
International Journal of Control, Automation and Systems 18(12) (2020) 3015-3022
http://dx.doi.org/10.1007/s12555-019-0643-y

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots
with External Disturbances and Parameter Uncertainties
Hui Ye* � and Shuai Wang

Abstract: Aiming at the trajectory tracking problem of nonholonomic wheeled mobile robots (WMR) with bounded
external disturbances and parameter uncertainties, a dual-loop attitude tracking robust controller is proposed for
WMR. Firstly, a kinematic controller is designed to generate the virtual velocity based on the kinematic error
model. Secondly, the sliding mode control with a modified reaching law is adopted to ensure the actual velocity can
converge to the virtual velocity in finite time based on the dynamic model. Finally, the stability of the controller
is verified through the Lyapunov function. Numerical simulation shows the robustness and effectiveness of the
proposed dual-loop tracking controller.
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1. INTRODUCTION

In recent years, with the continuous prosperity of the
world economy, the mobile robot has been increasingly
used in different industrial processes. The design of high-
performance control method is regarded as a challeng-
ing task because the mobile robot is a typical nonholo-
nomic system. In addition, the wheeled mobile robot has
unknown internal parameter perturbation and unknown
external interference while moving in the real environ-
ment. In order to solve these problems, various control
methods have been deeply studied, including backstep-
ping approach [1], input-output linearization [2], sliding
mode control [3–5] and intelligent control [6–9]. As for
unknown nonlinear terms, [10, 11] proposed a homoge-
nous high-gain observer with two novel dynamic gains to
estimate the system states. Based on the fact that the lin-
earized system is uniformly completely controllable along
the desired reference trajectory, the work [12] develops a
linearization-based tracking controller for nonholonomic
constrained systems. A sliding mode control method for
mobile robots based on two-dimensional polar kinematics
is proposed in [3], which eliminates the conditional con-
straints on the desired linear velocity, angular velocity and
the attitude of the mobile robot. Since these studies are
based on kinematic models under polar coordinates, there
are singularities at the origin of polar coordinates. To solve
this problem, a kinematics model in Cartesian coordinates
was presented in [13]. In [14], the work has proposed a
classical kinematics stability tracking control approach for

nonholonomic robot based on Lyapunov method.
There are two main methods to eliminate the uncer-

tainty of lumped disturbance. One method is the distur-
bance observer technology. The work [15] gives the gen-
eral framework of perturbed nonlinear systems by using
disturbance observer based control technique. A semi-
global stability condition of a composite controller com-
posed of a nonlinear controller and a nonlinear disturbance
observer is established. The work [16] has proposed a new
observer-based tracking strategy for leader follower for-
mation and verified the effectiveness, robustness and ap-
plicability in different case studies. A new scheme of de-
signing adaptive virtual speed controller and torque con-
trol law is presented for the robot with external distur-
bances and unknown parameters in [17]. Meanwhile, the
disturbance observer is used to estimate the lumped dis-
turbance to realize feedforward compensation. [18] dis-
cussed the cascaded time-varying system consisting of
two uniformly finite-time stable subsystems.

In actual applications, it is difficult to obtain the up-
per bound of lumped disturbance precisely. Therefore, a
controller is usually designed to suppress lumped distur-
bances by selecting enough switching gains. In [19], a dy-
namic adaptive control rule is proposed for nonholonomic
mobile robot with unknown dynamic parameters. The
adaptive control method of mobile robot is derived by us-
ing backstepping technology. Considering the problem of
global tracking and stabilization of an internally damped
mobile robot with unknown parameters and external dis-
turbance of input torque saturation, the work [20] has pro-
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posed a new adaptive scheme. The work [21] designed
an adaptive super-torsion algorithm to track the predeter-
mined trajectory which ignores chattering. To overcome
this limitation, the terminal sliding mode [22, 23] control
approach has been proposed in several control applica-
tions. A design scheme of terminal sliding mode control
for uncertain dynamic systems with pure feedback was
presented in [22]. Based on the fast finite time control al-
gorithm, the work [23] has constructed a fast finite time
state feedback controller and a fast finite time observer.
In the literature of [24], the output feedback sliding mode
control (SMC) problem for discrete-time uncertain non-
linear systems through T-S fuzzy dynamic models was
addressed. An adaptive sliding-mode unit vector control
approach based on monitoring functions to deal with dis-
turbances of unknown bounds was proposed in [25]. The
work [26] proposed a novel time shift approach for actua-
tor fault reconstruction of systems with output time-delay
based on a sliding mode observer. Adaptive high-gain sta-
bilizers for a class of linear time-invariant state space sys-
tems were presented in [27]. However, there always suf-
fer from such issues as input saturation, input dead-zone,
unidirectional input constraints, etc. The work [28] gave
the first continuous control solution for pneumatic artifi-
cial muscle systems that can simultaneously compensate
parametric uncertainties, reject external disturbances, and
meet unidirectional constraints. The work [29] proposed
adaptive law availably to compensate parameter/structure
uncertainties for ship-mounted crane systems.

