback stabilization for switched linear systems under
ADT switching.
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Theorem 3: Consider system (1), if exist a constant γ >
0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s subject to

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n,

n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n,
s

∑
l=1

zpilcpl j ≤ 0, ∀1≤ i≤ m,1≤ j ≤ n, (13)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p .

Proof: The closed-loop system (3) is positive and
asymptotically stable following the same reasoning as
Theorem 1. From (13), it is easy to see that ZpCp =
GpCpdp � 0. Recalling the fact that dp > 0, it follows
GpCp� 0. Thus, we have u(t)=Gpy(t)=GpCpx(t)� 0.�

4.2. Bounded controls
The following part is concerned with bounded controls

issues. First, we consider the trajectory of closed-loop sys-
tem with initial condition 0� x0 � dvp is positive and the
input is limited to be nonnegative and bounded by a pre-
determined ū� 0, where dvp = [dp,dp, . . . ,dp]

T ∈ Rn.
Theorem 4: Consider system (1), if exist a constant γ >

0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s such that

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n,

n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n,
s

∑
l=1

zpilcpl j ≥ 0, ∀1≤ i≤ m,1≤ j ≤ n,

n

∑
j=1

s

∑
l=1

zpilcpl j ≤ ūi, ∀1≤ i≤ m, (14)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p .

Proof: We can get the closed-loop system is positive
and asymptotically stable from Theorem 1. Further, u(t)�
0 holds by Theorem 2. For initial condition 0� x0 � dvp,
the trajectory satisfies 0� x(t)� dvp according to Lemma
3. Thus, it follows that

u(t) = Gpy(t) = GpCpx(t)� GpCpdvp.

Take e = [1,1 . . . ,1]T ∈ Rs, we have dvp = dpe. Then the
above can be turned into

GpCpdvp = GpdpCpe = ZpCpe.

Therefore , bounded control u(t)� ū can obtain by the in-
equality (14). In conclusion, the resulting closed-loop sys-
tem is positive with ADT scheme and control input meet
the constraint 0� u(t)� ū. �

Next, the constraint satisfaction of nonpositive control
−ũ� u(t)� 0 is studied by enforced positive systems for
fixed ũ� 0.

Theorem 5: Consider system (1), if exist a constant γ >
0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s subject to

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n,

n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n,
s

∑
l=1

zpilcpl j ≤ 0, ∀1≤ i≤ m,1≤ j ≤ n,

− ũi �
n

∑
j=1

s

∑
l=1

zpilcpl j, ∀1≤ i≤ m, (15)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p .

Proof: We can get the closed-loop system is positive
and asymptotically stable from Theorem 1. Further, u(t)�
0 holds by Theorem 3. For initial condition 0� x0 � dvp,
the trajectory satisfies 0� x(t)� dvp according to Lemma
3. Similar to the proof of Theorem 4, we have

u(k) =Gpy(k) = GpCpx(k)

�GpCpdvp = GpdpCpe = ZpCpe.

Therefore, bounded control u(t) � −ũ can obtain by the
inequality (15). In conclusion, the resulting closed-loop
system is positive with ADT scheme and control input
meet the constraint −ũ� u(t)� 0. �
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Finally in this part, bounded control issue can be formu-
lated as a problem of finding admissible output feedback
control law−ũ� u(t)� ū to stabilize switched linear sys-
tem.

Theorem 6: Consider system (1), if exist a constant γ >
0 and matrices Dp = diag{dp,dp, . . . ,dp}∈Rs×s� 0, Zp =
[zpi j] ∈ Rm×s, Wp = [wpi j] ∈ Rm×s subject to

api jdp +
s

∑
l=1

m

∑
k=1

bpik(zpkl−wpkl)cpl j ≥ 0,

∀1≤ i 6= j ≤ n,
n

∑
j=1

api jdp+
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpik(zpkl−wpkl)cpl j+γdp<0,

∀1≤ i≤ n,
s

∑
l=1

zpilcpl j ≥ 0, ∀1≤ i≤ m,1≤ j ≤ n, (16)

s

∑
k=1

wpilcpl j ≥ 0, ∀1≤ i≤ m,1≤ j ≤ n, (17)

n

∑
j=1

s

∑
l=1

zpilcpl j ≤ ūi, ∀1≤ i≤ m, (18)

n

∑
j=1

s

∑
l=1

wpilcpl j ≤ ũi, ∀1≤ i≤ m, (19)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = (Zp−Wp)D−1
p .

