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Estimation of the Shapley Value of a Peer-to-peer Energy Sharing Game
Using Multi-Step Coalitional Stratified Sampling
Liyang Han* � , Thomas Morstyn, and Malcolm McCulloch

Abstract: One of the main objectives of a peer-to-peer energy market is to efficiently manage distributed energy
resources while creating additional financial benefits for the participants. Cooperative game theory offers such
a framework, and the Shapley value, a cooperative game payoff allocation based on the participants’ marginal
contributions made to the local energy coalition, is shown to be fair and efficient. However, its high computational
complexity limits the size of the game. In order to improve this peer-to-peer cooperative scheme’s scalability, this
paper investigates and adapts a stratified sampling method for the Shapley value estimation. It then proposes a
multi-step sampling strategy to further reduce the computation time by dividing the samples into incremental parts
and terminating the sampling process once a certain level of estimation performance is achieved. Finally, selected
case studies demonstrate the effectiveness of the proposed method, which is able to scale up the game from 20
players to 100 players.
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1. INTRODUCTION

The increasing penetration of distributed energy re-
sources (DER) poses challenges to distribution network
operation. One of the most important topics recent re-
searches have been focusing on is how to maintain the
reliability of energy supply while encouraging distributed
renewable generation, which is highly variable and inter-
mittent [1]. Curtailment is applied in some networks with
high renewable generation [2]. However, it introduces in-
efficiency into the energy system and financially penal-
izes owners of renewable resources. Centralized control
of DER is also proposed in various researches, but they
are limited by their scalability [3]. Distributed control sys-
tems are able to coordinate DER efficiently in real-time to
maintain the network stability [4], but they tend to over-
look the fact that prosumers, proactive-consumers with
distributed energy resources that actively control their en-
ergy behaviors, are independent entities who need incen-
tives to participate in such a centralized control scheme
[5]. The concept of peer-to-peer (P2P) energy markets has
gained tremendous attention both in the industry and in
academia in recent years, as it is considered a key mar-
ket strategy to financially encourage efficient distributed

management of DER [6].

A key feature of a P2P sharing scheme is its ability to
use local flexibility to offset generation uncertainty, [7].
Local flexibility often takes the form of energy storage
(ES), which can be modeled in a similar way as other types
of flexible demand [8]. With the fast increasing amount
of distributed generation, the price to export energy has
largely fallen below the price to import [9,10]; hence, for a
single prosumer, the benefit of flexibility is easily reflected
in their energy bills when they increase the local usage
of their own generation by optimally scheduling their ES
systems [11]. In a P2P market, where local flexibility and
variable generation can be matched among participants,
additional joint benefits can be created [12]. At the same
time, however, it becomes a challenge to allocate these ad-
ditional benefits to each participant in an efficient and fair
way.

Game theory is adopted in some recent P2P market
studies to formulate financial incentives to affect prosumer
behavior. Dynamic pricing is often coupled with non-
cooperative game theoretic frameworks [13–15]. Using an
iterative process to update the prices based on prosumer
operation decisions in each iteration, these schemes seek
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to find an equilibrium, where no player can be financially
better of deviating from said operation [16]. Even though
a non-cooperative game theoretic scheme can be solved in
a distributed fashion [17], and is able to achieve the maxi-
mum welfare at the system level [18], it does not offer the
flexibility at market equilibrium to redistribute the benefits
[19], causing concerns about fairness. Cooperative game
theory, on the other hand, focuses on allocating the max-
imized joint benefits among the participants to meet cer-
tain social criteria, such as fairness, and is thus adopted to
construct P2P markets as well [20–23]. It is shown in [20]
that financial rewards can be guaranteed and fairly allo-
cated using the Shapley value, which is computed based
on the contribution each prosumer makes to the coopera-
tive scheme.

A player’s Shapley value in a cooperative game is the
weighted average of their marginal contribution to all the
possible coalitions that can be constructed among all play-
ers [24]. In other words, for an N-player game, the val-
ues of all 2N possible coalitions need to be computed.
This means that the computation of the Shapley value be-
comes intractable when increasing the number of players.
In order to overcome the computational issue, [25] uses
a sample-based approximation of the Shapley value of the
cooperative scheme, which is constructed as simple games
with binary outcomes representing whether a coalition of
battery-owning households can overcome a hard network
constraint. However, this is not a full P2P market scheme
as it overlooks the potential contributions made by local
generation and small ES systems. The computational com-
plexity is a limiting factor in all the cooperative game the-
oretic P2P schemes that incorporate both distributed gen-
eration and ES systems [21–23], and the largest number
of participants demonstrated in these studies is only 15.

