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Output Feedback Regulation of a Class of Lower Triangular Nonlinear
Systems with Arbitrary Unknown Measurement Sensitivity
Min-Sung Koo and Ho-Lim Choi* �

Abstract: In this paper, a regulation problem for a class of lower triangular nonlinear systems under unknown mea-
surement sensitivity by output feedback is considered. The distinguished feature is that the unknown measurement
sensitivity is only required to be positive and bounded. The analysis is carried out to show the relation between the
gain selection of an output feedback controller and the bound of the measurement sensitivity. Then, the adaptive
gain-scalings of the controller are utilized to dominate the unknown growth rate of the nonlinearity.
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1. INTRODUCTION

The global regulation problems by output feedback
for nonlinear systems coped with uncertain nonlineari-
ties have been studied for the past decades. For a class
of nonlinear systems with lower triangular nonlinearities,
various control schemes with observers that have on-line
adaptive gains are constructed in [1–4] under some condi-
tions such as unknown linear growth rate, bounding func-
tions depending on output feedback rate, and unknown
control direction. In [5], both high-gain and low-gain out-
put feedback controllers are developed and engaged to
systems depending on the nonlinearity types. Then, in
[6], a switching control scheme is developed for systems
whose nonlinearity types are not known a priori. All afore-
mentioned results share a common fact that their control
schemes are developed based on the assumption of ‘clean’
feedback circumstances. That is, the measured feedback
through sensors is assumed to be so accurate.

Recently, the stabilization or regulation problems of a
class of nonlinear system under the measurement noise or
sensitivity have attracted much attention [7–16], because
some discrepancy between the real system state values and
measured feedback values via sensors can occur in prac-
tice [13, 17, 18]. The study in [10] considers a case of the
measurement noise where the error due to the measure-
ment noise causes the increasing gain which can deteri-
orate the state estimation error. In [9], the observer with
adaptive law is designed to deal with the output measure-
ment noise in the form of y = x1 + s(t) where s(t) is the

noise.
The so-called measurement sensitivity considers a dif-

ferent feedback distortion case such as θi(t)xi where xi

denote system state in convention and θi(t) denote some
bounded positive functions. Then, in [8], an output feed-
back controller with dual-domination technique is pro-
posed to obtain the system stabilization under y = θ(t)x1

in which θ(t) is not necessarily a differentiable func-
tion. However, as addressed in [8], the allowed bound
of θ(t) is limited to some small ranges such as θ(t) ∈
[1−θ ∗,1+θ ∗] where θ ∗ is somewhat small. Moreover, in
[8], the size of θ ∗ tends to be reduced significantly with
respect to the increase of the system dimension.

In this paper, we consider the output feedback regu-
lation problem for systems with lower triangular nonlin-
earity under the same measurement sensitivity as set in
[8]. However, two new distinguished features are that (i)
θ(t) is only required to be positive and bounded, that
is, the allowed bound of θ(t) is much enlarged such as
0 < θ(t) < +∞, so the major shortcoming of [8] - the
shrink of the allowed range of θ(t) with respect to the sys-
tem dimension size does not occur; (ii) the growth rate of
nonlinearity is unknown such that the previous fixed con-
troller gains approach cannot be used. In order to solve
our control problem, two main approaches are (i) for the
given bound of θ(t), the fixed gains of the output feedback
controller are determined based on the Lyapunov inequal-
ity analysis motivated by [19]; (ii) two gain-scalings are
designed and coupled with an output feedback controller
to deal with the unknown growth rate.
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2. SYSTEM FORMULATION AND PROBLEM
STATEMENT

Consider the following system:

ẋi = xi+1 +δi(t,x,u), i = 1, · · · ,n−1,

ẋn = u+δn(t,x,u),

y = θ(t)x1, (1)

where x = [x1, · · · ,xn]
T ∈ Rn, u ∈ R, and y ∈ R are the

states, input, output, respectively. The δi(t,x,u) : R+ ×
Rn ×R → R, i = 1, · · · , n, are continuous functions.
The following conditions are imposed on the measurement
sensitivity and lower triangular nonlinearity.

Assumption 1: The measurement sensitivity θ(t) is an
uncertain, continuous, and bounded function and there ex-
ist positive constants 0 < θl ≤ 1 and 1≤ θu < ∞ such that

θl ≤ θ(t)≤ θu, (2)

for all t ≥ 0.

Assumption 2: There exists an unknown constant c ≥
0 such that

|δi(t,x,u)| ≤ c
i

∑
j=1
|x j|, i = 1, · · · ,n, (3)

for all t, x, u.

Here, we formally state our control problem.

Problem Statement 1: Globally regulate the sys-
tem (1) under Assumptions 1 and 2 by an output feedback
controller.

To show the generality of our control problem, we take
the following example directly from [8]:

ẋ1 = x2 +d1(t)sinx1,

ẋ2 = u+d2(t) ln(1+ x2
1),

y = θ(t)x1.

When there is no sensitivity feedback issue, that is, the
feedback is ideal, θ(t) naturally becomes 1. So, without
loss of generality, we can also express θ(t) as θ(t) = 1+
δθ(t) as well and δθ(t) denotes the uncertain measure-
ment sensitivity part. Then, in [8], their results obtain the
allowed range of δθ(t) as −0.4383 ≤ δθ(t) ≤ +0.4383
or (−48.83%≤ δθ(t)≤+48.83%) for system dimension
n = 2. Note that this allowed range of δθ(t) significantly
decreases as the system dimension n increases. Moreover,
in [8], the upper bounds of d1(t) and d2(t) are required
to be known. On the other hand, as already stated, these
restrictions are removed in our case. That is, now, θ(t) is
virtually arbitrary as long as it is positive and finite. In
other words, our condition is −1 < δθ(t) < +∞ regard-
less of the system dimension. Notably, θ(t) is not nec-
essarily differentiable in our case as well. Moreover, the

upper bounds of d1(t) and d2(t) are not known. Thus, our
generalized features are well clear over [8].

