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Adaptive Trajectory Neural Network Tracking Control for Industrial
Robot Manipulators with Deadzone Robust Compensator
La Van Truong, Shou Dao Huang, Vu Thi Yen, and Pham Van Cuong* �

Abstract: This paper proposed a novel adaptive tracking neural network with deadzone robust compensator for
Industrial Robot Manipulators (IRMs) to achieve the high precision position tracking performance. In order, to deal
the uncertainty, the unknown deadzone effect, the unknown dynamics, and disturbances of robot system, the Radial
Basis function neural networks (RBFNNs) control is presented to control the joint position and approximate the
unknown dynamics of an n-link robot manipulator. The online adaptive control training laws and estimation of the
dead-zone are determined by Lyapunov stability and the approximation theory, so that the stability of the entire
system and the convergence of the weight adaptation are guaranteed. In this controller, a robust compensator is
constructed as an auxiliary controller to guarantee the stability and robustness under various environments such as
the mass variation, the external disturbances and modeling uncertainties. The proposed control is the verified on a
three-joint robot manipulators via simulations and experiments in comparison with PID and Neural networks (NNs)
control.
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1. INTRODUCTION

Recently, Robot manipulators have been widely applied
in the industrial. In fact, Industrial Robot manipulators are
multivariable nonlinear systems and they suffer from var-
ious uncertainties in their dynamics, which deteriorate the
system performance and stability, such as external distur-
bance, nonlinear friction, highly time-varying, and pay-
load variation. Therefore, achieving high performance in
trajectory tracking is a very challenging task. So, many re-
searchers were proposed adaptive controller, robust adap-
tive controller, fuzzy logic control, neural network con-
trol, etc. [1–8]. In [9], the vector control method of induc-
tion motor using an MRAS-fuzzy logic observer was pre-
sented. This type of observer combines the Model Refer-
ence Adaptive Systems (MRAS) technique with the fuzzy
logic to design an MRAS-fuzzy logic observer which can
at first estimate the rotor speed and second the rotor resis-
tance. In [10], adaptive model control and neural network
based trajectory planner were designed for dynamic bal-
ance and motion tracking of desired trajectories. However,
this control needed the knowledge of dynamics. In [11], an
adaptive controller based neural networks was proposed
to deal uncertainties and input saturation of robotic ma-

nipulators. The RBFNNs controller was used to approxi-
mate the unknown dynamic and an auxiliary system was
designed to solve the input saturation. In [12–16], adap-
tive neural network controllers were presented by using
output feedback methods, and in [17–26], artificial neu-
ral networks were widely used for the control design of
nonlinear systems. In addition, in practical control sys-
tem, Deadzone that is a natural and nonlinear item, widely
exists and takes adverse effects on the whole system. In
the robotic control, the performance of control systems is
generally influenced by deadzone, such as poor transient
response, large overshoot, and excessive steady state. To
deal these problems, some deadzone rejection technolo-
gies have proposed to enhance the performance of robotic
system. In [27–30], a compensation scheme was presented
for nonlinear actuator deadzone. These techniques pro-
vided a procedure for using neural networks to determine
the preinverse of an unknown right-invertible. In [28],
an adaptive tracking control was designed for a class of
nonlinear discrete time systems with deadzone input. In
this control, the neural network was used to approximate
the unknown function in the transformed system, and the
tracking error converged to neighborhood of zero. In [31],
the adaptive control of nonlinear dynamic systems with an
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unknown deadzone was focused on. The effective dead-
zone estimation technique was proposed by using neural
network for a wide range of system. To tackle effects of
deadzone, multilayers neural network is also used. Adap-
tive control based on multilayers neural network by com-
bining dynamic surface control and backstepping tech-
niques was developed for nonlinear system [32]. Although
multilayers neural network has approximating capabili-
ties, but no method exists to select the network structure
to achieve the desired approximation accuracy, and multi-
layers neural network tends to forget old information that
has results in bad approximation of data. Furthermore,
in comparing with multilayers neural network, RBFNNs
controllers that usually consume relatively less calculation
resources are simpler in both designing and application. In
this paper, we propose a novel adaptive tracking RBFNNs
to control the joint position and to deal the problem of
compensation dead- zone, unknown dynamic and external
disturbance for three link IRMs which the conventional
controllers cannot properly handle. By using Lyapunov
stability theory, the weights of RBFNNs are update on-
line, and the robustness and stability of the RBFNNs are
guaranteed. Comparing with the existing results in the lit-
eratures, our proposed controller is more flexible, and the
time consuming training process is not necessary.