Proof: Similarly, we know the closed-loop system is
positive and asymptotically stable from Theorem 1. For
initial condition 0 � x0 � dvp, the trajectory satisfies 0 �
x(t) � dvp according to Lemma 3. Recalling vector e and
together with (16-17), then

0� ZpD−1
p y(t) = ZpD−1

p Cpx(t)

� ZpD−1
p Cpdvp = ZpCpe,

0�WpD−1
p y(t) =WpD−1

p Cpx(t)

�WpD−1
p Cpdvp =WpCpe.

Using the properties of the inequality, the above one be-
comes

−WpCpe�−WpD−1
p y(t)� 0.

Combining (18) and (19), one has

−ũ� u(t)Gpy(t) = (Zp−Wp)D−1
p y(t)� ū.

In the end, bounded output feedback controllers such that
the closed-loop system (3) is not only positive but also
asymptotically stable under ADT switching signal was de-
termined. This completes the proof. �

5. CONSTRAINED OUTPUT

If Cp � 0, this section is dedicated to find output feed-
back controller such that the resultant closed-loop sys-
tem is positive and asymptotically stable via ADT switch-
ing signals rule. Also the output ensures the given bound
0� y(t)� ȳ, where ȳ� 0.

Theorem 7: Assume that Cp � 0. Consider sys-
tem (1), if exist a constant γ > 0 and matrices Dp =
diag{dp,dp, . . . ,dp} ∈ Rs×s � 0, Zp = [zpi j] ∈ Rm×s such
that

api jdp +
s

∑
l=1

m

∑
k=1

bpikzpklcpl j ≥ 0, ∀1≤ i 6= j ≤ n,

(20)
n

∑
j=1

api jdp +
n

∑
j=1

s

∑
l=1

m

∑
k=1

bpikzpklcpl j + γdp < 0,

∀1≤ i≤ n, (21)
n

∑
j=1

cpi jdp ≤ ȳi, ∀1≤ i≤ s, (22)

then the closed-loop system (3) is positive and asymptoti-
cally stable under ADT switching strategy τα > τ∗α = ln µ

γ
,

where µ = max dp

dq
, ∀(p,q) ∈ P×P. Moreover, the admis-

sible output feedback gain is given by

Gp = ZpD−1
p .

Proof: From (20)-(21), the closed-loop system (3) is
positive and asymptotically stable following the same rea-
son as Theorem 1. Noting Lemma 3 and Cp � 0, then
we have y(t) = Cpx(t) � Cpdvp. According to (22) and
x(t)� 0, it yields that 0� y(t)� ȳ. �

6. NUMERICAL EXAMPLES

Consider system (1) with parameters as follows:

A1 =

(
−2 −0.8
−0.5 −1.2

)
, B1 =

(
1.8 −1.2
−0.6 1

)
,

C1 =

(
1 0.8

0.5 1

)
; C2 =

(
0.6 1
1 0.5

)
,

A2 =

(
−1.2 −0.5
0.5 −1

)
, B2 =

(
−2.2 0.8
−0.8 −1.8

)
.

Example 1: In this part, we are interesting in find-
ing constrained output feedback controller 0 � u(t) � ū
subject to the corresponding closed-loop system with ini-
tial condition x0 � 0 is positive and asymptotically stable
under ADT switching strategy. Choose ū = [6,8]T . Us-
ing the conditions given by Theorem 4 and linear pro-
gramming algorithm in MATLAB, we can obtain D1 =
diag{6.8574,6.8574}, D2 = diag{9.2086,9.2086} and
matrices

Z1 =

(
−2.6754 6.5333
9.4164 −7.1827

)
,
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Fig. 1. Simulation of closed-loop system state trajectories
(Example 1).

