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Asymptotic Stability Analysis for Switched Stochastic Nonlinear Systems
Using Mode-dependent Uniformly Stable Functions
Dianfeng Zhang, Yong-Feng Gao, and Sheng-Li Du* �

Abstract: In this paper, we intend to investigate uniform global asymptotic stability in probability (UGAS-P) for a
class of time-varying switched stochastic nonlinear systems. Conventional criteria on stability for switched stochas-
tic systems are based on the negativity of the infinitesimal generator of Lyapunov functions, it is demonstrated that
these criteria are conservative. Taking this fact into account, the infinitesimal generator for each active subsystem
acting on Lyapunov functions is relaxed to be indefinite with the help of uniformly stable function (USF). Sub-
sequently, improved criteria on asymptotic stability are proposed by applying the weakened condition and mode-
dependent average dwell time (MDADT) technique. In addition, numerical examples are presented to verify the
effectiveness of the obtained results.

Keywords: Asymptotic stability, mode-dependent average dwell time, switched stochastic nonlinear systems, uni-
formly stable function.

1. INTRODUCTION

Switched systems consisting of a family of continuous
(or discrete) time subsystems orchestrated by a switching
rule have been studied extensively due to a wide range
of engineering applications and increasingly complexity
of engineering systems in recent decades (see, for exam-
ple, [1–5] and references therein). As a fundamental and
challenging issue, stability analysis of switched systems
has attracted a lot of attention. Various approaches have
been developed to tackle the stability of switched systems
under different switching mechanisms, see [6–10] and [5]
for a good survey. In particular, uniform asymptotic stabil-
ity (UAS) for time-varying systems has received more and
more attention because of its inherent robustness [11, 12].
Recently, many interesting results have been presented to
analyze the UAS of the switched systems, for instance, the
extension of LaSalle’s invariance principle [13], the lim-
iting systems [14, 15]. However, the existence of switch-
ing behaviors and the time-varying characteristic of the
systems makes it quite challenging in using LaSalle’s in-
variance principle and guaranteeing the common limiting
systems. This motivates us to continue the investigation of
this direction.

It is known that switching signals play a crucial role
in stability analysis of switched systems, which can be

roughly divided into two major types: arbitrary switch-
ing and restricted switching. Common Lyapunov function
approach is frequently used to develop the stability con-
ditions of switched systems under arbitrary switching. It
describes that if a common Lyapunov function has a uni-
formly negative definite derivative along any subsystem,
then the switched system is uniformly global asymptotic
stable [8, 9]. In fact, however, it is quite difficult to find
such a common Lyapunov function [15, 16]. Thus, con-
siderable attention has been devoted to the stability of
switched systems under the restricted switching, such as
state-dependent switching [17] or time-controlled switch-
ing [18]. Among them, average dwell time (ADT) switch-
ing technique introduced by [7] has become a power-
ful tool to analyze the stability and design controllers
of diverse switched systems [19–22]. However, the mini-
mal ADT between consecutive switchings is computed by
two common mode-independent parameters for all sub-
systems, as pointed out in [10], which gives rise to a cer-
tain conservativeness. By relaxing the mode-independent
parameters to mode-dependent ones, [10] proposed a
more flexible and less conservative mode-dependent av-
erage dwell time (MDADT) switching scheme. During
the most recent years, the MDADT switching scheme has
seen widespread applications in different directions of the
switched systems, to mention a few, switching stabiliza-
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tion [24], fault detection and control [25], finite-time fil-
tering [26] and the references therein.