This paper is organized as follows: The preliminaries
are described in Section 2. Section 3 presents Control de-
sign and Stability Analysis. The simulation and experi-
mental results are proposed in Section 4. Finally, in Sec-
tion 5, concluding remarks are given.

2. PRELIMINARIES

2.1. Model of robotic manipulators
In this paper, the dynamics of an n- link industrial robot

manipulator with external disturbance can be described in
the Lagrange equation as follows:

MR(q)q̈+CR(q, q̇)q̇+GR(q)+FR(q̇) = τ− τ0 (1)

with q = [q1 q2 . . . qn] ∈ Rn×1 is the joint position vec-
tor, q̇ = [q̇1 q̇2 . . . q̇n] ∈ Rn×1 is the velocity vector and
q̈ = [q̈1 q̈2 . . . q̈n] ∈ Rn×1 is the acceleration vector. MR(q)
expresses the n×n symmetric inertial matrix. CR(q, q̇) de-
notes the n× n vector of Coriolis and Centripetal forces.
GR(q) ∈ Rn×n denotes the Gravity vector. FR(q̇) denotes
the n× 1 vector of the frictions. τ0 expresses the n×
1 vector of the input unknown disturbances. And τ is the
n× 1 control input vector of joints torque. For design-
ing controller, several properties of the robot dynamics (1)
have been assumed as follows:

Property 1: MR(q) is the n×n symmetric inertial Ma-
trix and bounded:

m1‖x‖2 ≤ xT MR(q)x≤ m2‖x‖2, ∀x ∈ Rn, (2)

Fig. 1. Dead zone model.

where m1 and m2 are known positive constants.
Property 2: ṀR(q)− 2CR(q, q̇) is skew symmetry ma-

trix, in which

xT [ṀR(q)−2CR(q, q̇)]x = 0. (3)

Property 3: CR(q, q̇)q̇, GR(q) and FR(q) are satisfied:

‖CR(q, q̇)q̇‖ ≤Ck‖q̇‖2,

‖GR(q)‖ ≤ Gk,

‖FR(q̇)‖ ≤ Fk‖q̇‖+F0, (4)

where Ck, Gk, Fk, F0 are positive constants.
Property 4: τ0 ∈ Rn is the unknown disturbance and τ0

is bounded as follows:

‖τ0‖ ≤ τk, τk > 0. (5)

According to assumptions were given in [2], the dead zone
function that is shown in Fig. 1, is expressed as follows:

τ =D(u)

=


hr(u−dr) for u > dr,

0 for dl ≤ u≤ dr,

hl(u+dl) for u < dl .

(6)

Here, dr > 0, dl < 0 are unknown constant parameters of
dead zone. hl(u), hr(u) are the unknown smooth functions,
where u is control input before entering the dead zone. τ

is control input after entering the dead zone.
Therefore (6) can be rewritten as

τ = D(u) = u− satD(u), (7)

where the asymmetric saturation function is defined as

satD(u) =


dr for u > dr,

u for dl ≤ u≤ dr,

dl for u < dl .

(8)

2.2. Structure of RBFNNs
RBFNNs are a local mapping networks, which have a

few neurons respond to local area of the input space and



Adaptive Trajectory Neural Network Tracking Control for Industrial Robot Manipulators with Deadzone Robust ... 2425

Fig. 2. Structure of RBF neural networks.

determine the output of RBF networks. RBF networks can
approximate any single value continuous function with ar-
bitrary precision by the enough number of neurons in hid-
den layer. The configuration of RBFNNs are described in
Fig. 2.