Neural networks have the ability to approach strongly
nonlinear and complex systems when the unmodeled pa-
rameter uncertainties and nonparametric uncertainty of the
nonholonomic wheeled mobile robot are considered. A
nonholonomic kinematics controller for mobile robots and
a neural network controller for calculating torque are pro-
posed in [6]. The work [7] developed an adaptive neural
sliding mode controller for nonholonomic wheeled mo-
bile robots with model uncertainties and external distur-
bances. The input torque of the robot can be extended to
the pseudo dead zone in [9]. The work [30] has proposed
a new adaptive tracking controller based on neural net-
work, where neural network is used to compensate the un-
certainty caused by wheel slip and external force in order
to achieve the expected tracking performance. The main
contributions of this paper are summarized: (i) We design
a novel adaptive sliding mode controller based on state
feedback by selecting the switching function of WMR;
(ii) Without explicit knowledge of parameter uncertainties
and disturbances, we also can deal with it by the sliding
mode that we designed to estimate the bound of it; (iii)
The new adaptive sliding mode controller has the charac-
teristics of simple algorithm, fast response, easy realiza-
tion and strong anti-interference.

2. ROBOT MODEL AND PROBLEM
FORMULATION

There are one front castor wheel and two driving wheels
in the WMR (Fig. 1). The castor wheel prevents the robot
from tipping over as it moves on a horizontal plane. The
two driving wheels are independently driven by two actu-
ators(e.g. DC motors) for the motion and orientation. Two
wheels have the same radius denoted by r and two driv-
ing wheels are separated by 2b. The robot is in the fixed
coordinate system {X ,O,Y} and θ is the angle between
the direction of motion of the robot and the X axis, which
denotes the orientation of the robot frame with respect to
the Cartesian frame. The trajectory tracking problem of
a nonholonomic mobile robot can be reduced to that the
robot reaches and tracks a given reference trajectory from
the initial position in the inertial coordinate system.

Via Euler-Lagrangian formulation, the robot dynamics
can be obtained as [6]

M(q)q̈+C(q, q̇)+F(q̇)+ τd = B(q)τ−A(q)T
λ , (1)

where q = [x,y,θ ]T is the robot posture. τ = [τ1,τ2]
T is

the control torque, M(q) is a symmetric positive definite
inertia matrix, C(q, q̇) is the centripetal Coriolis matrix,
B(q) is the input transformation matrix, A(q) is the matrix
associated with nonholonomic constraints, τd denotes the
unknown disturbance, F(q̇) denotes the surface friction
while λ is the Lagrange multiplier of constraint forces.

For the sake of simplicity, define the variables as [5]:

M(q) =

 m 0 0
0 m 0
0 0 I

 , AT (q) =

 −sinθ

cosθ

0

 ,

Fig. 1. Motion model of wheeled mobile robot.
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B(q) =
1
r

 cosθ cosθ

sinθ sinθ

b −b

 . (2)

When its motion satisfies the condition of pure rolling
without slipping, the robot motion has the following speed
constraint

−ẋsinθ + ẏcosθ = 0. (3)

The kinematic model of the nonholonomic WMR under
the situation of pure rolling and non-slipping is given as
[14]

q̇ =

 ẋ
ẏ
θ̇

=

 cosθ 0
sinθ 0

0 1

[υ

ω

]
= Jµ, t ≥ 0, (4)

where µ = [υ ,ω]T are the linear and angular velocities of
the mobile robot.