Recently, lots of literatures are concentrated on the sta-
bility of switched stochastic systems [27–34]. The ma-
jority work is dealt with under three types of restricted
switching. In the first one, the switching is governed by
a Markov process. For instance, exponential stability in
the mean square of stochastic delay systems with Marko-
vian switching was studied in [35]. A systematic analy-
sis on the stability of stochastic differential equations with
Markovian switching was presented in [36]. Sliding mode
control for Markovian jump nonlinear descriptor system
and output feedback control for Markovian jump discrete-
time switched systems are investigated in [37] and [38] by
employing the ADT method. More recently, some signifi-
cant results for switched neural network modeled by hid-
den Markov system [39], T-S fuzzy semi-Markov switch-
ing systems [40] and Markov switching repeated scalar
nonlinear systems [41] have been reported. The second
one is time-controlled switching, such as ADT switch-
ing. In [42] and [30], the moment stability for switched
stochastic systems was investigated by quantitatively char-
acterizing and comparing the convergence of each subsys-
tem. In terms of ADT switching, [31] studied stochastic
input-to-state stability for switched stochastic nonlinear
systems by using a stochastic comparison principle. Under
extended asynchronous switching, asymptotic stability of
switched stochastic nonlinear systems and hybrid stochas-
tic retarded systems was developed in [33, 34] by the aid
of ADT switching. In the third one, the switching signal is
trigged by state-dependent events, which results in that the
switching instants are stochastic and there is no informa-
tion about transition probability of the switching signal.
Considering the third switching, a theoretical framework
on stability of stochastic nonlinear systems with state-
dependent switching was constructed in [32].

It is worth noticing that the results obtained in the
above-mentioned literatures are mainly based on the
conventional Lyapunov stability theory, that is, time-
derivatives of Lyapunov functions or functionals need to
be negative definite. However, this condition may be con-
servative in some sense as pointed out in [43,44]. By intro-
ducing uniformly stable functions (USFs) [43, 44], weak-
ened condition (i.e., the time-derivative of Lyapunov func-
tion along the trajectory of system can be indefinite) was
established to test the asymptotic stability of deterministic
time-varying systems. To the best knowledge of the au-
thors, the uniformly global asymptotic stability for non-
autonomous switched stochastic nonlinear systems have
barely been reported in the existing literature. The consid-
ered systems have switching behaviors and time-varying
characteristic simultaneously, which makes it quite chal-
lenging in using the traditional Lyapunov stability theory.
The main contributions can be summarized as follows:
1) The inequality of infinitesimal generator for each ac-

tive subsystem acting on Lyapunov function are released
to be indefinite with the help of the USFs. Compared
with the above mentioned methods to deal with the non-
autonomous switched stochastic systems, the achieved re-
sults on asymptotic stability are weaker, which provides
an important theoretical reference. 2) The uniformly stable
functions are considered to be mode-dependent, together
with the application of the MDADT switching scheme
makes the obtained criteria on asymptotic stability more
flexible and less conservative.

Notations: For a vector x, |x| denotes the Euclidean
norm, xT denotes its transpose, ‖X‖ is the 2-norm of a
matrix X . Rn is the real n-dimensional space, Rn×m is
the space of n×m real matrices and R+ is the space of
all nonnegative real numbers. tr{M} stands for the trace
of the square matrix M, i.e., the sum of all elements on
the main diagonal line. C0 denotes the space of func-
tions V (x, t) : Rn×R+→R local Lipschitz in x and abso-
lutely continuous in t, C2,1 denotes the space of functions
V (x, t) : Rn×R+ → R twice continuously differentiable
in x and once in t, PC denotes the space of piecewise con-
tinuous functions µ(t) : R+→ R. K denotes the set of all
functions α(t) : R+→ R+, which are continuous, strictly
increasing and vanishing at zero, K∞ denotes the set of
all functions which are of class K and unbounded, KL
denotes the set of all functions β (s, t) : R+×R+ → R+

which is of class K for each fixed t, and decreases to
zero as t → ∞ for each fixed s. For any a,b ∈ R, define
a∧ b = min{a,b}. The symbol ◦ stands for the composi-
tion operator between two functions.