Assume the output values of ideal RBFNNs are MR(q),
CR(q, q̇), GR(q), FR(q̇) and calculated as

M(q) = MR(q)+ΓM

=W T
M ∗ΞM(q)+ΓM, (9)

C(q, ·q) =CR(q, q̇)+ΓC

=W T
C ∗ΞC(q,q)+ΓC, (10)

G(q) = GR(q)+ΓG

=W T
G ∗ΞG(q)+ΓG, (11)

F(q̇) = MF(q)+ΓF

=W T
F ∗ΞF(q̇)+ΓF , (12)

where WM , W(C), and WG, WF are ideal optimum weight
value of RBF; ΞM , ΞC, ΞG, ΞF are outputs of hiden layer,
ΓM , ΓC, ΓG and ΓF are modeling error of M(q), C(q, ·q),
G(q), and F(·q), respectively, and n is the number of hid-
den notes.

The estimated values of MR(q), CR(q, q̇), GR(q) and
FR(q̇) can be expressed by RBF as follows:

M̂R(q) = Ŵ T
M ∗ΞM(q), (13)

ĈR(q, q̇) = Ŵ T
C ∗ΞC(q, q̇), (14)

ĜR(q) = Ŵ T
G ∗ΞG(q), (15)

F̂R(q̇) = Ŵ T
F ∗ΞF(q̇), (16)

where ŴM , ŴC, ŴG, and ŴF are estimates of WM , WC, WG

and WF , respectively.

3. CONTROL DESIGN AND STABILITY
ANALYSIS

3.1. Control design
We recommend the RBFNNs to find an adaptive law of

the suitable adaptive RBFNNs model that makes control
system able to achieve the required approximation errors
accuracy. Architecture of the dead zone compensator is
shown in Fig. 3.

To compensate the effects of dead zone, the control in-
put after passing the dead zone can be described in the
following form:

u = τd +η d̂r +(I−η)d̂l , (17)

where η = I if τd ≤ 0, η = 0 if τd < 0. The Direct control
input for robot manipulator can be expressed as follows:

τ =τ−d+η d̂r+(I−η)d̂l−ED(τd+η d̂r+(I−η)d̂l)

=τd− D̃T + D̃T
δ , (18)

where D̃ = D− D̂, D̃ = diag{d̃1, d̃2, ..., d̃n} and = [η
I−η ]T and the modelling mismatch δ satisfies the bound.

‖δ‖ ≤
√

n. (19)

Fig. 3. Addative dead zone.
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Define a tracking error vector e(t) and the sliding mode
function s(t) as the following equations:

e(t) = qd−q and ė(t) = q̇d− q̇, (20)

s(t) = ė+λe, (21)

where λ = diag(λ1, λ2, ..., λn) is the constant gain matrix.
Substituting (5-8) into (1), it can be rewritten as follows:

Mṡ+Cs = M(q)(
...q d +λ ė)+C(q, q̇)(q̇d +λe)

+G(q)+F(q̇)+ τd− τ,

Mṡ+Cs = f (x)+Γ− τ, (22)

where f (x) is defined as f (x) = W T
M ∗ΞM(q)(q̈d +λ ė)+

W T
C ∗ΞC(q, ·q)(q̇d +λe)+W T

G ∗ΞG(q)+W T
F ∗ΞF(q̇) and

Γ = ΓM(q̈d +λ ė)+ΓC(q̇d +λe)+ΓG +ΓF + τd .
Architecture of the adaptive RBFNNs with the un-

known dead zone is shown in Fig. 4.
From Fig. 4, the adaptive control law is characterized as

presented below:

τ = f̂ (x)+ τs +Kss− D̃T + D̃T
δ , (23)

where Ks is the positive definite matrix and Ks = diag{ks1,
ks2, ..., ksn}, τs is a SMC robust term that is used to sup-
press the effects of uncertainties and approximation errors,
and f̂ (x) is the approximation of the adaptive function
f (x) and is defined as

f̂ (x) =Ŵ T
M ∗ΞM(q)(q̈d+λ ė)+W T

C ∗ΞC(q, q̇)(q̇d+λe)

+Ŵ T
G ∗ΞG(q)+Ŵ T

F ∗ΞF(q̇).