Not limiting to the application of cooperative game the-
ory in P2P markets, techniques to estimate the Shapley
value have been explored in some previous literature, sam-
pling being the main methodology. A random sampling
method for the Shapley value estimation was proposed in
[26], and then modified in [27] by adding a stratification
step to improve the accuracy of the estimation.

To improve the scalability of the P2P cooperative game
proposed in the authors’ previous work [23], this paper
formulates a novel coalitional stratified sampling method
to estimate the Shapley value. It adapts the existing ran-
dom sampling methods by creating coalitional strata and
comparing their sizes with the preset sample size to cus-
tomize the sample size for each coalitional stratum. Ad-
ditionally, the paper proposes a novel multi-step sam-
pling strategy to further reduce the computation time. This
multi-step sampling strategy provides a metric to measure
the estimation accuracy and terminates the sampling pro-
cess when the desired accuracy is achieved. The proposed
method is shown in case studies to outperform existing
methods both in terms of the computation time and the

estimation accuracy. To the best of the authors’ knowl-
edge, this is the first time the sampling method is used in
constructing a scalable cooperative P2P market scheme.
With a realistically sized P2P market (>50 participants),
it is then possible to analyze the impact of different DER
adoption rates on prosumer profitability. Some interesting
findings are shown in the case studies.

2. P2P COOPERATIVE GAME

In an N-player cooperative game, the grand coalition
N is defined as the group of all N players. Any subset of
the grand coalition T : T ⊆ N is called a coalition. The
basic framework of the P2P cooperative game proposed in
[23] involves mainly three steps. Step 1 is to cooperatively
manage DER within all coalitions, which requires opti-
mally scheduling the ES units to minimize the coalitional
energy cost, see Subsection 2.1. Step 2 is to quantify the
value of forming each coalition, see Subsection 2.2. Step 3
is to divide the total energy cost savings from forming the
grand coalition to all the players based on certain criteria,
see Subsection 2.3.

2.1. Coalitional energy management
We index each prosumer by i and the grand coalition

by i ∈ N := {1,2, ...,N}. If we consider K timesteps (t =
1,2, ...,K) with a time interval of ∆t, the total energy cost
of a coalition T can be written as

FT (b) =
K

∑
t=1

∑
i∈T

{
rim

t [pit +bit ]
++ rex

t [pit +bit ]
−
}
,

where subscripts i and t are indices for the player and
the timestep respectively. The known inputs are rim

t , rex
t ,

and pit , which are electricity import price (£/kWh), elec-
tricity export price (£/kWh), and net energy consumption
(positive) or generation (negative) (kWh) without ES. The
variables are b ∈ RN×K := bit ,∀i ∈ [1,N],∀t ∈ [1,K]: ES
charge (positive) or discharge (negative) energy (kWh).
We also define operation [z]+(−) = max(min){z,0}.

With the assumption rim
t > rex

t ,∀t, we can schedule all
the ES units’ operation within coalition T to minimize the
coalitional energy cost G(T ), which is defined as

G(T ) = min
b

FT (b)

s.t. bi ≤ bit ≤ bi, ∀i ∈ T ,∀t ∈ [1,K], (1)

eiSoCi ≤ eiSoC0
i +

k

∑
t=1

([bit ]
+

η
in
i +[bit ]

−/η
out
i )

≤ eiSoCi, ∀i ∈ T ,∀k ∈ [1,K], (2)
K

∑
t=1

([bit ]
+

η
in
i +[bit ]

−/η
out
i ) = 0, ∀i ∈ T , (3)

where (1), (2), and (3) represent the ES power constraint,
energy constraint, and cycle constraint respectively. We
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Fig. 1. 14 Prosumer loads: (a) individual load consump-
tion, (b) individual load including PV generation,
(c) grand coalition load and non-cooperative and
cooperative ES operation profiles, (d) grand coali-
tion load with non-cooperative and cooperative ES
operation.

consider each prosumer i’s ES system has an energy ca-
pacity (kWh) of ei ≥ 0, a charge limit (kWh) of bi ≥ 0 and
a discharge limit (kWh) of bi ≥ 0 over the time span of
∆t, a charge efficiency of η in

i ∈ (0,1) and a discharge ef-
ficiency of ηout

i ∈ (0,1), an upper state of charge limit of
SoCi ∈ [0,1] and a lower state of charge limit of SoCi ∈
[0,1], and an initial state of charge of SoC0

i ∈ [0,1]. For
a prosumer who does not own an ES system, we set their
energy capacity and charge/discharge limits all as zeros.