2. PRELIMINARIES

Consider the following stochastic nonlinear system de-
scribed by

dx(t)= f (x(t), t)dt+g(x(t), t)dw(t), x(t0)=x0, (1)

where x(t) ∈ Rn is the state, x(t0) = x0 denotes initial
condition, w(t) is a m-dimensional independent standard
Wiener process defined on a complete probability space(
Ω,F ,{Ft}t≥t0 ,P

)
with a filtration {Ft}t≥t0 satisfying

the usual conditions, i.e., it is increasing and right con-
tinuous while Ft0 contains all P-null sets. The drift filed
f : Rn× [t0,∞)→ Rn and the diffusion g : Rn× [t0,∞)→
Rn×m are piecewise continuous in t, satisfying | f (0, t)| =
‖g(0, t)‖ ≡ 0 and locally Lipschitz in x, namely, for any
R > 0, there exists a constant LR ≥ 0 possibly depending
on R such that for ∀x1,x2 ∈UR,x1 6= x2 and all t ≥ 0

| f (x2, t)− f (x1, t)|+‖g(x2, t)−g(x1, t)‖
≤ LR |x2− x1| .

For system (1), given any r > 0, define the first exit time

τr = inf{t ≥ t0, |x(t)| ≥ r} (2)
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with special case inf /0 = ∞. Obviously, τr is increasing so
it has limit τ∞ = limr→∞ τr which is called the escape (or
explosion) time and τ∞ < ∞ or τ∞ = ∞.

Lemma 1 [36, Theorem 3.15]: Under the locally Lip-
schitz condition, system (1) has a unique maximal local
solution x(t) = x(t,x0, t0) on the maximal interval [t0,τ∞).

The following result shows that the maximal local solu-
tion will become a forward complete solution, i.e., τ∞ = ∞

a.s. (almost surely).

Lemma 2 [46, Lemma 1]: Assume that there exist a
nonnegative function V (x, t)∈ C2,1, constants d and D≥ 0
such that for all t ≥ t0 and r > 0

E [V (x(t ∧ τr) , t ∧ τr)]≤ Ded(t−t0), (3)

lim
r→∞

(
inf

t≥t0,|x|>r
V (x, t)

)
= ∞. (4)

Then system (1) has a unique solution x(t) on [t0,∞).

Definition 1 [47, 48]: The equilibrium x(t) = 0 of sys-
tem (1) is said to be globally asymptotically stable in prob-
ability (GAS-P) if, for every ε > 0, there exists a function
β (·, ·) ∈ KL such that

P{|x(t)|< β (|x0|, t− t0)} ≥ 1− ε,

∀t ≥ t0, x0 ∈ Rn\{0}.

Definition 2 [49]: For a Markov process xs,xs(t) and
V (x, t) ∈ C0. The infinitesimal generatorA of V (x, t) with
initial state x(s) = xs is defined by

AV (x(s),s), lim
h→0+

Es,xs [V (x(s+h),s+h)]−V (xs,s)
h

,

where Es,xs denotes the expectation with respect to the
conditional probability measure

Ps,xs (x(s+h) ∈ B), P(x(s+h) ∈ B|x(s) = xs)

for all Borel subsets B of Rn.
The differential operator L of V (x, t) ∈ C2,1 along the

system (1) is defined by

LV (x, t) =
∂V (x, t)

∂ t
+

∂V (x, t)
∂x

f (x, t)

+
1
2

tr
{

gT(x, t)
∂ 2V (x, t)

∂x2 g(x, t)
}
.

According to [49], if process x(t) is a solution of system
(1), then LV (x, t) =AV (x, t).

The following notion and result of uniformly stable
functions given by [43] and [44] are recalled.

Definition 3: A function µ(t) ∈ PC is said to be a uni-
formly stable function if the following linear time-varying
system is uniformly globally asymptotically stable:

ẏ(t) = µ(t)y(t), ∀t ≥ t0,

where y(t) : [t0,∞)→ R is the state variable.