The robust term is proposed as follows:

τs =
s
‖s‖

(
kMW 2

M

4
+

kCW 2
C

4
+

kGW 2
G

4
+

kFW 2
F

4

)
+KPsgn(s)

=
s
‖s‖

Ω+Kpsgn(s), (24)

where Ω = kMW 2
M

4 +
kCW 2

C
4 +

kGW 2
G

4 + kFW 2
F

4 ; KP ≥ ‖Γ‖.
Substituting (23) into (22), we have

M(q)s+C(q, q̇)s

= f̃ (x)−Kss− τs + D̃T − D̃T
δ +Γ, (25)

Fig. 4. The block diagram of the adaptive robust RBF neural network control system.
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where

f̃ (x) = f (x)− f̃ (x)

=[W̃ T
M ∗ΞM(q)](q̈d +λ ė)

+ [W̃ T
C ∗ΞC(q, q̇)](q̇d +λe)+W̃ T

G ∗ΞG(q)

+W̃ T
F ∗ΞF(q̇), (26)

and W̃M =WM−ŴM; W̃C =WC−ŴC; W̃G =WG−ŴG. By
applying the adaptive control law (23) to the dynamic (1),
and using the sliding mode control robust term function
(24), the online RBFNNs adaptive update laws are de-
signed as

˙̂WM = FMΞM(q̈d +λ ė)sT − kMFM‖s‖ŴM,

˙̂WC = FCΞC(q̇d +λe)sT − kCFC‖s‖ŴC,

˙̂WG = FGΞGsT − kGFG‖s‖ŴG,

˙̂WF = FF ΞF sT − kF FF‖s‖ŴF ,

˙̂D = FD sT −FDkDD̂‖s‖,

(27)

where FM , FC, FG, FF , FD, kM , kC, kG, kF , kD are the posi-
tive and diagonal constant matrices.

3.2. Stability analysis
Theorem 1: Consider an n-link robot manipulator rep-

resented by (1). If the RBFNNs adaptive update laws are
designed as (23), and the SMC robust term τs is given by
(24), then the tracking error and the convergence of all the
system parameters can be assured and approached to zero.

Therefore, to guarantee the stability of the total control
system, consider the Lyapunov function candidate as fol-
lows:

V (t) =
1
2
[
sT Ms+ tr(W̃ T

M F−1
M W̃M)+ tr(W̃ T

C F−1
C W̃C)

+ tr(W̃ T
G F (

G−1)W̃G)+ tr(W̃ T
F F−1

F W̃F)

+ tr(D̃T F−1
D D̃)

]
. (28)

The derivative of V (t) along to time, the following equa-
tion can be obtained as

V̇ (t) =sT
(

Mṡ+
1
2

Ṁs
)
+ tr(W̃ T

M F−1
M

˙̃WM)

+ tr(W̃ T
C F−1

C
˙̃WC)+ tr(W̃ T

G F−1
G

˙̃WG)

+ tr(W̃ T
F F−1

F
˙̃WF)+ tr(D̃T F−1

D
˙̃D). (29)

According Property 2, (29) becomes

V̇ (t) =sT (Mṡ+Cs)+ tr(W̃ T
M F−1

M
˙̃WM)

+ tr(W̃ T
C F−1

C
˙̃WC)+ tr(W̃ T

G F−1
G

˙̃WG)

+ tr(W̃ T
F F−1

F
˙̃WF)+ tr(D̃T F−1

D
˙̃D). (30)

Submitting (25) and (26) into (30), yields

V̇ (t) =− sT Kss+ sT [W̃ T
M ∗ΞM(q)](q̈d +λ ė)

+ sT [W̃ T
C ∗ΞC(q, q̇)](q̇d +λe)

+ sT [W̃ T
G ∗ΞG(q)]

+ sT [W̃ T
F ∗ΞF(q̇)]− sT

τs

+ sT (D̃T − D̃T
δ )+ sT

Γ

+ tr(W̃ T
M F−1

M
˙̃WM)+ tr(W̃ T

C F−1
C

˙̃WC)