Z2 =

(
−1.4277 3.4822
9.2367 −5.0638

)
.

By means of (25), the gain matrix is calculated by

G1 =

(
−0.3901 0.9527
1.3732 −1.0474

)
,

G2 =

(
−0.1550 0.3781
1.0031 −0.5499

)
.

It can be seen that the gain matrix G1 and G2 are nonsin-
gular. Combining with the computation of (7), we can get
the closed-loop system matrices

Ac1 =

(
−2.8641 0.2918
0.2977 −1.5333

)
,

Ac2 =

(
−1.7857 0.0076
0.1784 −2.3378

)
.

Obviously, Ac1 and Ac2 are Metzler matrices, so the close-
loop system is positive. By computing, one has µ = d2

d1
=

1.3429. Take γ = 0.5, we can obtain τ∗α = 0.5897. The
state trajectories of the closed-loop system with initial
x0 = (6,6)T are given in Fig. 1. Fig. 2 plots the control
input, which illustrates that the controls meet the fixed
bound 0 � u(k) � [6,8]T when the initial value is limit
to 0� x0 � dv1 = (6.8574,6.8574)T . The switching signal
σ(t) with ADT is shown in Fig. 3.

Example 2: Here, our goal is to design bounded out-
put feedback controller−ũ� u(t)� 0 such that the corre-
sponding closed-loop system with initial condition x0 � 0
is positive and asymptotically stable under ADT switching
strategy. Let ũ= [3,5]T . According to the conditions given
in theorem 5 and linear programming algorithm in MAT-
LAB, we can obtain D1 = diag{1.5499,1.5499}, D2 =

Fig. 2. Simulation of control input (Example 1).

Fig. 3. Simulation of switching signal (Example 1).

diag{10.5541,10.5541} and

Z1 =

(
−3.5059 2.5327
2.4073 −5.4269

)
,

Z2 =

(
−3.3789 1.7867
0.1792 −0.5548

)
.

Then we have

G1 =

(
−2.2620 1.6341
1.5532 −3.5015

)
,

G2 =

(
−0.3202 0.1693
0.0170 −0.0526

)
.

It is easy to verify that the ranks of gain matrices are full.
By (7), the closed-loop system matrices are

Ac1 =

(
−4.3639 1.5948
0.1694 −3.3536

)
,

Ac2 =

(
−1.1837 0.0107
0.5945 −0.7948

)
.
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Fig. 4. Simulation of closed-loop system state trajectories
(Example 2).

Fig. 5. Simulation of control input (Example 2).

It is obvious that Ac1 and Ac2 are Metzler matrices, namely
the closed-loop system is positive. By computing µ =
d2
d1

= 6.8095, and seleting γ = 0.2, which yields τ∗α =
9.5916. The simulation results are depicted in Figs. 4-6
with initial condition x0 = (10,10)T under ADT switch-
ing. Fig. 4 shows the state trajectories of closed-loop
system. Fig. 5 plots the control input which limited to
bound −[3,5]T � u(t) � 0 when initial condition meets
0� x0 � dv1. The switching signal σ(t) with ADT is given
in Fig. 6.

Example 3: In this part, our goal is to design bounded
output feedback controller −ũ � u(t) � ū such that
the corresponding closed-loop system with initial con-
dition x0 � 0 is positive and asymptotically stable un-
der ADT switching strategy. Choose ũ = [5,10]T and
ū = [6,8]T . According to the conditions given in the-
orem 6 and linear programming algorithm in MAT-
LAB, we can obtain D1 = diag{8.1678,8.1678}, D2 =

Fig. 6. Simulation of switching signal (Example 2).

diag{19.7475,19.7475} and

Z1 =

(
−1.5522 4.7916
9.0570 −6.6216

)
,

W1 =

(
4.5566 −3.0390
−4.3445 10.3046

)
,

Z2 =

(
−1.5967 4.6338
7.5856 −3.2431

)
,

W2 =

(
4.4682 −2.1315
−2.1870 4.7679

)
.