Let [xr,yr,θr]
T represent the desired posture of the

WMR, and its motion must also satisfy nonholonomic
constraints. The reference trajectory is described by the
following equation:

q̇r =

ẋr

ẏr

θ̇r

=

 cosθr 0
sinθr 0

0 1

[υr

ωr

]
, t ≥ 0, (5)

where [υr,ωr]
T denotes the desired linear and angular ve-

locities of the WMR.
According to the geometric relationship, the posture

tracking error of the mobile robot is defined as [20]

qe =

xe

ye

θe

=

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

xr− x
yr− y
θr−θ

 . (6)

Then, by a direct calculation, the derivative of the pos-
ture tracking error can be expressed as [17]ẋe

ẏe

θ̇e

=

yeω +υr cosθe−υ

−xeω +υr sinθe

ωr−ω

 . (7)

Under the new state variable [xe,ye,θe]
T , the trajectory

tracking problem of nonholonomic mobile robot (4) is
transformed into the stabilization problem of tracking er-
ror model (7). In other words, the controller which stabi-
lizes the nonlinear error is designed to make the tracking
error tend to zero.

Under the new state variable [xe,ye,θe]
T , the trajectory

tracking problem of nonholonomic mobile robot (4) is
transformed into the stabilization problem of tracking er-
ror model (7). In other words, the controller which stabi-
lizes the nonlinear error is designed to make the tracking
error tend to zero.

Taking time derivatives of (4) results in

q̈ = J̇(θ)µ(t)+ J(θ)µ̇(t). (8)

By substituting (8) into (1), it yields

M(q)J(q)µ̇ +M(q)J̇(q)µ + τd = B(q)τ−A(q)T
λ .

(9)

Multiplying both sides by J(q)T , because J(q)T A(q)T =
0, J(q)T M(q)J̇(q)µ = 0, it yields

M̄µ̇ + τ̄d = B̄τ, (10)

where M̄ = JT MJ, τ̄d = JT τd , B̄ = JT B.
Assuming that the parameters of the mobile robot are

uncertain, from (10) we can get

(M̄+∆M̄)µ̇ + τ̄d = B̄τ, (11)

where ∆M̄ = JT ∆MJ system parameter perturbation.
From (11), one has

µ̇ = M̄−1B̄τ− M̄−1(∆M̄µ̇ + τ̄d)

= Gτ−d(q, q̇, q̈), (12)

where d(q, q̇, q̈)= M̄−1(∆M̄µ̇+τd) represents lumped dis-
turbance including the friction, external interference and
parameter disturbance.

3. SLIDING MODE TRACKING CONTROLLER
DESIGN

Our control objective is to design torque controller τ for
the WMR to make the real trajectory track the desired one.
To achieve this objective, some assumptions are made.

Assumption 1: The reference linear and angular ve-
locities υr, ωr and their first-order derivatives υ̇r, ω̇r are
bounded and continuous.

Assumption 2: The lumped disturbance d(q, q̇, q̈) is
bounded [31]

‖d(q, q̇, q̈)‖< ξ0 +ξ1‖q‖+ξ2‖q̇‖2, (13)

where ξ0,ξ1,ξ2 are unknown constants.

Remark 1: According to the actual motion of the mo-
bile robot, the above assumptions are reasonable shown
as [32, 33]. In addition, because d is limited by external
interference, its exact value does not need to be known.

Lemma 1 [34]: Consider nonlinear systems:

ẋ(t) = f (t,x), x(0) = x0, x ∈ Rn, (14)

where f (t,x) is a continuous function, if there exists a C1

positive definite and proper function V : Rn→ R, and real
number k > 0 and σ ∈ (0,1) such that V̇ (x)+ kV σ is neg-
ative semi-definite. Then, the origin of system (14) is a
global finite-time stable equilibrium.
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Choosing the virtual feedback θ̄e = θe − δ with δ =
−arctan(vrye), the kinematic controller for tracking the
reference trajectory is designed as

υc = υr cosθe +
∂δ

∂ye
sin(

θ̄e

2
)ωc + k1xe,

ωc = 2yevr cos(δ +
θ̄e

2
)− ∂δ

∂υr
υ̇r−

∂δ

∂ye
υr sinθe

+ k2 sin(
θ̄e

2
)+ωr,

(15)

where υc and ωc are the linear and angular velocities, re-
spectively. k1, k2 are positive constants.