+ tr(W̃ T
G F−1

G
˙̃WG)+ tr(W̃ T

F F−1
F

˙̃WF)

+ tr(D̃T F−1
D

˙̃D)

=− sT Kss− sT
τs + sT

Γ

+ sT (D̃T − D̃T
δ )

+ trW̃ T
M [F−1

M
˙̃WM + sT

ΞM(q)(q̈d +λ ė)]

+ trW̃ T
C [F−1

C
˙̃WC + sT

ΞC(q, q̇)(q̇d +λe)]

+ trW̃ T
G [F−1

G
˙̃WG + sT

ΞG(q)]

+ trW̃ T
F [F−1

F
˙̃WF + sT

ΞF(q̇)]

+ tr(D̃T F−1
D

˙̃D). (31)

Substituting (27) into (31), we have

V̇ (t) =−sT Kss− sT
τs + sT

Γ

+ kM‖s‖trW̃ T
M (WM−W̃M)

+ kC‖s‖trW̃ T
C (WC−W̃C)

+ kG‖s‖trW̃ T
G (WG−W̃G)

+ kF‖s‖trW̃ T
F (WF −W̃F)

+ tr(D̃T sT ( −δ ))− tr(D̃T ( sT − kDD̂‖s‖)),
V̇ (t) =−sT Kss− sT

τs + sT
Γ

+ kM‖s‖trW̃ T
M (WM−W̃M)

+ kC‖s‖trW̃ T
C (WC−W̃C)

+ kG‖s‖trW̃ T
G (WG−W̃G)

+ kF‖s‖trW̃ T
F (WF −W̃F)

+ tr(D̃T sT (kD(D− D̃)−δ )).

By using trW̃ T (W −W̃ ) = (W̃W )−‖W̃‖2 ≤ ‖W̃‖‖W‖−
‖W̃‖2, we have

V̇ (t)≤− sT Kss− sT
τs + sT

Γ

+ kM‖s‖(‖W̃M‖‖WM‖−‖W̃M‖2)

+ kC‖s‖(‖W̃C‖‖WC‖−‖W̃C‖2)

+ kG‖s‖(‖W̃G‖‖WG‖−‖W̃G‖2)

+ kF‖s‖(‖W̃F‖‖WF‖−‖W̃F‖2)

+
√

n‖s‖‖D̃‖+ kDDM‖s‖‖D̃‖− kD‖s‖‖D̃‖2.
(32)

Substitute (24) into (32), we have

V̇ (t)≤−sT Kss

− sT
(

kMW 2
M

4
+

kCW 2
C

4
+

kGW 2
G

4
+

kFW 2
F

4

)
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+ kM‖s‖(‖W̃M‖‖WM‖−‖W̃M‖2)

+ kC‖s‖(‖W̃C‖‖WC‖−‖W̃C‖2)

+ kG‖s‖(‖W̃G‖‖WG‖−‖W̃G‖2)

+ kF‖s‖(‖W̃F‖‖WF‖−‖W̃F‖2)

+
√

n‖s‖‖D̃‖+ kDDM‖s‖‖D̃‖
− kD‖s‖‖D̃‖2,

V̇ (t)≤−sT Kss− kM‖s‖
(

WM

2
−‖W̃M‖

)2

− kC‖s‖
(

WC

2
−‖W̃C‖

)2

− kG‖s‖
(

WG

2
−‖W̃G‖

)2

− kF‖s‖
(

WF

2
−‖W̃F‖

)2

+
√

n‖s‖‖D̃‖

+ kDDM‖s‖‖D̃‖− kD‖s‖‖D̃‖2,

V̇ (t)≤−sT Kss+
√

n‖s‖‖D̃‖
+ kDDM‖s‖‖D̃‖− kD‖s‖‖D̃‖2,

V̇ (t)≤−sT Kss+ c0‖s‖‖D̃‖− kD‖s‖‖D̃‖2,

with c0 =
√

n+kDDM . We see that to make sure V (t)≤ 0,

−c0‖s‖‖D̃‖+ kD‖s‖‖D̃‖2 > 0. (33)