To the best of our knowledge, there have been no re-
sults dealing with our control problem yet. Our approach
to the considered problem is summarized as follows: First,
our proposed output feedback controller has fixed gains
and two adaptive gain-scaling factors. Then, for any given
bound of θ(t) satisfying Assumption 1, the fixed gains are
determined based on the analysis using Lyapunov inequal-
ity technique developed by [19]. Next, two adaptive gain-
scaling factors are designed to tackle the unknown growth
rate of nonlinearity. Combining these methods together,
the system regulation will be shown using Lyapunov sta-
bility analysis.

3. MAIN RESULTS

Lemma 1: Suppose that Assumption 1 holds. Let
AL(θ(t)) be n×n matrices as

AL(θ(t)) =


−l1θ(t) 1 0 · · · 0
−l2θ(t) 0 1 · · · 0

...
...

. . .
...

−ln−1θ(t) 0 0 · · · 1
−lnθ(t) 0 0 · · · 0

 . (4)

Select li, i = 1, · · · , n as

l1 = b2 +
1
2
+ l0,

li = bili−1−bi

i

∏
k=2

bk +
i+1

∏
k=2

bk, i = 2, · · · ,n, (5)

where l0 is to be presented later on and

bi = bi+1 +
i
2
+1+ b̄i, (6)

where bn+1 = 0, b̄n = 0, and, i = 2, · · · , n−1,

b̄i =
1
2

n−1

∑
m=i+1

(
b̄m +1+

m
2

)2 m

∏
k=i+1

b2
k +

1
2

b2
n

n

∏
k=i+1

b2
k ,

(7)

with bn+1 = 0.
Then, there exists a positive constants l∗0 such that, for

l0 ≥ l∗0 , we have the following inequality as

AL(θ(t))T PL +PLAL(θ(t))≤−min{l0θl ,1}I, (8)

where I is an n× n identity matrix and PL = PT
1 P1 is a

positive definite matrix with

P1 =


1 0 0 · · · 0
−b2 1 0 · · · 0

0 −b3 1 · · · 0
...

0 · · · 0 −bn 1

 . (9)
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Proof: Proof is in Appendix A.1. �

We introduce an output feedback controller as follows:

u =
n

∑
i=1

(
kiγ(t)n−i+1

ε(t)n−i+1)x̂i, (10)

˙̂xi = x̂i+1 + liγ(t)i(y− x̂1), i = 1, · · · ,n−1,
˙̂xn = u+ lnγ(t)n(y− x̂1), (11)

where ki and li, i = 1, · · · , n are selected as follows:

• Select ki, i= 1, · · · , n as sn+knsn−1+ · · ·+k2s+k1 = 0
becomes a Hurwitz polynomial.

• Select li, i = 1, · · · , n, as described in (5) with l0 ≥ l∗0
calculated from given θ(t) in Assumption 1.

The dynamic gains γ(t) and ε(t) are designed as

γ̇(t) =
|y|+

n
∑

i=1
|x̂i|

1+ |y|+
n
∑

i=1
|x̂i|

(
ε(t)n−1 +1

γ(t)n−1ε(t)n−1

)
, (12)

ε̇(t) =
|y|+

n
∑

i=1
|x̂i|

1+ |y|+
n
∑

i=1
|x̂i|

(
1

γ(t)n−1ε(t)n−1

)
, (13)

with γ(0) = ε(0) = 1.

Lemma 2: Suppose that Assumptions 1-2 hold. Let the
controller (10)-(11) with (12)-(13) be applied to the sys-
tem (1). If γ(t) converges to a finite positive constant, then
all states of the system (1) are globally regulated and ε(t)
converges to a finite positive constant.

Proof: Proof is in Appendix A.2. �

Lemma 3: Suppose that Assumptions 1-2 hold. Let the
controller (10)-(11) with (12)-(13) be applied to the sys-
tem (1). If ε(t) converges to a finite positive constant, then
all states of the system (1) are globally regulated and γ(t)
converges to a finite positive constant.

Proof: Proof is in Appendix A.3. �

Theorem 1: Suppose that Assumptions 1-2 hold.
Then, with the controller (10)-(11) with (12)-(13), all
states of the closed system (1) are globally regulated and
γ(t) and ε(t) converge to finite positive constants.

Proof: Define e = [e1, · · · ,en]
T and z = [z1, · · · ,zn]

T

where, for i = 1, · · · , n,

ei = γ(t)−(i−1)(xi− x̂i), (14)

zi = γ(t)−(i−1)
ε(t)−(i−1)x̂i. (15)

Note that, from (1), (11), (14), (15), for i = 1, · · · , n, we
obtain

ė =γ(t)AL(θ(t))e+(1−θ(t))γ(t)Lz1

+Eγ(t)δ (t,x,u)+ γ(t)−1
γ̇(t)D1e, (16)

where Eγ(t) = diag[1, γ(t)−1, · · · , γ(t)−(n−1)], D1 = diag[0,
−1, · · · ,−(n−1)], L= [l1, · · · , ln]T , δ (t,x,u) = [δ1(t,x,u),
· · · , δn(t,x,u)]T .