It is understood that the ES systems degrade with us-
age. In order to obtain the accurate ES inputs, it needs to
undergo regular reference performance tests, which cost
time and introduce additional degradation [28]. To reduce
the cost and time, a data-driven state of health estimation
method is introduced in [29], which has the potential to be
implemented if the concern for privacy violation could be
mitigated.

Fig. 1 demonstrates the effect of cooperative ES oper-
ation in a 14-prosumer scenario. As shown in (d), the co-
operative ES operation tends to flatten the load as it tries
to match the consumption and generation within the coali-
tion to minimize the coalition energy cost.

2.2. Value of coalitions

The purpose of using cooperative game theory is to es-
tablish a framework to quantify the benefit of coopera-
tion, and then to allocate the benefit to the participants
efficiently. The coalitional energy cost provides a great
metric to evaluate a coalition’s performance. Here, we de-
fine the value of a coalition T as the energy cost savings
obtained by forming the coalition. This is given by the
difference between the sum of the energy costs of all the
prosumers in T when they schedule the ES systems in-

dividually, and the minimum coalitional energy cost of
T when the prosumers schedule their ES systems collec-
tively: v(T ) = ∑i∈T G({i})−G(T ).

By this definition, the value of the grand coalition be-
comes the total energy cost savings of a P2P cooperative
game, which denotes the total amount of payoffs we can
award to all the participants.

2.3. Prosumer payoffs and shapley value
The second step in a cooperative game framework is the

allocation of payoffs. We use vector x ∈ RN as the payoff
allocation whose entry xi represents the payment to pro-
sumer i ∈ N . One important payoff allocation is called
the Shapley value denoted as φ = {φi,∀i ∈ N} [24], rep-
resenting each player’s weighted average marginal contri-
bution to all possible coalitions within the game:

φi = ∑
T ⊂N ,i/∈T

(|T |)!(N−|T |−1)!
N!

[v(T ∪ i)− v(T )]. (4)

The Shapley value also satisfies the following axioms:

1) (Efficiency) ∑i∈N φi = v(N ). This requires the entirety
of the value created by the grand coalition to be allo-
cated to the players.

2) (Individual Rationality) φi ≥ v({i}),∀i ∈ N . This en-
sures that no player is penalized for cooperating.

3) (Symmetry) If v(T ∪{i}) = v(T ∪{ j}),∀T ⊆ N ,T ∩
{i, j} = /0, then φi = φ j. This means that two players
should be assigned the same Shapley value if they have
the same marginal contributions to all the coalitions.

4) (Dummy Axiom) If v(T ) = v(T ∪ {i}),∀T ⊆ N ,T ∩
{i} = /0, then φi = 0. Therefore, a player’s Shapley
value should be zero if they add zero marginal value
to any of the coalitions.

5) (Additivity) If v and u are characteristic functions, then
φi(v+ u) = φi(v) + φi(u),∀i ∈ N . This indicates that
the Shapley value of two games played at the same
time should be the sum of the two games’ Shapley val-
ues when played separately.

Axiom (1) guarantees that all the profits allocated to the
prosumers add up to the total energy cost savings from the
grand coalition. In our P2P cooperative game, v({i}) =
0,∀i ∈ N , so Axiom (2) requires φi ≥ 0,∀i ∈ N . Axiom
(3) and (4) indicate the ‘fairness’ of the payoff allocation.
Axiom (5) is not actively used in this paper as the P2P
cooperative game is the only game discussed.

The Shapley value offers a way to incentivize pro-
sumers to participate in this cooperative scheme, improv-
ing the local energy supply reliability while encouraging
the efficient use of distributed renewable generation. How-
ever, the scalability of the proposed model is very limited
because the Shapley value’s computational time increases
exponentially with the size of the grand coalition. The fol-
lowing section looks into a sampling method to estimate
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the Shapley value to reduce the model’s computational
complexity.

3. ESTIMATION OF SHAPLEY VALUE

The scalability of the P2P cooperative game model is
mainly limited by the sheer number of cost minimization
problems that are required to be solved. This number is
equal to the number of possible coalitions 2N , where N is
the number of participating prosumers. Since the Shapley
value is the weighted average of a player’s marginal con-
tributions, sampling is identified as a promising estimation
technique to be applied in our P2P cooperative game.