Without considering the parameter uncertainties and ex-
ternal disturbance, (12) becomes

µ̇ = M̄−1B̄τ = Gτ. (16)

Define the velocity tracking error as

µe = [υe,ωe]
T = µc−µ. (17)

Next, we choose the sliding mode surface as

s =µe(t)−µe(0)+β1

∫ t

0
sigε1(µe)dt

+β2

∫ t

0
sigε2(µe)dt, (18)

where s = [s1,s2]
T , βi > 0, 0 < εi < 1, i = 1, 2 are con-

stants. sigεi(µe) = [|υe|εi sign(υe), |ωe|εi sign(ωe)]
T .

Substituting (16), (17) into (18), one has

ṡ = µ̇e +β1sigε1(µe)+β2sigε2(µe)

= (µ̇c−Gτ)+β1sigε1(µe)+β2sigε2(µe). (19)

According to (19), letting ṡ = 0, we can obtain the nom-
inal control law τeq:

τeq = G−1(
µ̇c +β1sigε1(µe)+β2sigε2(µe)

)
. (20)

Then, with considering the parameter uncertainties and
disturbance, the discontinuous control law τsw is intro-
duced

τsw =G−1(
σ1‖s‖η1 sgn(s)+σ2‖s‖η2 s

+ d̂(q, q̇, q̈)sgn(s)
)
, (21)

where sgn(s) = [sign(s1),sign(s2)]
T , σi > 0, 0 < ηi < 1

(i = 1, 2). d̂(q, q̇, q̈) = ξ̂0 + ξ̂1‖q‖+ ξ̂2‖q̇‖2 is the estimate
of d(q, q̇, q̈), whose adaptive rate is chosen as [31]

˙̂
ξ0 = ‖s‖, ˙̂

ξ1 = ‖s‖‖q‖, ˙̂
ξ2 = ‖s‖‖q̇‖2. (22)

Therefore, the torque control law τ is designed as

τ = G−1(
β1sigε1(µe)+β2sigε2(µe)+σ1‖s‖η1 sgn(s)

+σ2‖s‖η2 s+ µ̇c + d̂(q, q̇, q̈) · sgn(s)
)
. (23)

4. STABILITY ANALYSIS

In what follows, we will prove the stability of the sys-
tem in two parts: Firstly, we will prove the stability of the
dynamic model of the inner loop system, then the stability
of the kinematic model of the outer loop system will be
proved. The block diagram of the closed-loop system is
shown in Fig. 2.

Theorem 1: In the presence of parametric uncertainties
and external disturbances, the designed adaptive law (22)
and the torque controller (23) for system (1) can make the
tracking error of WMR can converge to zero in finite time.

Proof: Choose the Lyapunov function as

V1 =
1
2
(sT s+ ξ̃

2
0 + ξ̃

2
1 + ξ̃

2
2 ), (24)

where ξ̃i = ξ̂i−ξi, i = 0,1,2.
The time derivative of (24) becomes

V̇1 =sT ṡ+(ξ̂0−ξ0)
˙̂
ξ0 +(ξ̂1−ξ1)

˙̂
ξ1 +(ξ̂2−ξ2)

˙̂
ξ2

=sT (−σ1‖s‖η1 sgn(s)−σ2‖s‖η2 s− d̂(q, q̇, q̈)sgn(s)

Kinematic

controller

Dynamic

controller

Dynamic

model

Kinematic

model

Adaptive 

sliding mode

,( )c cv w, ,( )r r rx y q , ,( )x y q

- - -

( , , )d q q q)q q,,

1 2( , )t t ,( )vw

ˆ( , , )d q q q)q q,,

Fig. 2. The block diagram of the closed-loop system.
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+d(q, q̇, q̈)
)
+(ξ̂0−ξ0)

˙̂
ξ0 +(ξ̂1−ξ1)

˙̂
ξ1

+(ξ̂2−ξ2)
˙̂
ξ2

≤−σ1‖s‖η1+1−σ2‖s‖η2+2− sT‖d̂(q, q̇, q̈)‖sgn(s)