Also, note that, from (10), (11), (14), (15), we have

ż =γ(t)ε(t)AKz+θ(t)γ(t)Eε(t)Le1

+(θ(t)−1)γ(t)Eε(t)Lz1

+ γ(t)−1
γ̇(t)D1z+ ε(t)−1

ε̇(t)D1z, (17)

where AK = A+ BK with the Brunovsky canonical pair
(A,B) and K = [k1, · · · , kn], and Eε(t) = diag[1, ε(t)−1, · · · ,
ε(t)−(n−1)].

Define a Lyapunov function V1(e) = eT PLe. Then, tak-
ing a time-derivative of V1(e) along the trajectory of (16),
we obtain

V̇1(e)≤γ(t)eT
(

AL(θ(t))T PL +PLAL(θ(t))
)

e

+2γ(t)|1−θ(t)|‖PL‖‖L‖‖e‖|z1|
+2‖PL‖‖e‖‖Eγ(t)δ (t,x,u)‖1

+2γ(t)−1
γ̇(t)‖PL‖‖D1‖‖e‖2. (18)

By using (14)-(15), we have

‖Eγ(t)δ (t,x,u)‖1

≤ c
n

∑
i=1

γ(t)−(i−1)
(

γ(t)(i−1)|ei|+ γ(t)(i−1)
ε(t)(i−1)|zi|

)
≤ c

n

∑
i=1

(
|ei|+ ε(t)(i−1)|zi|

)
≤ cn(n+1)

(
‖e‖+ ε(t)(n−1)‖z‖

)
. (19)

By substituting (8) and (19) into (18) and using |z1| ≤ ‖z‖,
we obtain

V̇1(e)≤−θMγ(t)eT e+ c1|1−θ(t)|‖e‖‖z‖+ c1‖e‖2

+ c1ε(t)n−1‖e‖‖z‖+ c1γ(t)−1
γ̇(t)‖e‖2, (20)

where θM = min{l0θl , 1}, c1 = 2max{‖PL‖‖L‖, cn(n+
1)‖PL‖, ‖PL‖‖D1‖}.

Next, set the Lyapunov function as V2(z) = zT PKz where
PK is from the Lyapunov equation AT

KPK + PKAK = −I.
Then, taking a time-derivative of V2(z) along the trajectory
of (17), we obtain

V̇2(z)≤−γ(t)ε(t)‖z‖2+2θ(t)γ(t)‖PK‖‖z‖‖Eε(t)Le1‖
+2|θ(t)−1|γ(t)‖PK‖‖z‖‖Eε(t)Lz1‖

+2
(

γ(t)−1
γ̇(t)+ ε(t)−1

ε̇(t)
)
‖PKD1‖‖z‖2.

(21)
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From ε(t) ≥ 1, |e1| ≤ ‖e‖, and |z1| ≤ ‖z‖, we have
‖Eε(t)Le1‖ ≤ ‖L‖‖e‖ and ‖Eε(t)Lz1‖ ≤ ‖L‖‖z‖. Using
these inequalities and (21), we obtain

V̇2(z)≤− γ(t)ε(t)‖z‖2

+ c2θ(t)‖z‖‖e‖+ c2|θ(t)−1|‖z‖2

+ c2

(
γ(t)−1

γ̇(t)+ ε(t)−1
ε̇(t)

)
‖z‖2, (22)

where c2 = 2max{‖PK‖‖L‖,‖PK‖‖D1‖}.
Note that, from (12)-(13), using γ(t) ≥ 1, ε(t) ≥ 1, we

have the following properties as

γ̇(t)≤ 2, ε̇(t)≤ 1, (23)

γ̇(t) = ε̇(t)(ε(t)n−1 +1)≥ ε(t)n−1
ε̇(t). (24)

From (24), we have γ(t)− 1 ≥ 1
n (ε(t)

n − 1). Using this
inequality, we arrive at

γ(t)≥ 1
n

ε(t)n. (25)

Using (25), the fourth term in the right-hand side of (20)
is bounded as

c1ε(t)n−1‖e‖‖z‖ ≤ c1nγ(t)‖e‖‖z‖. (26)

Using (23), we have

γ(t)−1
γ̇(t)≤ 2γ(t)−1, ε(t)−1

ε̇(t)≤ ε(t)−1. (27)

Now, we set a composite Lyapunov function V (e,z) =
V1(e)+V2(z) for t ∈ [0,Tf ) where Tf denotes an arbitrary
large finite time. Then, taking a time-derivative of V (e,z)
with (20) and (22), (26), (27), we have

V̇ (e,z)

≤−θM

2
γ(t)‖e‖2− 1

2
γ(t)ε(t)‖z‖2

−
(

θM

4
γ(t)− c1−2c1γ(t)−1

)
‖e‖2

−
(

1
4

γ(t)ε(t)− c2|θ(t)−1|− 2c2

γ(t)
− c2

ε(t)

)
‖z‖2

−
[

e
z

]T [ θM
4 γ(t) Π(t)
Π(t) 1

4 γ(t)ε(t)

][
e
z

]
, (28)

where

Π(t) =−1
2

(
c1|1−θ(t)|+ c1nγ(t)+ c2θ(t)

)
].