So, if we choose suitable constant vectors kD, DM which
satisfy (34), V̇ (t)≤ 0, V̇ (t) is a negative semidefinite func-
tion. Hence, all parameters of the adaptive control sys-
tem are bounded with t > 0, and all initial conditions are
bounded at t = 0, 0 ≤ V (0) ≤ ∞ is ensured. Furthermore,
integrating V̇ (t) with respect to time as follows:∫ i

0
n f tyV̇ (t)dt ≤−

∫
∞

0
sT Kssdt. (34)

Equation (35) can be rewritten as∫
∞

0
sT Kssdt ≤−

∫
∞

0
V (t)dt =V (0)−V (∞). (35)

Because V (0) is a bounded function, and V (t) is non-
increasing and bounded, we have

lim
n→∞

∫ t

0
sT Kssdt < ∞. (36)

According to Barbalat’s Lemma, it can be shown that
lim
t→∞

∫ t
0 sT Kssdt = 0. Therefore, both the global stability of

the system and the tracking errors are guaranteed and con-
verged to zero when t → ∞ by the adapting control law
(27).

Remark 1: In accordance with the above analysis and
the designing of the proposed controllers, the assumptions
for the parameters bounds are used to analyze the stabil-
ity of the controlled system. Furthermore, the knowledge

of the bounds actually disappears in our designed con-
trollers. It is easy to show that our control system, with
adaptive online update laws, is strictly stated passive. This
advantageous feature can be used to conclude some inter-
nal boundedness properties of the controlled system with-
out the assumption of observability and stability.

4. SIMULATION AND EXPERIMENTAL
RESULTS

4.1. Simulation results

In this section, for illustrative purposes, a three-link In-
dustrial robot manipulator is employed to verify the effec-
tiveness of the proposed control scheme. We consider, the
dynamic equation of the three-link IRMs in electric power
substation model that is shown in Fig. 5, can be described
by using Lagrange method.

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 ; C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ;

G =

g1

g2

g3

 ;

M11 = l2
1

( p1

3
+ p2 + p3

)
+ l1l2(p2 +2p3)cos(θ2)

+ l2
2

( p2

3
+ p3

)
,

M12 =−l1l2
( p2

3
+ p3

)
cos(θ2)− l2

2

( p2

3
+ p3

)
;

M13 = M23 = M31 = M32 = 0; M21 = M12,

M22 = l2
2

( p2

3
+ p3

)
; M33 = p3,

C11 =−q̇2(p2 +2p3); C12 =C21;

C13 =C22 =C23 =C31 =C32 =C33 = 0,

g1 = g2 = g3 =−p3g,

Fig. 5. The model of three-joint IRMs.
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where p1, p2, p3 are links masses; l1, l2, l3 are links
lengths; g = 10 (m/s2) is acceleration of gravity.

The parameters of three link industrial robot manipula-
tor are given as follows:

p1 = 4 (kg), p2 = 3 (kg), p3 = 1.5 (kg);

l1 = 0.4 (m), l2 = 0.3 (m), l3 = 0.2 (m).

The object is to design control input in order to force
joint variables θ = [θ1 θ2 θ3 ]

T to track desired trajecto-
ries as time goes to infinity. The desired position trajecto-
ries of the three link IRMs are chosen by

θd =
[
θd1 θd2 θd3

]T
=
[
0.5sin(2πt) 0.5sin(2πt) 0.5sin(2πt)

]T
.

In addition, external disturbances and friction force in
this simulation are selected as follows:

τ0 =

2sin(πt)
2sin(πt)
2sin(πt)

 ; FR(θ) =

5θ̇1 +0.2sign(θ̇1)
5θ̇2 +0.2sign(θ̇2)
5θ̇3 +0.2sign(θ̇3)

 .
The parameter values used in the adaptive control sys-

tem are chosen for the convenience of simulations as fol-
lows:

λ = diag(5,5,5); Ks = diag(100,100,100).