+ sT‖d(q, q̇, q̈)‖+(ξ0 +ξ1‖q‖+ξ2‖q̇‖2)‖s‖

− (ξ0 +ξ1‖q‖+ξ2‖q̇‖2)‖s‖+(ξ̂0−ξ0)‖s‖

+(ξ̂1−ξ1)‖s‖‖q‖+(ξ̂2−ξ2)‖s‖‖q̇‖2

≤‖d(q, q̇, q̈)‖‖s‖− (ξ̂0 + ξ̂1‖q‖+ ξ̂2‖q̇‖2)‖s‖
+(ξ0 +ξ1‖q‖+ξ2‖q̇‖2)‖s‖− (ξ0 +ξ1‖q‖

+ξ2‖q̇‖2)‖s‖+(ξ̂0−ξ0)‖s‖+(ξ̂1−ξ1)‖s‖‖q‖

+(ξ̂2−ξ2)‖s‖‖q̇‖2 ≤−κ‖s‖, (25)

where κ = (ξ0 + ξ1‖q‖+ ξ2‖q̇‖2)−‖d(q, q̇, q̈)‖ > 0. Ac-
cording to Assumption (2), torque control law (23) and
adaptive laws (22), one has ξ̃i and s are bounded.

Choose the Lyapunov function as V0 =
1
2 sT s. According

to (25), one has

V̇0 =V̇1 +(ξ0− ξ̂0)
˙̂
ξ0 +(ξ1− ξ̂1)

˙̂
ξ1 +(ξ2− ξ̂2)

˙̂
ξ2

≤−κ‖s‖+(ξ0− ξ̂0)
˙̂
ξ0 +(ξ1− ξ̂1)

˙̂
ξ1

+(ξ2− ξ̂2)
˙̂
ξ2. (26)

In what follows, we will discuss the accessibility of the
sliding mode s in two cases:

Case 1: If ξ̂i(0)< ξi, i = 0,1,2, then it is obviously that
˙̂
ξi ≥ 0. Firstly, assuming a finite time T1 ≥ 0 that makes all
ξ̂i(t)≥ ξi, t ≥ T1, which can conclude that V̇0(t)<−κ‖s‖.
Otherwise, there will be a finite time T2 makes at least
one of its adaptive estimates satisfy ξ̇i = 0 and ξ̂i(t) <

ξi, t ≥ T2. In general, suppose ˙̂
ξ2(t) = 0 and ξ̂2 < ξ2, t ≥

T2, we can get that V̇0(t) ≤ −κ‖s‖+(ξ0− ξ̂0)
˙̂
ξ0 +(ξ1−

ξ̂1)
˙̂
ξ1 +(ξ2− ξ̂2)

˙̂
ξ2, t ≥ T2. As for ξ̂0, ξ̂1, we can get the

same conclusion. Therefore, there will always be a limited
time to make V̇0 <−κ‖s‖.

Case 2: While at least one ξ̇i(0) satisfy ξ̂i(0) ≥ ξ1, we

can get (ξi− ξ̂i)
˙̂
ξi≤ 0. As for ξ̂ j(0)< ξ j, j 6= i, the analysis

process is the same as Case1, thus, s will stable in limited
time.

Based on the above analysis, it is not hard to find that
for any initial condition

(
s(0), ξ̂i(0)

)
, there always be a

positive constant κ , such that

V̇0(t)≤−κ‖s‖ ≤ −
√

2κV
1
2

0 . (27)

By Lemma 1, it can be obtained that the sliding mode s
will reach zero in a finite time. �

Theorem 2: For system (4), the posture of tracking er-
ror (7) is globally asymptotically converge to zero if the
control law (15) is applied.

Proof: The Lyapunov function candidate is chosen as

V2 =
1
2

x2
e +

1
2

y2
e +2(1− cos

θ̄e

2
). (28)

The time derivative of V2 is

V̇2 =xeẋe + yeẏe +
˙̄
θe sin

θ̄e

2
=xe(ωye−υ +υr cosθe)+ ye(−ωxe +υr sinθe)

+ sin(
θ̄e

2
)
(
ωr−ω− ∂δ

∂υr
υ̇r

− ∂δ

∂ye
(−ωxe +υr sinθe)