Lemma 3 [43, Lemma 2]: µ(t) is a USF if and only if
there exist two constants c > 0 and δ ≥ 0 such that∫ t

t0
µ(s)ds≤−c(t− t0)+δ , ∀t ≥ t0. (5)

3. STABILITY ANALYSIS BASED ON
UNIFORMLY STABLE FUNCTIONS

In this section, with the help of USFs, we will provide
the criteria on stability for non-switched stochastic non-
linear system and switched stochastic nonlinear system,
respectively.

3.1. GAS-P for non-switched stochastic nonlinear
system

Theorem 1: Consider the stochastic nonlinear system
(1). If there exist a function V (x, t) ∈ C2,1, a USF µ(t) ∈
PC, and functions α1, α2 ∈ K∞ such that

α1 (|x|)≤V (x, t)≤ α2 (|x|) , (6)

LV (x, t)≤ µ(t)V (x, t), (7)

then system (1) has a unique solution on [t0,∞) and the
equilibrium x(t) = 0 is GAS-P.

Proof: According to Lemma 1, for every x0 ∈ Rn, sys-
tem (1) has a unique solution x(t) on the maximal interval
[t0,τ∞). Next, we need to show τ∞ = ∞ a.s..

We let W (x, t) = V (x, t)e−
∫ t

t0
µ(s)ds. Applying Itô’s for-

mula along the system (1), W (x, t) has the following
stochastic differential

dW (x, t) =[LV (x, t)−µ(t)V (x, t)]e−
∫ t

t0
µ(s)dsdt

+
∂V (x, t)

∂x
g(x, t)e−

∫ t
t0

µ(s)dsdw(t).

Taking integrals in [t0, t ∧ τr) (where τr is defined as (2))
on both sides of the above equation, it yields to

V (x(t ∧ τr) , t ∧ τr)

=V (x0, t0)e
∫ t∧τr

t0
µ(s)ds

+
∫ t∧τr

t0
[LV (x,s)−µ(s)V (x,s)]e

∫ t∧τr
s µ(θ)dθ ds

+
∫ t∧τr

t0

∂V (x,s)
∂x

g(x,s)e
∫ t∧τr

s µ(θ)dθ dw(s).

Then taking expectation on both sides of the above equa-
tion and from (7), we have

E[V (x(t ∧ τr), t ∧ τr)]≤ E
[
V (x0, t0)e

∫ t∧τr
t0

µ(s)ds
]
. (8)

Since µ(t) is a USF and t ∧ τr ≥ t0 a.s., from Lemma 3,
there exist constants c > 0 and δ ≥ 0 such that (8) implies

E [V (x(t ∧ τr) , t ∧ τr)]≤E
[
V (x0, t0)e−c(t∧τr−t0)+δ

]
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≤V (x0, t0)eδ < ∞.

By Lemma 2, we can obtain τ∞ = ∞ a.s.. Hence, combin-
ing (6) with (8) leads to

E [V (x(t), t)]≤V (x0, t0)e
∫ t

t0
µ(s)ds

≤α2 (|x0|)e−c(t−t0)+δ , ∀t ∈ [t0,∞) .

Denoting β̃ (|x0| , t− t0) , α2 (|x0|)e−c(t−t0)+δ , obviously,
β̃ (·, ·) is a KL function. Then the above inequality can be
rewritten as

E [V (x(t), t)]≤ β̃ (|x0| , t− t0) , ∀t ∈ [t0,∞) .

Using Chebyshev’s inequality and the above inequality,
there exist a function γ(·) ∈ K∞ and a sufficiently small
ε = ε(γ) such that for all t ≥ t0,

P
{
|x(t)| ≥ α

−1
1

(
γ

(
β̃ (|x0| , t− t0)

))}
≤ P

{
V (x(t), t)≥ γ

(
β̃ (|x0| , t− t0)

)}
≤ E [V (x(t), t)]

γ

(
β̃ (|x0| , t− t0)

) ≤ ε.

Taking β (·, ·), α
−1
1 ◦γ ◦ β̃ (·, ·), we have β (·, ·)∈KL and

P{|x(t)|< β (|x0| , t− t0)} ≥ 1− ε, ∀t ∈ [t0,∞) .