In the following passage, this proposed intelligent con-
trol scheme is applied to the IRMs in comparison with the
PID controller and NNs [26]. Fig. 6 shows the simulation
results of the PID, NNs and the proposed intelligent con-
trollers. From the simulated results, the PID, NNs and the
proposed intelligent controller can make the tracking er-
rors decrease during the learning process since both con-
trollers have learning ability. However, the proposed in-
telligent control system has faster reduction rate in track-
ing errors than the PID and NNs systems. It means that
with all parameters being updated in the dynamic struc-
ture RBFNNs and the number of rule nodes being dynam-
ically adjusted, the approximation ability of the dynamics
structure RBFNNs is better than the PID and NNs sys-
tems. Moreover, from Fig. 6 can observe that when the
tracking errors reach the big value, the control force of the
proposed intelligent controller is smoother and has smaller
oscillation than the PID and NNs to achieve the requested
level of performance.

4.2. Experimental results
In this section, a three link robot manipulators in our

Lab for intelligent automation technology is applied to
verify the effectiveness of the proposed control scheme.
The experimental control system model is presented in
Fig. 7. It consists of an IBM PC with Pentium micropro-
cessor, an encoder board to acquire the angles of the joint

1, joint 2, joint 3, and an A/D module to send commend
signals to the servo amplifier. The proposed control algo-
rithm is implemented using MatLab Simulink.

In this Experimental, two different experimental cases
are adopted to investigate the applicability and the perfor-
mance of the proposed technique under various environ-
ments as the parameter variation and the change of the
external disturbance.

The first case: Assumes that 1-kg payload is added in
the masses of three links IRMs, the desired input trajecto-
ries and the others parameters are the same as in the sim-
ulation case. The experimental results for the first exper-
imental case of joint trajectory, tracking errors and con-
trol torques are shown in Fig. 8. From Fig. 8, it is easy
to see that the responses and the tracking error norm of
this proposed intelligent control scheme are quite better
than both the PID and NNs methods. Moreover, Fig. 8 im-
plies that the proposed intelligent controller torques are
less and smooth than PID and NNs in [26] which still ex-
ist the chattering phenomena when the load of manipula-
tors changed. Therefore, the robust tracking performance
of the proposed control scheme is better than the PID and
NNs under parameter variation. It means that due to the
dynamic structure, the proposed intelligent controller is
less sensitive to the parameter variation than the PID and
NNs.

The second case: In this case, we assume that the robot
is tracking a trajectory and suddenly the external distur-
bance is injected into control system. This happened after
the first 0,6s of the experimental time, and all other pa-
rameters are chosen as in the simulation case. The shapes
of the external disturbance are expressed as follows:

d(t) = [50sin(20t) 50sin(20t)]T .

The experimental responses of joint position, tracking er-
ror and control torque, respectively, are shown in Fig. 9.
From this experimental, we can find that, the control per-
formance and robustness of the proposed controller un-
der external disturbance are better than PID and NNs con-
troller in [26]. The performance of our proposed approach
is slightly affected more than NNs and PID approach when
the external disturbance is suddenly injected more into
control system. This means that the desired trajectory is
not exciting persistently, which happens often in real ap-
plication.

5. CONCLUSIONS

In this paper, a novel adaptive tracking neural network
with deadzone robust compensator is designed to tackle
the deadzone problem faced to achieve the high preci-
sion position tracking under various environments for In-
dustrial Robot Manipulators. The performance of the pro-
posed control is demonstrated in the illustrated simulation
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and experiment of three link Industrial Robot Manipula-
tors under various environments such as the mass vari-
ation, the external disturbances and modeling uncertain-
ties. The simulation and experiment results have shown
that the proposed control scheme is not only reduce the
chattering phenomenon, but also can achieve the high pre-

cision position tracking and good robustness in the tra-
jectory tracking control. Besides that, with the proposed
control, the random disturbance and unknown nonlinear
deadzone have limited effects on the robot system.

Fig. 6. Simulated position responses, tracking errors, and control efforts of the proposed system, NNs and PID.
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Fig. 7. Experimental control system.
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Fig. 8. The experimental results of position responses, tracking errors and control efforts, for the first case.
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Fig. 9. The experimental results of position responses, tracking errors and control efforts for the second case.
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