3.1. Stratified random sampling
The conventional definition is expressed in (4). [30]

provided an alternative definition of the Shapley value
expressed in terms of all possible orders of the play-
ers, which was then adopted by [26] to develop a ran-
dom sampling method to estimate the Shapley value. In
this approach, π(N ) is defined as the set of all possi-
ble permutations with player set N , where each permu-
tation is a sequence of all the players in a specific or-
der. For a given permutation O ∈ π(N ), O(l) denotes
the player in position l, and Prei(O) denotes the set of
predecessors of Player i, or the coalition of players that
are positioned ahead of Player i in the player sequence
represented by O. Therefore, if i = O(l), Prei(O) =
{O(1),O(2), ...,O(l − 1)}. Player i’s marginal contribu-
tion to the coalition Prei(O) is thus a function of O:

δ (O)i = v(Prei(O)∪ i)− v(Prei(O)). (5)

The alternative definition of the Shapley value can be
written as

φi = ∑
O∈π(N )

1
N!

δ (O)i, i ∈N . (6)

Since |π(N )|= N! and δ (O)i are equally weighted for
all O ∈ π(N ) in (6), the Shapley value can be estimated
using the unweighted expectation of δ (O)i given a set of
randomly sampled permutations M:

φi = ∑
O∈M

1
|M|

δ (O)i, i ∈N . (7)

Notice that when M = π(N ), (7) becomes the Shapley
value’s alternative definition in (6).

Using (7), the Shapley value can be estimated from
randomly sampling player permutations [26]. To improve
the estimation accuracy, [27] proposed a stratified random
sampling approach to divide the population of all player
permutations into subpopulations that have the same size
of predecessors for each player. This stratified random
sampling method follows the following steps.

1) A stratum, or a stratified set of player permutations is
defined as Pil := {O ∈ π(N ) | O(l) = i,∀i, l ∈ [1,N]}.
Therefore, Pil contains every permutation O ∈ π(N ),
in which player i is in position l. Player i’s mean
marginal contribution of each stratum is

φil =
1
|Pil | ∑

O∈Pil

δ (O)i, ∀i, l ∈ [1,N]. (8)

2) A random permutation sample Mil of size |Mil | is ob-
tained with replacement from each stratum Pil .

3) Adapted from (8), player i’s mean marginal contribu-
tion of the samples from each stratum is

φ il =
1
|Mil | ∑

O∈Mil

δ (O)i, ∀i, l ∈ [1,N]. (9)

The estimated Shapley value can then be calculated as
φ̂ st

i = ∑
N
l=1

1
N φ il , ∀i ∈ [1,N].

3.2. Modified sampling with optimal sample alloca-
tion

We notice that in (9), δ (O)i are equally weighted for
all O ∈ Mil . Because each player set (coalition) Prei(O)
appears (l − 1)!(N − l)! times for a given l, they have
the same probability of being sampled from Pil into Mil .
We define the coalitional stratum as the set of coalitions
Qil := {T ⊆ N | i /∈ T , |T | = l − 1,∀i, l ∈ [1,N]}, and
∆(T )i = v(T ∪ i)− v(T ). We then obtain a random sam-
ple Hil with replacement from Qil , and because the order
of players does not matter in a coalition, Hil can be consid-
ered a combination sample. Equation (9) can be rewritten
as

φ il =
1
|Hil | ∑

T ∈Hil

∆(T )i, ∀i, l ∈ [1,N]. (10)

In order to implement the stratified random sampling
method, a procedure to determine the sample size of each
stratum needs to be established. [26] identified the true
variance as a metric to allocate the samples among strata
to minimize the estimation error, and proposed a two-stage
Shapley value estimation algorithm with optimal sample
allocation. In the first stage, 50% of the samples are evenly
distributed to each stratum to obtain an initial estimated
Shapley value and each stratum’s sample variance. In the
second stage, the remaining 50% of the samples are opti-
mally allocated to each stratum in proportion to their sam-
ple variances calculated in the first stage. The final esti-
mated Shapley value is then calculated using the sampling
results from both stages.

We then recognize that |Qil |= (N−1)!
(l−1)!(N−l)! , which means

that evenly dividing the samples in the first stage could
result in a sample size larger than the size of some coali-
tional strata: |Hil | > |Qil |, especially when l is close to 1
or N. For these coalitional strata, calculating the accurate



Estimation of the Shapley Value of a Peer-to-peer Energy Sharing Game Using Multi-Step Coalitional Stratified ... 1867

mean marginal contribution φil requires less samples than
its estimate φ il with random sampling:

φil =
1
|Qil | ∑

T ∈Qil

∆(T )i, ∀i, l ∈ [1,N]. (11)

With (10) and (11), the modified two-stage stratified
random sampling method with optimal sample allocation
is detailed in Algorithm 1.

For the basic coalitional stratified random sampling
with optimal sample allocation, the main input is the to-

Algorithm 1: Coalitional Stratified Random Sampling
with Optimal Sample Allocation (inputs: h,Φ′,s′,h′).

