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Leaderless Consensus of Non-linear Mixed delay Multi-agent Systems
with Random Packet Losses via Sampled-data Control
M. Syed Ali* � , R. Agalya, Sumit Saroha, and Tareq Saeed

Abstract: This paper inspects the consensus problem of nonlinear mixed delay multi-agent systems with random
packet losses through the sampled-data control using the undirected graph without any specified leader for the other
following agents. The probabilistic time varying delay is taken in the control input delay that Bernoulli distributed
white sequence is engaged to formulate the random packet losses between the agents. The consensus problem can
be changed over into a stabilization problem by using the Laplacian matrix which can be obtained by undirected
graph. By framing a Lyapunov-Krasovskii functional with triple integral terms and implementation of the property
of Kronecker product together with some well known matrix inequality techniques, a mean square consensus for
mixed delay multi-agent system can be achieved. Terminally, two numerical examples are provided to illuminate
the advantages of the suggested techniques.
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1. INTRODUCTION

For the past few years, multi-agent systems has became
an interesting topic among the researchers due to its huge
probable applications in lots of fields listed as unmanned
aerial vehicles formation control, scheduling of automated
highway systems, world wide web, robotics, fish school,
complex networks, rendezvous and so on [1–3]. Espe-
cially, the consensus problem is the very basic concept in
the study of MASs. All interconnected agents can reach
a common goal by distributed controller is the consensus.
Many researchers discussed about the two types of con-
sensus i.e., leader following and leaderless consensus due
to its immense applications such as cooperative of a group
of agents in [4,5]. During the early phase, literatures have
interested to investigate the consensus problem of MASs
in the class of first order and then their attention turned in
to the second-order consensus problem of MASs and then
they are attracted by consensus problem for higher-order
MASs. It is realized that, practically speaking, nonlin-
earities are unavoidable in genuine frameworks. Thus,the
nonlinearity issue, these days, has been one of the note-
worthy research points when investigating the consensus
of multi-agent systems. Various intriguing and productive
outcomes have been accounted for on the accord issues for

the nonlinear multi-agent systems [6].
Time delay made large impact on numerous practical

systems, it may create some complex dynamic behav-
iors such as divergence, oscillation and instability of sys-
tems. Discrete time delay [7,8], continuous time delay [9],
fractional- order time delay [10] are already discussed by
many researchers in both networks and systems. The class
of multi-agent systems with time varying delay will reach
the mean square consensus are investigated in [11]. Al-
though, time-varying delays are frequently exist in a ran-
dom form in some of the practical system. Besides, its
some probabilistic features of system with delay such as
Bernoulli and Poisson distribution, can generally acquired
by well known statistical methods [12]. By virtue of these
true attitude, researchers have inserted the notion of prob-
abilistic delays in the time delay systems [13,14]. The sta-
bility analysis of mixed delayed neural networks are gen-
erally discussed when compare to the consensus of mixed
delay multi-agent system. Li [15] concerned the leader
following consensus of multi-agent system with mixed de-
lay via adaptive pinning intermittent control.

A control system manages, commands, directs, or reg-
ulates the behavior of other devices or systems using con-
trol loops. Control systems are found in abundance in
all sectors of industry such as: quality control of manu-
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factured products, computer control, power systems, in-
telligent systems, traffic system. The sampled-data con-
trol has developed frequently due to its applications in
computer hardware. When compare to continuous con-
trol, the sampled-data control is a more forceful and effec-
tive method. In [16], the impact of controller gain fluctua-
tion and communication delay, a novel sampled-data con-
trol scheme with variable sampling interval is designed
for each agent is well examined. The issue of quantized
sampled-data fuzzy control for chaotic systems with vari-
able sampling is concerned in [17]. [18] explained the syn-
chronization problem for Lur’e systems with uncertainty
parameters and variable sampling control by employing
an augment LKF and the FMB inequality approach. Re-
searchers in [19] developed some novel stabilization cri-
teria for uncertainty fuzzy system with time-varying delay
and disturbance under memory sampled data control.

In numerous genuine circumstance, the loss of control
packet will happens due to the actuator faults, communi-
cation disturbance, crowding and so on. As continual ap-
pearance of control packet loss is inevitable, it may leads
to instability of the system. So it is essential to introduce
the impact of control packet loss. The two types of packet
losses are deterministic packet loss, random packet loss.
In [20] consensus of multi-agent system with probabilistic
time delays and packet losses using sampled-data control
has been investigated. This paper explains how to use the
Bernoulli white sequence to describe random packet loss
among agents and switched system to denote the packet
dropouts in a deterministic method. The sampled data con-
sensus of multi-agent system with packet losses are exam-
ined in [21]. In random packet loss random indicates the
packet loss doesn’t occur at a regular interval or time of
day [22, 23].