Then we have

G1 =

(
−0.7479 0.9587
1.6408 −2.0723

)
,

G2 =

(
−0.3071 0.3426
0.4949 −0.4057

)
.

It is easy to verify that the ranks of gain matrices are full.
By (7), the closed-loop system matrices are

Ac1 =

(
−3.2089 0.7603
0.2658 −2.1759

)
,

Ac2 =

(
−1.6353 0.0325
0.5691 −1.4170

)
.

It is obvious that Ac1 and Ac2 are Metzler matrices, namely
the closed-loop system is positive. By computing µ =
d2
d1

= 2.4177, and seleting γ = 0.6, which yields τ∗α =
1.7656. The simulation results are depicted in Figs. 7-
9 with initial condition x0 = (8,8)T under ADT switch-
ing. Fig. 7 shows the state trajectories of closed-loop sys-
tem. Fig. 8 plots the control input which limited to bound
−[5,10]T � u(t) � [6,8]T when initial condition meets
0� x0 � dv1. The switching signal σ(t) with ADT is given
in Fig. 9.
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Fig. 7. Simulation of closed-loop system state trajectories
(Example 3).

Fig. 8. Simulation of control input (Example 3).

Fig. 9. Simulation of switching signal (Example 3).

Example 4: Here, our goal is to design bounded output
feedback controller 0� y(t)� ȳ such that the correspond-
ing closed-loop system with initial condition x0� 0 is pos-
itive and asymptotically stable under ADT switching strat-
egy. Choose ȳ = [5,2]T . According to the conditions given
in Theorem 7 and linear programming algorithm in MAT-
LAB, we can obtain D1 = diag{0.6595,0.6595}, D2 =
diag{0.6930,0.6930} and

Z1 =

(
−121.6878 61.6104

65.9189 −165.2996

)
,

Z2 =

(
−36.4831 67.1879
143.7723 −139.8337

)
.

Then we have

G1 =

(
−184.5152 93.4199

99.9528 −250.6438

)
,

G2 =

(
−52.6452 96.9522
207.4636 −201.7802

)
.

It is easy to verify that the ranks of gain matrices are full.
By (7), the closed-loop system matrices are

Ac1 =

(
−219.6067 106.4717

56.8141 −139.3662

)
,

Ac2 =

(
−206.8449 93.9307

87.3516 −189.4971

)
.

It is obvious that Ac1 and Ac2 are Metzler matrices, namely
the closed-loop system is positive. By computing µ =
d2
d1

= 1.0508, and seleting γ = 0.6, which yields τ∗α =
0.1239. The simulation results are depicted in Figs. 10-12
with initial condition x0 = (0.6,0.6)T under ADT switch-
ing. Fig. 10 shows the state trajectories of closed-loop sys-
tem. Fig. 11 plots the output which limited to bound 0 �
y(t) � [5,2]T when initial condition meets 0 � x0 � dv1.
The switching signal σ(t) with ADT is given in Fig. 12.

Fig. 10. Simulation of closed-loop system state trajecto-
ries (Example 4).
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Fig. 11. Simulation of control input (Example 4).

Fig. 12. Simulation of switching signal (Example 4).

7. CONCLUSION

This article investigates the stabilization issue of en-
forced positive switched linear systems with bounded con-
trols under ADT switching scheme. First, we focus on de-
signing output feedback controller which guaranteeing the
closed-loop system positive and asymptotically stable, al-
though the open-loop system is not positive at all. Second,
based on the properties of special form of diagonal matrix,
the sufficient conditions for the existence of bounded con-
trollers are obtained. Third, the obtained results have been
extended to the situation of constrained output. Finally,
two examples are given to demonstrate the effectiveness
of the proposed approach. All the proposed conditions are
formulated in terms of linear inequalities, thus the con-
troller parameters can be determined by linear program-
ming. It is worth noting that the rank of controller gain
matrix we designed is full, which overcoming the limita-
tion on the rank of controller gain. Following the approach

in this paper, further work may refer to delay problems
and uncertain systems, reducing conservatism of the cur-
rent results.
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