Stage A
Φ←Φ′, s← s′

hA
il ← h

2N2

Ω←∅ : set of strata with sample sizes determined
for i ∈ [1,N], l ∈ [1,N] do

if hA
il > |Qil |= (N−1)!

(l−1)!(N−l)! then
HA

il ← Qil , htot
il ← |Qil |

h← h−|Qil |, Ω←Ω∪ (i, l)
else

HA
il ← hA

il samples with replacement from Qil

for T ∈ HA
il do

∆(T )i = v(T ∪ i)− v(T )
Φil ←Φil +∆(T )i, sil ← sil +(∆(T )i)

2

σ
2
il ← 1

h0
il+|HA

il |−1 (sil− (Φil)
2

h0
il+
|HA

il |)

Stage B
ω ←{(0,0)}: initialize ω to start following while loop
while ω 6=∅ do

for i ∈ [1,N], l ∈ [1,N] and (i, l) /∈Ω do
htot

il ← h σ
2
il

∑
N
i=1 ∑

N
l=1 σ

2
il

hB
il ← htot

il −hA
il

ω ←∅ : set of over-sampled strata in Stage 1
for i ∈ [1,N], l ∈ [1,N] and (i, l) /∈Ω do

if hB
il < 0 then
htot

il ← hA
il , h← h−hA

il , ω ← ω ∪ (i, l)
Ω←Ω∪ω

for i ∈ [1,N], l ∈ [1,N] and (i, l) /∈Ω do
HB

il ← hB
il samples with replacement from Qil

for T ∈ HB
il do

Φil ←Φil +∆(T )i, sil ← sil +(∆(T )i)
2

for i ∈ [1,N] do
for l ∈ [1,N] do

htot
il ← htot

il +h0
il

φ il ← Φil
htot

il

φ̂
st,opt
i ← ∑

N
l=1

1
N φ il

Φ′′←{Φil},h′′←{htot
il },∀i, l ∈ [1,N], s′′← s

φ̂←{φ̂ st,opt
i }, i ∈ [1,N]

return φ̂,Φ′′,s′′,h′′

tal sample size h, and the main output is the estimated
Shapley value φ̂. Stratum parameters Φ = {Φil},s =
{sil},∀i, l ∈ [1,N] are updated throughout the process to
facilitate the computation of the sample variances σ

2
il and

the mean marginal contributions φ il for each coalitional
stratum. h = {hil},∀i, l ∈ [1,N] denotes the total num-
ber of samples taken for each coalitional stratum. If the
algorithm is implemented on its own without any pre-
ceding sampling steps, we initiate the algorithm by set-
ting Φ′ = 0,s′ = 0,h′ = 0. After the algorithm is imple-
mented, the output Φ′′,s′′,h′′ store the updated values.
These three parameters are important for the multi-step
sampling explained in Section 3.3.

In Stage A, if the evenly distributed sample size is big-
ger than the stratum size: hA

il > |Qil |, we compute the pro-
sumer’s marginal contribution in all the possible samples
in this coalitional stratum by setting HA

il ← Qil , htot
il ←

|Qil |. The precise mean marginal contribution of Qil can
thus be obtained: φil = φ il . Meanwhile, the saved samples
hA

il−|Qil | can be added to Stage B. This way, The number
of samples remains the same to maintain a similar com-
putation time, while the accuracy of the estimation is im-
proved with the precise stratum marginal contribution for
some strata, and an increased number of samples for the
optimal allocation.

3.3. Multi-step sampling
Regardless of the sampling method, one common input

in these estimation models is the total sample size. It is
intuitive that the higher the sample size is, the more ac-
curate the estimation results tend to be, but the longer the
model is going to take. Considering that the goal of the
estimation is to scale up the game while maintaining a
reasonably accurate estimation of the Shapley value, the
two main metrics to evaluate the performance of an esti-
mation method should be the computation time τ and the
estimation accuracy, measured by the standard error of the
estimate as a percentage of the average player payoff:

σ(x̂,x)
x

=

√
∑

N
i (x̂i− xi)2/N

v(N )/N
×100%, (12)

where x̂, x, and x represent the estimated, the benchmark,
and the average payoffs respectively.

For a game of a small number of players, the estima-
tion accuracy can be evaluated by comparing the results to
those from the full Shapley value calculation. However, a
large number of tests with different sample sizes may be
needed to identify the minimum sample size h∗ required to
achieve a certain level of estimation accuracy σ ∗/x. Addi-
tionally, for games of different sizes, and even for games
of the same size but of different prosumer compositions,
h∗ might be different. It thus becomes computationally
cumbersome to have to identify h∗ for every new game.
For a game of a size too large to compute the true Shapley
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Algorithm 2: Multi-Step Coalitional Stratified Ran-
dom Sampling with Optimal Sample Allocation (inputs:
h,W,σ ∗).