Since γ(t) and ε(t) are strictly increasing and 0 < θ(t)<
∞, the terms multiplied by ‖e‖2 and ‖z‖2 in the second and
the third lines of (28) are positive and the matrix in the
last line of (28) is positive definite if there exist positive

constants γ̄ , ε̄ such that γ(t)≥ γ̄ and ε(t)≥ ε̄ satisfying

θM

4
γ(t)−3c1 > 0, (29)

1
4

γ(t)ε(t)− c2θ̄ −3c2 > 0, (30)

θM

16
γ(t)2

ε(t)−Π(t)2

≥ θM

16
γ(t)2

ε(t)− 1
4

(
c1nγ(t)+ c1θ̄ + c2θu

)2
> 0,

(31)

where θ̄ = max{1−θl ,θu−1}.
Because γ(t) and ε(t) are nondecreasing, we consider

two cases: (i) γ(t) ≤ γ̄ or ε(t) ≤ ε̄ and (ii) γ(t) ≥ γ̄ and
ε(t)≥ ε̄ . In the case (i), the global regulation of the system
(1) is achieved by Lemmas 2 and 3. Then, we only need
to consider the case (ii).

Now, we suppose that lim
t→Tf

γ(t) → ∞ and lim
t→Tf

ε(t) →

∞. Then, from (28)-(31), and γ(t) > 1, ε(t) > 1, for t ∈
[t∗1 ,Tf ) where t∗1 is a particular time such that the case (ii)
is satisfied for t ∈ [t∗1 ,Tf ), we have

V̇ (e,z)≤−1
2

(
θMγ(t)‖e‖2 + γ(t)ε(t)‖z‖2

)
≤−c3

(
‖e‖2 +‖z‖2

)
, (32)

where c3 =
1
2 min{1,θM}.

Note that

m(‖e‖2 +‖z‖2)≤V (e,z)≤M(‖e‖2 +‖z‖2), (33)

where m = min{λmin(PK), λmin(PL)} and M = max{λmax

(PK), λmax(PL)}.
From (32)-(33), we have, for t ∈ [t∗1 ,Tf ),

V (e,z)≤V (e(t∗1 ),z(t
∗
1 ))e

− c3
M (t−t∗1 ). (34)

Then, using (13) and (34), we arrive at

ε(t)−1 =
∫ t

0

|y|+
n
∑

i=1
|x̂i|

1+ |y|+
n
∑

i=1
|x̂i|

γ(t)−(n−1)
ε(t)−(n−1)dt

≤
∫ t

0

(
|y|+

n

∑
i=1

γ(t)−(i−1)
ε(t)−(i−1)|x̂i|

)
dt

≤
∫ t

0

(
θu(|e1|+ |z1|)+

n

∑
i=1
|zi|

)
dt

≤ (θu +n2 +n)
∫ t

0

√
‖e‖2 +‖z‖2dt

≤ c4

∫ t

0

√
V (e(t∗1 ),z(t

∗
1 ))e

− c3
2M (t−t∗1 )dt < ∞,

(35)

where c4 = (θu +n2 +n)/
√

m.



2190 Min-Sung Koo and Ho-Lim Choi

Since ε(t) is bounded as shown in (35), it is contradic-
tory to the supposition of lim

t→Tf
ε(t) → ∞. Therefore, we

conclude that ε(t) is bounded on t ∈ [0,Tf ). Then, from
Lemma 3, the global regulation and the convergence of
γ(t) are achieved. So, the global system regulation is fol-
lowed. �

Remark 1: The contributions are summarized as fol-
lows: (i) In [8], the allowable sensitivity error is θ(t) ∈
[1− θ̄ ,1+ θ̄ ] where 0 ≤ θ̄ < 1. Our proposed controller
by Lemma 1 is designed for the desired bounds of the sen-
sitivity so that the bounds of the sensitivity can be much
relaxed as shown in (2) of Assumption 1. (ii) Our pro-
posed controller has dynamic gains ε(t) and γ(t) unlike
the static gains in [8]. The roles of γ(t) and ε(t) are to treat
the effect of the nonlinearity under Assumption 2 and the
measurement sensitivity, respectively. These features are
clearly distinguished from the results of [8].

4. EXAMPLE

(i) Illustrative example: We revisit the example in Sec-
tion 2. We set θ(t) = 3+ 2.7sin t, d1(t) = 1+ cos t and
d2(t) = 2− sin20t. Thus, the bound of θ(t) is θ(t) ∈
[0.3,5.7] or in an expression of θ(t) = 1+δθ(t), −0.7≤
δθ(t)≤ 4.7 or (−70%≤ δθ(t)≤+470%) which is well
over the allowed bound suggested by [8]. Remind that the
bounds of d1(t) and d2(t) are not needed in our controller
design. Thus, this clearly shows the generality of our result
over [8]. For fixed gains of the controller, we set k1 =−4,
k2 = −4. From the proof of Lemma 1 and the bounds
of θ(t), choose l0 = 149 from (A.9) by calculating with
b2 = 2 in (6) and ρ1 = 3/2, ρ2 = 4 in (A.5). Thus, we set
l1 = 151.5,l2 = 299, and the initial condition of the con-
troller as u(0) = 0 with x̂1(0) = 0 and x̂2(0) = 0. Coupled
with two gain-scaling factors, the system with the initial
condition x1(0) = 1 and x2(0) =−1 is regulated as shown
in Fig. 1.

(ii) Application example: Consider the LLC resonant
circuit system in [6] with the output function y = θ(t)iL1 .

i̇L1 =−
vc

L1
− Ra

L1
(iL2 −0.5sinvc),

v̇c =
iL2

C
− 0.5sinvc

C
,

i̇L2 =−
Rb

L2
iL2 +

u
L2

,

y = θ(t)(iL1 +2vc), (36)

where L1 = L2 = 1mH, C = 2nF , Ra = 1kΩ, and RbkΩ is
an unknown variable resistance. The measurement sensi-
tivity range is 0.8≤ θ(t)≤ 1.2.