This completes the proof. �

Remark 1: Different from the classical Lyapunov sta-
bility theory, the right hand side of inequality (7) is al-
lowed to be indefinite due to the property of USF µ(t).
Therefore, the conditions given in Theorem 1 are less con-
servative to test the asymptotic stability for a class of time-
varying stochastic nonlinear systems.

3.2. GAS-P for switched stochastic nonlinear system
with MDADT switching

Consider the following time-varying switched stochastic
nonlinear system

dx(t) = fσ(t)(x(t), t)dt +gσ(t)(x(t), t)dw(t),

x(t0) = x0, (9)

where x(t) ∈ Rn is the state. σ(t) : [t0,∞)→P is called
a switching signal and is right hand continuous and piece-
wise constant in t, P = {1,2, · · · ,M} is a finite index set
with M being the number of subsystems. For each p ∈P ,
functions fp : Rn× [t0,∞)→ Rn and gp : Rn× [t0,∞)→
Rn×m are locally Lipschitz in x and piecewise continuous
in t, and | fp(0, t)|= ‖gp(0, t)‖≡ 0. Other explanations are
as the same as for system (1).

Remark 2: For switched system (9), only local Lips-
chitz condition is assumed to the functions fp and gp with-
out the linear growth constraint which is different from

[45]. However, based on some mild and easily verified
conditions, the switched system (9) still has a unique for-
ward complete solution under an arbitrary switching sig-
nal as shown in Theorem 2.

For a switching signal σ(t), the instants t1 < · · · < ti <
ti+1 < · · · represent the switching sequence and the σ (ti)

th

subsystem is active when t ∈ (ti, ti+1). Before presenting
the criteria on stability of switched stochastic nonlinear
system (9), the following definition of mode-dependent
average dwell time (MDADT) is given.

Definition 4 [10]: For a switching signal σ(t) and any
T ≥ t ≥ t0, let Nσ p(T, t) be the switching numbers that
the pth subsystem is activated over the interval [t,T ] and
Tp(T, t) denote the total running time of the pth subsystem
over the interval [t,T ], p ∈P . We say that σ(t) has a
MDADT τap if there exist positive numbers N0p (N0p is the
mode-dependent chatter bounds here) and τap such that

Nσ p(T, t)≤ N0p +
Tp(T, t)

τap
, ∀T ≥ t ≥ t0.

Theorem 2: Consider the switched stochastic non-
linear system (9). Suppose that there exist functions
Vp(x, t) ∈ C2,1, class K∞ functions α p, ᾱp, USFs µp(t) ∈
PC, and positive constants ηp ≥ 1, cp > 0, δp ≥ 0, p ∈P
such that for ∀p ∈P and all x ∈ Rn, t ≥ t0

α p(|x|)≤Vp(x, t)≤ ᾱp(|x|), (10)

LVp(x, t)≤ µp(t)Vp(x, t), (11)

and σ (ti) = p, σ
(
t−i
)
= q with ∀p, q ∈P , p 6= q

E [Vp (x(ti) , ti)]≤ ηpE
[
Vq
(
x
(
t−i
)
, t−i
)]
, (12)

then there exists a unique solution to system (9) on [t0,∞)
and the equilibrium x(t) = 0 of system (9) is GAS-P for
any switching signal with MDADT

τap ≥ τ
∗
ap =

lnηp +δp

cp
. (13)

Proof: From Theorem 1, for each p ∈P , the pth sub-
system has a unique solution on [t0,∞). Thus, under an
arbitrary switching signal σ(t), the switched stochastic
nonlinear system (9) has a unique solution on [t0,∞) by
a recursive method similar to [50]. The first conclusion is
obtained.