ρ ← h/U
Φ0← 0, s0← 0, h0← 0, φ̂0← 0
for u ∈ [1,U ] do

(φ̂u,Φu,su,hu)←W (ρ,Φu−1,su−1,hu−1)
if σ(φ̂u, φ̂u−1)≤ σ ∗ then

end for loop.
φ̂← φ̂u

h∗← ρu
return φ̂,h∗

value, directly measuring the estimation accuracy is sim-
ply infeasible.

To address the challenge of sample size selection, a
multi-step sampling strategy is proposed in this paper. In
this strategy, we consider h as the maximum sample size,
and the sampling process is divided into U steps, with
each step of sample size ρ = h/U . We use functional W to
represent Algorithm 1: (φ̂,Φ′′,s′′,h′′) = W (h,Φ′,s′,h′).
And the implementation of the multi-step sampling strat-
egy is presented in Algorithm 2.

The main idea of the multi-step strategy is to verify the
estimation results as the the sampling process proceeds.
The sampling results are stored in memory, and as more
samples are added in each sampling step, the Shapley
value estimation is updated based on the results in all pre-
vious steps. After each step is completed, the updated esti-
mation results are compared against those of the last step,
and if the estimation difference between the two steps
measured by the standard error is below the set threshold:
σ(φ̂u, φ̂u−1) ≤ σ ∗, the algorithm stops as it is considered
that the estimation φ̂ = φ̂u has reached the desired accu-
racy. At this point, if the total number of samples drawn
is less than the set maximum sample size: h∗ < h, addi-
tional computation time is saved than the basic coalitional
stratified random sampling. Note that in order to obtain the
actual standard error of the estimate of the Shapley value
σ(φ̂u,φ), the true Shapley value φ needs to be computed.
It is computationally intractable for larger games, but the
case study in Section 4.1 shows a small game of 20 play-
ers to validate the effectiveness of this proposed multi-step
sampling strategy.

4. CASE STUDIES

In the following three case studies, we implement the
proposed sampling method to estimate the Shapley value
of the P2P cooperative game. In the first case study, we se-
lect a range of prosumer numbers so we can compare the
estimation accuracies and computation times of the Shap-
ley value estimation methods and the full Shapley value

calculation. In the second case study, we focus on the
potential financial losses for an individual player caused
by stochastic error, battery degradation, and the Shapley
value estimation error, and compare these losses with their
financial benefit gained from the game. In the third case
study, we scale up the size of the game to evaluate the
payoffs to the prosumers based on their DER types.

Some of the model inputs are as follows: the domes-
tic load data was measured in the Customer-Led Network
Revolution trials1. the model time frame is 24 hours start-
ing from the midnight of a sunny summer day in July.
The PV systems are 4kW with fixed 20 degree tilt, sim-
ulated in PVWatts2 using the London Gatwick solar data.
The ES model has an energy capacity of 7 kWh, a max-
imum charge power of 3.5 kW, a maximum discharge
power of 3.2 kW, both charge and discharge efficiencies
of 95%, an initial state of charge of 50%, and a state of
charge range of 20-95%. The energy import price follows
a UK Economy 7 residential rate structure: £0.08/kWh
for midnight-7am, and £0.18/kWh for 7am-midnight3, and
the energy export price is the UK feed-in tariff4 fixed at
£0.0379/kWh.

4.1. Sampling-based shapley estimation validation
In this case study, we focus on a 14-player game, for

which the true Shapley value can be easily computed. The
PV and ES adoption rates are both fixed at 50%, and both
ownerships are randomly assigned independently of each
other. In other words, each prosumer can have a PV sys-
tem, or an ES system, or both, or neither. We apply the
proposed multi-step sampling technique to both the ran-
dom sampling method and the modified stratified sam-
pling. Using h = 2000N, U = 20, we record the Shapley
value estimation at the end of each step φ̂u, and the es-
timation difference between every two steps measured by
the standard error σ(φ̂u, φ̂u−1). We then compare φ̂u with
the true Shapley value φ to verify its accuracy by calculat-
ing its standard error of the estimate σ(φ̂u,φ). The model
is run for 30 different games, each with randomly selected
load profiles and PV, ES assignments.