By the transformation x1 = iL1 + 2vc, x2 = −vc, x3 =

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time[sec]

-40

-20

0

20

40

u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

(t
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time[sec]

1

1.2

1.4

1.6

(t
)

Fig. 1. Trajectories of the system/observer states, gain-
scaling factors, output, and input for (i) Illustrative
example.

−0.5(iL2 −0.5sinvc) and u =−2u1, we have

ẋ1 = x2, ẋ2 = x3,

ẋ3 = u1 +Rb(x3−0.25sinx2)−0.125x3 cosx2,

y = θ(t)x1. (37)

The system (37) satisfies Assumption 2 with n = 3. We set
k1 = −8, k2 = −12, k3 = −6 by using the Hurwitz poly-
nomial s3 +k3s2 +k2s+k1 = 0. From (6), b2 = 12, b3 = 2
are calculated and we have ρ1 = 12.5, ρ2 = 120, ρ3 = 48
in (A.5) by using b2 and b3. From the proof of Lemma
1 and the bounds of θ(t) with θl = 0.8 and θu = 1.2, we
choose l0 = 900. Thus, we set the fixed gain as l1 = 912.5,
l2 = 10830, l3 = 21612 in (5) and the initial condition
of the controller as u(0) = 0 with x̂1(0) = 0, x̂2(0) = 0,
x̂3(0) = 0. The system with the initial condition iL1(0) = 1,
vc(0) = 0, iL2(0) = 2 is globally regulated as shown in
Fig. 2.
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Fig. 2. Trajectories of the system output/observer and in-
put for (ii) Application example.

5. CONCLUSIONS

We consider the global regulation problem for lower tri-
angular nonlinear systems under uncertain measurement
sensitivity and unknown growth rate of nonlinearity. One
distinguished feature is that the measurement sensitiv-
ity is only required to be positive and finite and the al-
lowed bound of measurement sensitivity is much enlarged
and the growth rate of nonlinearity is not required to be
known a priori. By using the simulation example, pro-
posed method is demonstrated. As a future topic, our
method can be extended to output feedback regulation for
nonlinear system with sampled measurements [11, 14].

APPENDIX A

A.1. Proof of Lemma 1
Consider a system η̇ =AL(θ(t))η with η = [η1, η2, · · · ,

ηn]
T . Using a transformation ξ = P1η where ξ = [ξ1, ξ2,

· · · , ξn]
T , we have

ξ1 = η1, ξi =−biηi−1 +ηi, i = 2 · · · ,n. (A.1)

Then, its inverse transformation is

η1=ξ1, ηi=ξi+
i−1

∑
j=1

ξ j

i

∏
k= j+1

bk, i=2, · · · ,n. (A.2)

Using (A.1) and (A.2), we have the time-derivative of ξi,
i = 1, · · · , n, as

ξ̇1 = (b2− l1θ(t))ξ1 +ξ2,

ξ̇i =

(
bili−1θ(t)− liθ(t)−bi

i

∏
k=2

bk +
i+1

∏
k=2

bk

)
ξ1

+(bi+1−bi)ξi +ξi+1

+
i−1

∑
j=2

ξ j

(
i+1

∏
k= j+1

bk−bi

i

∏
k= j+1

bk

)
,

i = 2, · · · ,n, (A.3)

where ξn+1 = 0.
By substituting li, i= 2, · · · , n, in (5) into (A.3), we have

ξ̇1 = (b2− l1θ(t))ξ1 +ξ2,

ξ̇i = ρi(θ(t)−1)ξ1 +(bi+1−bi)ξi +ξi+1

+
i−1

∑
j=2

ξ j

(
i

∏
k= j+1

bk(bi+1−bi)

)
, i = 2, · · · ,n,

(A.4)

where with bn+1 = 0,

ρ1 = b2 +
1
2
,

ρi = bi

i

∏
k=2

bk−
i+1

∏
k=2

bk, i = 2, · · · ,n. (A.5)

Using (A.4), l1 in (5), and ξ1ξ2 ≤ 1
2 (ξ

2
1 +ξ 2

2 ), note that

ξ1ξ̇1 ≤
(

ρ1(1−θ(t))− l0θ(t)
)

ξ
2
1 +

1
2

ξ
2
2 , (A.6)

where ρ1 is defined in (A.5).
Similar to (A.6), we obtain, i = 2, · · · ,n,

ξiξ̇i ≤ρi(θ(t)−1)ξ1ξi +

(
bi+1−bi +

i−1
2

)
ξ

2
i

+
1
2

ξ
2
i+1 +

1
2

i−1

∑
j=2

ξ
2
j (bi+1−bi)

2
i

∏
k= j+1

b2
k . (A.7)
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Using (A.6)-(A.7) and bi of (6), we have

n

∑
i=1

ξiξ̇i

≤
(

ρ1(1−θ(t))− l0θ(t)
)

ξ
2
1

+
(
θ(t)−1

) n

∑
i=2

ρiξ1ξi−
n

∑
i=2

ξ
2
i −

n−1

∑
i=2

b̄iξ
2
i

+
1
2

n−1

∑
i=2

ξ
2
i

(
n−1

∑
m=i+1

((
b̄m +1+

m
2

)2 m

∏
k=i+1

b2
k

))

+
1
2

b2
n

n−1

∑
i=2

ξ
2
i

n

∏
k=i+1

b2
k . (A.8)