For any T > 0, let t1, · · · , ti, ti+1, · · · , tNσ
be the switch-

ing times on interval [t0,T ], where Nσ , Nσ (T, t0) stands
for the total switching numbers of the whole switched
system over the interval [t0,T ]. From Definition 4, let
Nσ p , Nσ p (T, t0) denote the switching numbers that the
pth subsystem is activated over the interval [t0,T ]. Thus,
Nσ = ∑

M
p=1 Nσ p. Then for any t ∈ [ti, ti+1), we set

Wσ(ti)(x(t), t),Vσ(ti) (x(t), t)e−
∫ t

t0
µ

σ(ti)
(s)ds

.
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Similar to the proof of Theorem 1, for any t ∈ [ti, ti+1), we
can obtain

E
[
Vσ(ti)(x(t), t)

]
≤ E

[
Vσ(ti) (x(ti) , ti)

]
e
∫ t

ti
µ

σ(ti)
(s)ds

.

The above equation together with (12) yields that

E[Vσ(ti)(x(t
−
i+1), t

−
i+1)]

≤ E[Vσ(ti)(x(ti), ti)]e
∫ ti+1

ti µσ(ti)(s)ds

≤ ησ(ti)E[Vσ(ti−1)(x(t
−
i ), t

−
i )]e

∫ ti+1
ti µσ(ti)(s)ds

≤ ησ(ti)E[Vσ(ti−1)(x(ti−1), ti−1)]e
∫ ti

ti−1
µσ(ti−1)(s)ds

× e
∫ ti+1

ti µσ(ti)(s)ds

≤ ησ(ti)ησ(ti−1)E[Vσ(ti−2)(x(t
−
i−1), t

−
i−1)]

× e
∫ ti

ti−1
µσ(ti−1)(s)ds+

∫ ti+1
ti µσ(ti)(s)ds

≤ ·· · ≤
i−1

∏
k=0

ησ(tk+1)e
i

∑
k=0

∫ tk+1
tk

µσ(tk )
(s)ds

Vσ(t0)(x0, t0).

Therefore,

E
[
Vσ(T−) (x(T ) ,T )

]
≤ E

[
Vσ(tNσ )

(x(tNσ
) , tNσ

)
]

e
∫ T

tNσ
µ

σ(tNσ )
(s)ds

≤
Nσ−1

∏
k=0

ησ(tk+1)e
Nσ−1

∑
k=0

∫ tk+1
tk

µ
σ(tk)

(s)ds+
∫ T

tNσ
µ

σ(tNσ )
(s)ds

×Vσ(t0) (x0, t0)

≤
M

∏
p=1

η
Nσ p
p e

M
∑

p=1
∑

l∈ψ(p)

∫ tl+1
tl

µp(s)ds+
∫ T

tNσ
µ

σ(tNσ )
(s)ds

×Vσ(t0) (x0, t0) , (14)

where ψ(p) denotes the set of l satisfying σ (tl) = p, tl ∈
{t0, t1, · · · , ti, ti+1, · · · , tNσ−1}. Since, for each p∈P , µp(t)
is a USF, from Lemma 3, there exist constants cp > 0 and
δp ≥ 0 such that∫

τ2

τ1

µp(s)ds≤−cp (τ2− τ1)+δp, ∀τ2 ≥ τ1 ≥ t0.

(15)

Combining (14) with (15) gives

E
[
Vσ(T−) (x(T ) ,T )

]
≤

M

∏
p=1

η
Nσ p
p e

M
∑

p=1
∑

l∈ψ(p)
[−cp(tl+1−tl)+δp]−c

σ(tNσ )
(T−tNσ )+δ

σ(tNσ )

×Vσ(t0) (x0, t0)

≤ e
M
∑

p=1
(N0p lnηp+Nσ pδp)

e
M
∑

p=1

(
lnηp
τap
−cp

)
Tp

Vσ(t0) (x0, t0)

≤ e
M
∑

p=1
N0p(lnηp+δp)

e
M
∑

p=1

(
lnηp+δp

τap
−cp

)
Tp

Vσ(t0) (x0, t0) .