The results are shown in Fig. 2 with the standard er-
ror for each step averaged over 30 runs. Each data point
on a dotted line represents the standard error between
the estimations of the current step and the previous step.
Each data point on a solid line represents the standard
error between the estimation of the current step and the
true Shapley value. The random sampling method and
the modified stratified sampling method are represented
by yellow and blue lines respectively. It can be seen that

1www.networkrevolution.co.uk/project-library/dataset-tc5-
enhanced-profiling-solar-photovoltaic-pv-users/

2pvwatts.nrel.gov/pvwatts.php
3www.gov.uk/government/collections/domestic-energy-

prices
4www.ofgem.gov.uk/environmental-programmes/fit/fit-

tariff-rates
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Fig. 2. Standard error comparison using the multi-step
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fied sampling (N= 14). The data for each sampling
method at each sampling step are averaged over
30 runs with different inputs of prosumer load and
DER ownerships.
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using multi-step stratified sampling (N= 14).

σ(φ̂u, φ̂u−1) for both methods follow a similar declining
trajectory, while the stratified sampling method consis-
tently produces more accurate estimates of the Shapley
value as more samples are drawn. For example, it takes
only 7 steps for the stratified sampling method to produce
an estimate that has a 2% standard error from the true
Shapley value (σ(φ̂u,φ) ≈ 2%), whereas the basic ran-
dom sampling method requires 11 steps to reach the same
accuracy. We also notice that σ(φ̂u,φ) stops showing sig-
nificant improvement after Step 7, which is around the
time when σ(φ̂u, φ̂u−1) reaches 1%. Therefore, we choose
σ ∗ = 1%× x as the estimation accuracy criterion for the
remaining case studies. A comparison of the true Shap-
ley value and the multi-step sampling estimation for each
player in this 14-player game is shown in Fig. 3. It fur-
ther demonstrates that regardless of the player type, the
estimated values closely resemble the true Shapley value.

Applying Algorithm 2, we are able to scale up the game

Table 1. Model Computation Time τ (s).

No. players 10 14 20 50 100
full model 2E+1 3E+2 2E+4 N/A* N/A

full sampling 2E+1 2E+2 1E+3 4E+3 2E+4
multi-step smpl 2E+1 1E+2 3E+2 9E+2 4E+3

* N/A means the computation takes longer than 10 hours.

to 100 players within a reasonable time. Table 1 shows
the 10-run average computation time5 of the three mod-
els. We consider any time above 10 hours to be imprac-
tical for this application. As predicted, the full Shapley
value calculation is shown to be intractable. Sampling is
able to scale up the game significantly, and the proposed
multi-step sampling method can even compute the esti-
mated Shapley value in 1 hour for a 100-player game.

4.2. Single prosumer payoff analysis
This case study focuses on the financial payoff for an in-

dividual prosumer. Still using the 14-player game shown
in Fig. 3 as an example, we focus on the only player that
owns both PV and ES (marked by F), and conduct a
worst-case scenario analysis. Using the estimated Shapley
value, this player receives a reward of £0.36.

First, we consider the ES degradation cost, which is not
directly built into the cooperative game theoretic model
mainly due to the short time frame (24 hours). The average
wear cost (AWC) calculation presented in [31] is used to
estimate the cost incurred by the cooperation:

AWC =
Battery Price

ACC(DoD)×2×DoD×e×η in×ηout , (13)

where DoD is the depth of discharge, and ACC is the
achievable cycle count, a function of DoD. Based on the
model inputs, we have e = 7kWh, η in = ηout = 95% and
a state of charge range of 20-95%. Assuming the ES unit
in the model is a battery with a unit price of $156/kWh6,
the battery costs around £850 with a year 2019 aver-
age conversion rate of £1 = $1.287. Using a conserva-
tive 80% DoD, we have ACC(80%) = 1000 based on
[32]. Therefore, it can be calculated for this player that
AWC ≈ £0.084/kWh. The player’s battery operation pro-
files with and without cooperation are shown in Fig. 4,
which yields an additional 0.31kWh round-trip operation
for the cooperative case. Therefore, the wear cost incurred
by the cooperative scheme is £0.084× 0.31 = £0.026,
equivalent to 7.24% of the original reward.

Second, we analyze the impact of stochastic errors on
the prosumer financial payback. We conduct a Monte

5Running on a computer equipped with 16 GB RAM and a
2.8 GHz Quad-Core Intel Core i5 processor.

6https://about.bnef.com/blog/battery-pack-prices-fall-as-
market-ramps-up-with-market-average-at-156-kwh-in-2019/

7https://www.macrotrends.net/2549/pound-dollar-exchange-
rate-historical-chart
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tion energy cost savings.