Note that if l0 is selected as l0 ≥ l∗0 such that l∗0 satisfy
ρ1(1− θ(t))− l∗0 θ(t)

2 ≤ 0 and the following inequality as
for i = 2, · · · , n,

2
n2

(
l∗0θ(t)

2
−ρ1(1−θ(t))

)
− (1−θ(t))2

ρ
2
i

≥ 0, (A.9)

for all t, then, we have
(

ρ1(1 − θ(t)) − l0θ(t)
)

ξ 2
1 −(

θ(t)−1
)

∑
n
i=2 ρiξ1ξi +

1
2 ∑

n
i=2 ξ 2

i ≥ 0.
From (A.8), l0 is calculated from (A.9), and b̄i in (7),

we obtain
n

∑
i=1

ξiξ̇i ≤−
l0θ(t)

2
ξ

2
1 −

1
2

n

∑
i=2

ξ
2
i

≤−1
2

min{l0θl ,1}
n

∑
i=1

ξ
2
i . (A.10)

Thus, from 1
2 ξ T ξ = 1

2 ∑
n
i=1 ξ 2

i , ξ = P1η , and η̇ =

AL(θ(t))η , note that ∑
n
i=1 ξiξ̇i =

1
2

d(ξ T ξ )
dt = 1

2

(
η̇T PT

1 P1η+

ηT PT
1 P1η̇

)
= 1

2

(
ηT AL(θ(t))T PLη + ηT PLAL(θ(t))η

)
.

Together with this inequality and (A.10), the inequality
(8) is followed.

A.2. Proof of Lemma 2
From (12) and (13),

γ(t)−1 =
1
n

ε(t)n + ε(t)− n+1
n

. (A.11)

From (A.11) and the convergence of γ(t), it is easy to ob-
tain that there exist constants γ̄ and ε̄ such that γ(t) < γ̄

and ε(t) < ε̄ . Then, since ε(t) is nondecreasing, the con-
vergence of ε(t) is achieved. Also, by integrating (13) and
using the upper bounds of γ(t) and ε(t), we have

∞ > ε(t)−1 >
1

γ̄n−1ε̄n−1

∫ t

0

|y|+
n
∑

i=1
|x̂i|

1+ |y|+
n
∑

i=1
|x̂i|

dt.

Then, by Barbalat’s Lemma [20], we have

|θ(t)x1|+‖x̂‖1→ 0 as t→ ∞. (A.12)

Now, define e = [e1, · · · ,en]
T and z = [z1 · · · ,zn]

T where,
for i = 1, · · · , n,

ei = γ
−(i−1)
∗ (xi− x̂i), (A.13)

zi = γ
−(i−1)
∗ ε

−(i−1)
∗ x̂i, (A.14)

where ε∗ ≥ ε̄ and

γ∗ ≥max{8cn(n+1)‖PL‖/θM, γ̄}. (A.15)

Using the transformations (A.13) and (A.14), we have

ė =γ∗AL(θ(t))e+θ(t)
(

γ∗I− γ(t)Eγ∗E
−1
γ(t)

)
Le1

+ γ(t)(1−θ(t))Eγ∗Lz1 +Eγ∗δ (t,x,u), (A.16)

where Eγ∗ = diag[1, γ−1
∗ , · · · , γ

−(n−1)
∗ ], Eγ(t) = diag[1,

γ(t)−1, · · · , γ(t)−(n−1)], where L = [l1, · · · , ln]T .
Define a Lyapunov function V1(e) = eT PLe. Then, tak-

ing a time-derivative of V1(e) along the trajectory of
(A.16), we have

V̇1(e)≤γ∗eT
(

AL(θ(t))T PL +PLAL(θ(t))
)

e

+2γ∗|θ(t)|‖PL‖‖L‖‖e‖|e1|
+2γ(t)|θ(t)|‖PL‖‖Eγ∗E

−1
γ(t)L‖‖e‖|e1|

+2γ(t)|1−θ(t)|‖PL‖‖Eγ∗L‖‖e‖|z1|
+2‖PL‖‖e‖‖Eγ∗δ (t,x,u)‖1. (A.17)

Using ‖Eγ∗E
−1
γ(t)L‖=

√
∑

n
i=1

(
γ(t)
γ∗

)2(i−1)
|li|2 and γ(t)≤ γ∗,

the term 2γ(t)|θ(t)|‖PL‖‖Eγ∗E
−1
γ(t)L‖‖e‖|e1| in (A.17) is

upper-bounded as

2γ(t)|θ(t)|‖PL‖‖Eγ∗E
−1
γ(t)L‖‖e‖|e1|

≤ 2γ̄θu‖PL‖‖L‖‖e‖|e1|. (A.18)

Also, using ‖Eγ∗L‖ ≤ ‖L‖, the term 2γ(t)|1 −
θ(t)|‖PL‖‖Eγ∗L‖‖e‖|z1| in (A.17) is upper-bounded as

2γ(t)|1−θ(t)|‖PL‖‖Eγ∗L‖‖e‖|z1|
≤ 2γ̄ max{1−θl ,θu−1}‖PL‖‖L‖‖e‖|z1|. (A.19)

By using (A.13)-(A.14), the last term in (A.17) is upper-
bounded as

‖Eγ∗δ (t,x,u)‖1

≤ c
n

∑
i=1

γ
−(i−1)
∗

(
γ
(i−1)
∗ |ei|+ γ

(i−1)
∗ ε

(i−1)
∗ |zi|

)
≤ c

n

∑
i=1

(
|ei|+ ε

(i−1)
∗ |zi|

)
≤ cn(n+1)