Hence, if there exist constants τap satisfying (13), we have

E[Vσ(T−)(x(T ),T )]

≤ e
M
∑

p=1
N0p(lnηp+δp)+max

p∈P
(

lnηp+δp
τap

−cp)(T−t0)
Vσ(t0)(x0, t0).

(16)

By denoting λ ,−max
p∈P

(
lnηp+δp

τap
− cp

)
≥ 0, from (10) and

(16), there exists a class KL function

β̃ (|x0|,T − t0), e
M
∑

p=1
N0p(lnηp+δp)−λ (T−t0)

ᾱσ(t0)(|x0|)

such that

E[Vσ(T−)(x(T ),T )]≤ β̃ (|x0|,T − t0), ∀T ∈ [t0,∞).

In consequence, for any ε > 0, there exists a function
β (·, ·) ∈ KL such that

P{|x(T )|< β (|x0|,T − t0)} ≥ 1− ε, ∀T ∈ [t0,∞).

This allows us to conclude. �

Remark 3: Compared with the restriction
∫

∞

t0 φ+(s)ds
<∞ (φ+(t) is the positive parts of indefinite function φ(t))
in [45], the USFs µp(t), p∈P may be unbounded and the
integral of µ+

p (t) may be infinite, i.e.,
∫

∞

t0 µ+
p (s)ds = ∞,

such as µ1(t) and µ2(t) in Example 2. Therefore, the cri-
teria on global asymptotic stability proposed in this paper
are weaker.

Remark 4: Since USFs are mode-dependent, the
MDADT switching scheme can guarantee that the ob-
tained results are less conservative than that by using
ADT switching scheme. Moreover, the application of the
USFs makes the conditions of UGAS feasible for nonau-
tonomous switched stochastic systems by comparing with
the existing literature on autonomous the switched sys-
tems with MDADT switching [10, 24, 25].

4. NUMERICAL EXAMPLES

The obtained stability criteria can be used as the de-
sign conditions of a set of stabilizing controllers for non-
autonomous stochastic nonlinear systems with MDADT
switching. In this section, numerical examples are pre-
sented to study the stabilization problem. Based on these
conditions, the stabilizing controllers can be designed to
achieve the stabilization of the systems, which demon-
strates the potential and validity of the results obtained.

Example 1: Consider a non-switched stochastic non-
linear system as follows:

dx = f (x, t)dt +g(x, t)dw, (17)

where x = (x1,x2)
T, w = (w1,w2)

T, w1 and w2 are two mu-
tually independent scalar standard Wiener processes,

f (x, t) =

 − 1
4 x3

1 +
(

t cos t
2(1+t) −

1
4

)
x1−2x2 cos t(

t cos t
2(1+t) −

3
4

)
x2 +2x1 cos t

 ,
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g(x, t) =

 x2
1

2
√

1+x2
2

− 1√
2
x2 sin t

1√
2
x2 sin t x2

1

2
√

1+x2
2

 .

Let V (x) = 1
2

(
x2

1 + x2
2

)
. Then, we have

LV (x)≤ µ(t)V (x),

where µ(t) = t cos t
1+t −

1
2 . We calculate that

∫ t

s
µ(θ)dθ =− 1

2
(t− s)+ sin t− sins

− sin t
1+ t

+
sins
1+ s

−
∫ t

s

sinθ

(1+θ)2 dθ

≤− 1
2
(t− s)+5, ∀t ≥ s≥ 0.

Thus, µ(t) is a USF. The conditions of Theorem 1 are sat-
isfied, then the zero solution x(t) = 0 of system (17) is
GAS-P.