Motivated by above facts, this paper discuss the lead-
erless consensus of mixed delayed multi-agent system
with probabilistic time delay and random packet loss us-
ing sampled-data control. This paper mainly discuss the
consensus of nonlinear MASs with uncertain parameters
through sampled-data control scheme by constructing the
suitable Lyapunov-Krasovskii functional.

The main aspects of this paper is listed below:
• The mixed delayed multi agent systems with Random

packet losses is examined by using suitable Lyapunov-
Krasovskii functional with Kronecker product. The spe-
cial case of this paper is that the system is modeled as
multi-agent system with nonlinear dynamics, discrete time
delay and distributed time delays.
• Consensus will obtain without considering any spe-

cific leader to lead the other agents. The communication
between the agents are represented through the undirected
graph.
• Laplacian matrices are used to convert the consensus

problem. Newly improved techniques are used to obtain
the mean square consensus.

• Numerical examples are presented to show the valid-
ity of the results.

Notations: Throughout this paper, the following nota-
tions are used. Rn represents the n dimensional Euclidean
space and Rn×m is the set of all n×m real matrices. The
symmetric terms in a symmetric matrix is expressed as
∗. AT represents the transpose of A and A−1 denotes the
inverse of A. I is the identity matrix with appropriate di-
mension. X > 0 means that the matrix X is real sym-
metric positive definite with appropriate dimension and
diag{a,b, ...,z} indicates the block-diagonal matrix with
a,b, ...,z in the diagonal entries. A⊗B denotes the Kro-
necker product of matrices A and B.

2. SYSTEM DESCRIPTION AND
PRELIMINARIES

Let us consider a multi-agent system contains N num-
ber of agents and the interaction between the agents are
represented by the weighted undirected graph G = (V ,
E , A) with order N, where V = {v1, v2, ..., vN} denotes
the set of all agents, E ⊆ V ×V represents the edges set,
and A = [ai j]N×N is the adjacency matrix with ai j > 0
if (vi,v j) ∈ E and ai j = 0 otherwise. The neighbour set
of vi can be represented as Ni = { j : (vi,v j) ∈ E}. Let
D= diag{deg(1),deg(2), ...,deg(i)} be the degree matrix
of the undirected graph G with entries deg(i) = ∑ j∈Ni

ai j.
Then the Laplacian matrix of G can be expressed as L =
(li j)N×N is defined as lii =−∑ j=1, j 6=i li j, li j =−ai j, i 6= j.

Now, consider a nonlinear mixed delayed multi-agent
system in the following form

ẋi(t) =Aaxi(t)+Ab f (xi(t))+Ac f (xi(t−h(t)))

+Ad

∫ t

t−d(t)
f (xi(s))ds+Bui(t),

i = 1,2, ...,N, (1)

where N is the number of agents, n is the number of states
of agent i, xi(t) = [xi1(t), xi2(t), ..., xin(t)]T ∈ Rn denotes
the state vector of the agent i, ui(t) = [ui1(t), ui2(t), ...,
uin(t)]T ∈ Rn is the control input acting on agent i and
f (xi(t)) = [ f1(xi1(t)), f2(xi2(t)), ..., fn(xin(t))]T is a non-
linear vector function to describe the time-varying nonlin-
ear dynamics of agent i; Aa, Ab, Ac, Ad , B are real con-
stant matrices with appropriate dimensions. h(t), d(t) are
probabilistic time varying delay and distributed delay re-
spectively. d(t)> 0 it satisfies 0≤ d(t)≤ d where d is the
constant.