(
‖e‖+ ε

(n−1)
∗ ‖z‖

)
. (A.20)
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Then, by substituting (A.18)-(A.20) into (A.17), the in-
equality (A.17) is obtained as

V̇1 ≤−
θMγ∗

2
‖e‖2−

(
γ∗θM

4
−2cn(n+1)‖PL‖

)
‖e‖2

−
(

γ∗θM

4
‖e‖−d1|e1|−d2|z1|−d3‖z‖

)
‖e‖,

(A.21)

where d1=2θu(γ∗‖PL‖‖L‖+ γ̄‖PL‖‖L‖), d2 = 2γ̄ max{1−
θl , θu−1}‖PL‖‖L‖, d3 = 2cn(n+1)εn−1

∗ ‖PL‖‖L‖.
Using γ∗ in (A.15), we have V̇1 ≤ − θMγ∗

2 ‖e‖
2 −

( γ∗θM
4 ‖e‖− d1|e1| − d2|z1| − d3‖z‖)‖e‖. Thus, V̇1 is nega-

tive if ‖e‖ ≥ d1|e1|+d2|z1|+d3‖z‖
0.25γ∗θM

. Then, we have that ‖e‖ is
ultimately bounded by d1|e1|+d2|z1|+d3‖z‖ from (A.21)
[20]. Then, from (A.12), it is obvious that the ultimate
bound of ‖e‖ becomes to zero as t → ∞. Thus, we have
that ‖e‖→ 0 and ‖x̂‖→ 0 as t→ ∞. Therefore, the global
regulation is achieved.

A.3. Proof of Lemma 3
Using (A.11) in the proof of Lemma 2 and the conver-

gence of ε(t), it is obvious that γ(t) and ε(t) have finite
positive upper bounds for all t. Since γ(t) is nondecreas-
ing, the upper bound of γ(t) guarantees the convergence of
γ(t). Therefore, by using Lemma 2, the global regulation
is achieved.

REFERENCES

[1] H. Lei and W. Lin, “Universal adaptive control of nonlinear
systems with unknown growth rate by output feedback,”
Automatica, vol. 42, no. 10, pp. 1783-1789, 2006.

[2] H. Lei and W. Lin, “Adaptive regulation of uncertain non-
linear systems by output feedback: A universal control ap-
proach,” Systems and Control Letters, vol. 56, no. 7-8, pp.
529-537, 2007.

[3] L. Liu and J. Huang, “Global robust output regulation of
lower triangular systems with unknown control direction,”
Automatica, vol. 44, no. 5, pp. 1278-1284, 2008.

[4] L. Praly, “Asymptotic stabilization via output feedback for
lower triangular systems with output dependent incremen-
tal rate,” IEEE Transactions on Automatic Control, vol. 48,
no. 6, pp. 1103-1108, 2003.

[5] H.-L. Choi and J.-T. Lim, “Global exponential stabilization
of a class of nonlinear systems by output feedback,” IEEE
Transactions on Automatic Control, vol. 50, no. 2, pp. 255-
257, 2005.

[6] M.-S. Koo, H.-L. Choi, and J.-T. Lim, “Global regula-
tion of a class of uncertain nonlinear systems by switch-
ing adaptive controller,” IEEE Transactions on Automatic
Control, vol. 55, no. 12, pp. 2822-2827, 2010.

[7] T. Ahmed-Ali, V. Van Assche, J. Massieu, and P. Dorleans,
“Continuous-discrete observer for state affine systems with
sampled and delayed measurements,” IEEE Transactions
on Automatic Control, vol. 58, no. 4, pp. 1085-1091, 2013.

[8] C.-C. Chen, C. Qian, Z.-Y. Sun, and Y.-W. Liang, “Global
output feedback stabilization of a class of nonlinear
systems with unknown measurements sensitivity,” IEEE
Transactions on Automatic Control, vol. 63, no. 7, pp.
2212-2217, 2018.

[9] R. G. Sanfelice and L. Praly, “On the performance of high-
gain observers with gain adaptation under measurement
noise,” Automatica, vol. 47, no. 10, pp. 2163-2176, 2011.

[10] L. K. Vasiljevic and H. K. Khalil, “Differentiation with
high-gain observers the presence of measurement noise,”
Proceedings of the 45th IEEE Conference on Desition and
Control, Sandiego, CA, December 13-15, 2006.

[11] H. Wang and Q. Zhu, “Global stabilization of stochastic
nonlinear systems via C1 and C∞ controllers,” IEEE Trans-
actions on Automatic Control, vol. 62, no. 11, pp. 5800-
5887, 2017

[12] J. Weston and M. Malisoff, “Sequential predictors under
time-varying feedback and measurement delays and sam-
pling,” IEEE Transactions on Automatic Control, vol. 64,
no. 7, pp. 2991- 2996, 2019.

[13] C. Zhang, C. Qian, S. Li, and H. Du, “Global robust sta-
bilization via sampled-data output feedback for nonlinear
systems with uncertain measurement and control gains,”
Asian Journal of Control, vol. 17, no. 3, pp. 868-878, 2015.

[14] D. Zhang and Y. Shen, “Global output feedback sampled-
data stabilization for upper-triangular nonlinear systems
with improved maximum allowable transmission delay,”
International Journal of Robust and Nonlinear Control,
vol. 27, no. 2, pp. 212-235, 2017

[15] J.-X. Zhang and G.-H. Yang, “Global finite-time output
stabilization of nonlinear systems with unknown measure-
ment sensitivity,” International Journal of Robust and Non-
linear Control, vol. 28, no. 2, pp. 5158-5172, 2018.