Example 2: Consider the following switched stochas-
tic nonlinear control system.

dx = fσ (x,uσ , t)dt +gσ (x,uσ , t)dw, (18)

where the state is x = (x1, x2)
T ∈ R2, the switching signal

is σ : [t0, ∞)→{1, 2}, up = (up1, up2)
T ∈R2 (p= 1, 2) are

control inputs, w = (w1, w2)
T, w1 and w2 are two mutually

independent scalar standard Wiener processes,

f1 (x,u1, t) =

(
− 1

4 x3
1 +

t cos t2

4 x1−2x2 cos t +u11
t cos t2

4 x2 + x1 cos t +u12

)
,

f2 (x,u2, t) =

(
t cos t2

2 x1 +2|cos t|x2 +u21
t cos t2

2 x2−2|cos t|x1 +u22

)
,

g1 (x,u1, t) =

 x2
1

2
√

1+x2
2

− 1√
2
x2 sin t

1
2 x2 sin t x2

1

2
√

2(1+x2
2)

 ,

g2 (x,u2, t) =

( x1√
1+x2

2

0

0 x2√
2

)
.

Choose V1 =
1
2 x2

1 + x2
2 and V2 =

1
2

(
x2

1 + x2
2

)
. Based on the

MDADT switching scheme, the controller is designed

u1 =

(
−1

4
x1, −

1
2

x2

)T

, u2 =

(
−x1, −

3
4

x2

)T

such that

LVp(x)≤ µp(t)Vp(x), p = 1,2

with µ1(t) = 1
2 t cos t2− 1

2 and µ2(t) = t cos t2− 1. Since
for ∀t ≥ s ≥ 0, we have

∫ t
s µ1(θ)dθ ≤ − 1

2 (t− s)+ 1
2 and∫ t

s µ2(θ)dθ ≤−(t− s)+1, µ1(t) and µ2(t) are two USFs.

Table 1. USFs and admissible switching signals under two
different switching schemes.

Switching
schemes

MDADT ADT

USFs µ1(t) = 1
2 t cos t2− 1

2 ,

µ2(t) = t cos t2−1
µ(t) = 1

2 t cos t2− 1
2

Switching
signals

τ∗a1 = 2.4, τ∗a2 = 1
(η1 = 2, η2 = 1,

c1 =
1
2 , δ1 =

1
2 , c2 = 1,

δ2 = 1)

τ∗a = 2.4 (η1 = η2 = 2,
c = 1

2 , δ = 1
2 )

For comparison, the controllers designed by applying
ADT switching scheme are given as follows:

u1 =

(
−1

4
x1, −

1
2

x2

)T

,

u2 =

(
−
(

t cos t
4

+
3
4

)
x1, −

(
t cos t

4
+

1
2

)
x2

)T

.

Then we haveLVp(x)≤ µ(t)Vp(x), p= 1, 2, where µ(t)=
1
2 t cos t2− 1

2 . The USFs and admissible switching signals
under the two switching schemes are listed in Table 1.
From Table 1, we can see that ADT switching is a special
case of MDADT switching. According to Theorem 2, the
zero solution x(t) = 0 of switched system (18) is GAS-P
under the both switching schemes of MDADT and ADT.

By choosing the same initial condition x0 = (1,−1)T,
the corresponding state responses of the closed-loop sys-
tem are shown in Fig. 1 and Fig. 2, respectively. It can

Fig. 1. Time response of the state under MDADT switch-
ing signal σ with τa1 = 2.5 and τa2 = 1.

Fig. 2. Time response of the state under ADT switching
signal σ with τa = 2.5.
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be seen that the fluctuation of the state trajectories under
the MDADT switching scheme is smaller than that un-
der the ADT switching scheme. Thus, as demonstrated in
[10], the MDADT switching scheme can guarantee that
the proposed results of this paper are less conservative.

5. CONCLUSIONS

The global asymptotic stability in probability for the
time-varying switched stochastic nonlinear systems is in-
vestigated in this paper. By virtue of the properties of uni-
formly stable functions, the right hand side of infinitesimal
generator for each active subsystem acting on Lyapunov
function is relaxed to be indefinite. Then improved crite-
ria on asymptotic stability for the switched stochastic non-
linear systems are derived. Moreover, MDADT switching
scheme is applied to guarantee that the obtained results are
less conservative. Finally, numerical examples are given to
illustrate the effectiveness of the proposed results.
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