Carlo analysis by treating all input load and PV profiles as
predictions. The actual load and PV profiles are generated
assuming the value for each time step follows a normal
distribution, for which the mean value is equal to the pre-
dicted value and the standard deviation can be specified.
The actual coalitional energy cost savings is calculated by
applying to the actual profiles the ES operations optimized
based on the predicted profiles. Assuming a standard de-
viation of 5% for solar, and 15% for prosumer loads, the
model is run 10 times for games of each size, which ranges
from 10 to 100 players. The results are shown in Fig. 5.
For all the tested cases, the saving reduction is all less than
10% of the total savings, which can be distributed in pro-
portion to the player payoffs. We consider the worst case
for the player in this case is a 10% payoff reduction.

Last, based on Fig. 2, the Shapley estimation can intro-
duce around 2% error, which is another 2% payoff reduc-
tion in the worst case. In total, the worst case can amount
to a total of roughly 20% reduction of payoff, which still
leaves a profit of £0.36×80% = £0.29 for the player.

4.3. Sampling-based shapley estimation for large
games

Having demonstrated the effectiveness of the Sampling
methods in estimating the Shapley value, we can now in-
vestigate the impact of various inputs on the model results
for large games. For a P2P cooperative game with 50 pro-
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Fig. 6. Estimated Shapley value by DER ownership type
with two different DER adoption rates (20% vs.
50%).

sumers, Fig. 6 compares the estimated Shapley values by
players’ DER ownership type, where each marker repre-
sents a prosumer’s estimated Shapley value. There are a
few interesting observations. First, except for a few out-
liers, prosumers with the same DER ownership type are
rewarded similar Shapley values regardless of the overall
DER adoption rate. Second, as the DER adoption rates
change, there is a significant shift in the Shapley val-
ues; when the DER adoption rates are low, PV owners
are awarded significantly higher Shapley values likely be-
cause they provide cheaper energy to the coalitions, while
when the DER adoption rates are high, pure consumers
and ES owners are awarded higher Shapley values likely
because they absorb more local generation. Third, as the
DER adoption rates increase, the average Shapley val-
ues by DER ownership type tends to converge despite the
wider spread among the pure consumers and prosumers
with only ES systems.

With the same 50 prosumers, we then pick out four typ-
ical prosumers with different DER ownership types, and
run the P2P cooperative model under four different scenar-
ios: 1) PV adoption rate is fixed at 30%, and ES adoption
rate varies from 10% to 50%, 2) PV adoption rate is fixed
at 50%, and ES adoption rate varies from 10% to 50%,
3) ES adoption is rate fixed at 30%, and PV adoption rate
varies from 10% to 50%, and 4) PV and ES are with the
same adoption rate that varies from 10% to 50%. Fig. 7
illustrates how the Shapley value changes with different
DER adoption rates. Based on the DER ownership type,
the trend at which the Shapley value changes with the
varying DER adoption rates can be very different. For ex-
ample, a consumer that does not own any PV or ES tends
to be awarded more when the adoption rates for the PV
and ES increase together, whereas a prosumer that owns
both PV and ES display the opposite trend. It is interesting
to note that when the PV adoption rate is fixed, whether at
30% or 50%, varying the ES adoption rate has very lit-
tle influence on the Shapley value regardless of the pro-
sumer type. In contrast, whether the ES adoption rate is
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Fig. 7. Estimated Shapley value with varying PV and ES
adoption rates.

fixed at 30% or follows the PV adoption rate, varying the
PV adoption rate has a significant impact on the Shapley
value of all prosumer types.

It is worth noting that the main purpose of the case
studies is to validate the scalability of the proposed sam-
pling method applied in the P2P cooperative game. The
specific results shown are dependent on the assumptions
made about the PV, ES system specifications, and the en-
ergy prices. Further sensitivity analyses are required to
generalize the results to other markets.

5. CONCLUSION

To improve the scalability of a cooperative game based
P2P market, this paper proposes the novel application of
a coalitional stratified random sampling method to esti-
mate the Shapley value. A multi-step sampling approach
is created to divide the sampling process to smaller steps.
By measuring the standard error of the estimate between
steps, it provides a way to verify the estimation results and
terminates the sampling process once a certain estimation
accuracy threshold is achieved, further reducing the com-
putation time. The maximum size of the game that can be
computed in a reasonable time (< 10 hours) is thus in-
creased from less than 20 players to over 100 players. For
games that are small enough to generate the true Shapley
value, the effectiveness of the proposed method is demon-
strated by showing a standard error of the estimate smaller
than 2% of a player’s average payoff. The proposed model
is then run on a P2P cooperative game of 50 players to
demonstrate the patterns of the Shapley value for different
prosumer DER ownership types and with varying DER
adoption rates. It shows that compared to the ES adoption
rate, the PV adoption rate has a much larger impact, both
negative and positive depending on the DER ownership
type, on the prosumer payoffs.
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