[16] D. Zhang, Y. Shen, and X. Xia, “Globally uniformly ul-
timately bounded observer design for a class of nonlinear
systems with sampled and delayed measurements,” Kyber-
netika, vol. 52, no. 3, pp. 441-460, 2016.

[17] D. S. Bernstein, “Sensor performance specification,” IEEE
Control System Magazine, vol. 21, no. 4, pp. 9-18, 2001.

[18] P. Singla, K. Subbarao, and J. L. Junkins, “Adaptive out-
put feedback control for spacecraft rendezvous and dock-
ing under measurement uncertainty,” Journal of Guidance,
Control, and Dynamics, vol. 29, no. 4, pp. 892-902, 2006.

[19] P. Krishnamurthy, F. Khorrami, and Z. P. Jiang, “Global
output feedback tracking for nonlinear systems in general-
ized output-feedback canonical form,” IEEE Transactions
on Automatic Control, vol. 40, no. 9, pp. 814-819, 2002.

[20] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall,
Upper Saddle Riber, NJ07458, 2002.

http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.automatica.2007.09.014
http://dx.doi.org/10.1016/j.automatica.2007.09.014
http://dx.doi.org/10.1016/j.automatica.2007.09.014
http://dx.doi.org/10.1109/TAC.2003.812819
http://dx.doi.org/10.1109/TAC.2003.812819
http://dx.doi.org/10.1109/TAC.2003.812819
http://dx.doi.org/10.1109/TAC.2003.812819
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2010.2069430
http://dx.doi.org/10.1109/TAC.2010.2069430
http://dx.doi.org/10.1109/TAC.2010.2069430
http://dx.doi.org/10.1109/TAC.2010.2069430
http://dx.doi.org/10.1109/TAC.2012.2225555
http://dx.doi.org/10.1109/TAC.2012.2225555
http://dx.doi.org/10.1109/TAC.2012.2225555
http://dx.doi.org/10.1109/TAC.2012.2225555
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1016/j.automatica.2011.08.002
http://dx.doi.org/10.1016/j.automatica.2011.08.002
http://dx.doi.org/10.1016/j.automatica.2011.08.002
http://dx.doi.org/10.1109/CDC.2006.377230
http://dx.doi.org/10.1109/CDC.2006.377230
http://dx.doi.org/10.1109/CDC.2006.377230
http://dx.doi.org/10.1109/CDC.2006.377230
http://dx.doi.org/10.1109/TAC.2016.2644379
http://dx.doi.org/10.1109/TAC.2016.2644379
http://dx.doi.org/10.1109/TAC.2016.2644379
http://dx.doi.org/10.1109/TAC.2016.2644379
http://dx.doi.org/10.1109/TAC.2018.2874694
http://dx.doi.org/10.1109/TAC.2018.2874694
http://dx.doi.org/10.1109/TAC.2018.2874694
http://dx.doi.org/10.1109/TAC.2018.2874694
http://dx.doi.org/10.1002/asjc.936
http://dx.doi.org/10.1002/asjc.936
http://dx.doi.org/10.1002/asjc.936
http://dx.doi.org/10.1002/asjc.936
http://dx.doi.org/10.1002/rnc.3568
http://dx.doi.org/10.1002/rnc.3568
http://dx.doi.org/10.1002/rnc.3568
http://dx.doi.org/10.1002/rnc.3568
http://dx.doi.org/10.1002/rnc.3568
http://dx.doi.org/10.1002/rnc.4305
http://dx.doi.org/10.1002/rnc.4305
http://dx.doi.org/10.1002/rnc.4305
http://dx.doi.org/10.1002/rnc.4305
http://dx.doi.org/10.14736/kyb-2016-3-0441
http://dx.doi.org/10.14736/kyb-2016-3-0441
http://dx.doi.org/10.14736/kyb-2016-3-0441
http://dx.doi.org/10.14736/kyb-2016-3-0441
http://dx.doi.org/10.1109/37.939939
http://dx.doi.org/10.1109/37.939939
http://dx.doi.org/10.2514/1.17498
http://dx.doi.org/10.2514/1.17498
http://dx.doi.org/10.2514/1.17498
http://dx.doi.org/10.2514/1.17498
http://dx.doi.org/10.1109/TAC.2002.1000279
http://dx.doi.org/10.1109/TAC.2002.1000279
http://dx.doi.org/10.1109/TAC.2002.1000279
http://dx.doi.org/10.1109/TAC.2002.1000279


2194 Min-Sung Koo and Ho-Lim Choi

Min-Sung Koo received her B.S.E. de-
gree in 2004, an M.S. degree in 2006, and
a Ph.D. degree in 2011 from the Depart-
ment of Electrical Engineering, KAIST,
Daejeon, Korea, respectively. She is an
associate professor at the Department of
Fire Protection Engineering, Pukyong Na-
tional University, Busan. Her research in-
terests include control of nonlinear sys-

tems, switching systems, high-order systems, and time-delay
systems.

Ho-Lim Choi received his B.S.E. degree
from the Department of Electrical Engi-
neering, the Univ. of Iowa, USA in 1996,
and an M.S. degree in 1999 and a Ph.D.
degree in 2004, from KAIST, respectively.
Currently, he is a professor at the Depart-
ment of Electrical Engineering, Dong-A
university, Busan. His research interests
are in the nonlinear control problems with

emphasis on feedback linearization, gain scheduling, singular
perturbation, output feedback, time-delay systems, time-optimal
control. He is a senior member of IEEE.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.