)
=xe(−υ +υr cosθe +

∂δ

∂ye
ω sin(

θ̄e

2
))+ yeυr sinδ

+2yeυr sin(
θ̄e

2
)cos(

θ̄e

2
+δ )+ sin(

θ̄e

2
)(ωr

−ω− ∂δ

∂υr
υ̇r−

∂δ

∂ye
υr sinθe). (29)

Putting (15) into (29) yields

V̇2 =xe(−υr cosθe−
∂δ

∂ye
ω sin(

θ̄e

2
)− k1xe +υr cosθe

+
∂δ

∂ye
ω sin

θ̄e

2
)+2yeυr sin

θ̄e

2
cos(

θ̄e

2
+δ )

+ yeυr sinδ + sin
θ̄e

2
(
ωr−2yevr cos(δ +

θ̄e

2
)

+
∂δ

∂υr
υ̇r +

∂δ

∂ye
υr sinθe− k2 sin(

θ̄e

2
)−ωr

− ∂δ

∂υr
υ̇r−

∂δ

∂ye
υr sinθe

)
=− k1x2

e− yeυr sin
(

arctan(yeυr)
)
− k2 sin2 θ̄e

2
.

(30)

Based on the Lyapunov stability theorem, it can be con-
cluded that limt→∞ xe = 0, limt→∞ ye = 0, limt→∞ θ̄e = 0.�

Remark 2: Due to the noise and switch delay, ‖ξ̂i‖
maybe rise all the time. Motivated by [35], using the dead
zone method, the adaptive rate can be adjusted as

˙̂
ξ0 =

{
‖s‖, if ‖s‖ ≥ ι ,

0, if ‖s‖< ι ,
(31)

˙̂
ξ1 =

{
‖s‖‖q‖, if ‖s‖ ≥ ι ,

0, if ‖s‖< ι ,
(32)

˙̂
ξ2 =

{
‖s‖‖q̇‖2, if ‖s‖ ≥ ι ,

0, if ‖s‖< ι ,
(33)

where ι is a small positive constant.
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Fig. 3. Circular track tracking.
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Fig. 4. Circular trajectory tracking error.

5. SIMULATION RESULT

This section illustrates the performance of the proposed
controller in the presence of uncertainties by using Mat-
lab Simulink. The physical parameters of robots are set
as: b = 0.25 m, I = 2.5 kg·m2, m = 4 kg. The initial
position is set as (x(0),y(0),θ(0)) = (1,1, π

6 ), and the
initial position and orientation of the reference input is
(xr(0),yr(0),θr(0)) = (1,2, π

3 ). The reference velocities
are set as νr = 2 m/s, ωr = 1 rad/s. The parameters in the
controller (15) are chosen as k1 = k2 = 1. The controller
(23) parameters have been tuned to the following values:
β1 = 5, β2 = 1, σ1 = 2, σ2 = 1, ε1 =

4
3 , ε2 =

1
2 , η1 = 1.5,

η2 = 1.1.
The simulation results are shown in the figures. Fig. 3

shows the effect of tracking a circular trajectory. Fig. 4 in-
dicates the circular trajectory tracking error, where xe, ye,
θe converge to zero asymptotically. Fig. 5 shows that the
actual linear velocity and angular velocity of the mobile

0 5 10 15 20
0

2

4

6

ra
d
/s

v

vr

0 5 10 15 20

Time(Sec)

0

1

2

3

ra
d
/s

w

wr

Fig. 5. Linear and angular velocity.
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τ
2
/(

N
*m

) τ2

Fig. 6. Adaptive control torque.

robot has been successfully tracked with the desired linear
velocity. The adaptive tracking torques under additional
disturbance torque in Fig. 6. Fig. 7 shows the disturbance.
It meets the control requirements of trajectory tracking for
wheeled mobile robots. Fig. 8 shows the adaptive gains, it
can be seen that the adaptive estimation ξ̂0, ξ̂1, ξ̂2 can reach
a stable state in a finite time.

6. CONCLUSION

In this paper, aiming at the trajectory tracking control
problem of WMR, a new adaptive sliding mode controller
is designed to deal with external disturbances and uncer-
tainties of system parameters. The stability of the pro-
posed controller is analyzed by Lyapunov theory, and the
robustness and effectiveness of the proposed controller are
verified by numerical simulations. In the future work, we
will discuss the problem of input saturation and time-delay
for WMR.
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