The sampled-data controller contains random packet
loss can be represented as, ui(t)=α(tk)K ∑

N
j=1 ai j(x j(tk)−

xi(tk)), tk ≤ t < tk+1, i = 1, 2, ..., N, where the stochastic
variable α(tk) is a Bernoulli-distributed white sequence
with prob{α(tk) = 1} = E{α(tk)} = α , prob{α(tk) =
0} = E{α(tk)} = 1− α , in which E{·} stands for the
mathematical expectation, 0 ≤ α ≤ 1. K ∈ Rn×n is the



Leaderless Consensus of Non-linear Mixed delay Multi-agent Systems with Random Packet Losses via ... 1887

feedback matrix to be determined, ai j is (i, j)-th entry
of the adjacency matrix of communication topology G,
tk is the updating instant time satisfying 0 = t0 < t1 <
.... < tk < .... < limk→∞tk = +∞. The sampling interval
is defined as tk+1 − tk = ηk ≤ η for any integer k ≥ 0,
where η > 0 represents the largest sampling interval. De-
fine xi(tk) = xi(t−η(t)) with η(t) = t− tk, 0≤ η(t)≤ η

for t 6= tk. Then, eqn.(2) can be expressed as ui(t) = α(t−
η(t))K ∑

N
j=1 ai j(x j(t−η(t))− xi(t−η(t))), tk ≤ t < tk+1,

i = 1, 2, ..., N.
Then, system (1) can be expressed as

ẋi(t) =Aaxi(t)+Ab f (xi(t))+Ac f (xi(t−h(t)))

+Ad

∫ t

t−d(t)
f (xi(s))ds+α(t−η(t))BK

N

∑
j=1

ai j

(x j(t−η(t))− xi(t−η(t))). (2)

For our convenience, we denote the subsequent vec-
tor, x(t) = [xT

1 (t) xT
2 (t) ... xT

N(t)]
T , f (x(t)) = [ f T (x1(t))

f T (x2(t)) ... f T (xN(t))]T , f (x(t − h(t))) = [ f T (x1(t −
h(t))) f T (x2(t−h(t))) ... f T (xN(t−h(t)))]T .

Then by using the Kronecker product property, (4) can
be written in the following compact form:

ẋ(t) =(IN⊗Aa)x(t)+(IN⊗Ab) f (x(t))

+(IN⊗Ac) f (x(t−h(t)))

+(IN⊗Ad)
∫ t

t−d(t)
f (x(s))ds

−α(t−η(t))(L⊗B)Kx(t−η(t)). (3)

For further derivations, the below mentioned assumptions
are utilized in this paper.

Assumption 1 [26]: For any j ∈ {1, 2, ..., n}, f j(0) = 0,
and there exist constants Λ

−
j and Λ

+
j such that

Λ
−
j ≤

f j(α1)− f j(α2)

α1−α2
≤ Λ

+
j , ∀ α1 6= α2.

Assumption 2 [14]: The probability distribution of
the time-varying delay h(t) is defined by prob{h(t) ∈
[0,h1)} = q0, prob{h(t) ∈ [h1,h2]} = 1− q0, where 0 ≤
q0 ≤ 1 is a constant. Then, the stochastic variable q(t) can
be defined as

q(t) =

{
1, for h(t) ∈ [0,h1),

0, for h(t) ∈ [h1,h2].

q(t) is a Bernoulli distributed sequence with prob{q(t) =
1} = prob{0 ≤ h(t) < h1} = E{q(t)} = q0, prob{q(t) =
0}= prob{h1 ≤ h(t)≤ h2}= 1−E{q(t)}= 1−q0, where
E{q(t)} is the mathematical expectation of q(t). It implies
E{q(t)−q0}= 0, E{(q(t)−q0)

2}= q0(1−q0).
Now, we introduce time varying delays h1(t) and h2(t)

such that

h(t) =

{
h1(t), h(t) ∈ [0,h1),

h2(t), h(t) ∈ [h1,h2],

where ḣ1(t)≤ µ1 < 1, ḣ2(t)≤ µ2 < 1, µ1 and µ2 are con-
stants.

The closed-loop system (5) with probabilistic time
varying delay can be represented as

ẋ(t) =(IN⊗Aa)x(t)+(IN⊗Ab) f (x(t))+q(t)(IN⊗Ac)

× f (x(t−h1(t)))+(1−q(t))(IN⊗Ac)

× f (x(t−h2(t)))+(IN⊗Ad)
∫ t

t−d(t)
f (x(s))ds

+(ᾱ−α(t−η(t))− ᾱ)(L⊗B)Kx(t−η(t)).
(4)

Further, it can be equivalently rewritten as

ẋ(t) =(IN⊗Aa)x(t)+(IN⊗Ab) f (x(t))+q0(IN⊗Ac)

× f (x(t−h1(t)))+(1−q0)(IN⊗Ac) f (x(t

−h2(t)))+(q(t)−q0)(IN⊗Ac)[ f (x(t−h1(t))

− f (x(t−h2(t)))]+(IN⊗Ad)
∫ t

t−d(t)
f (x(s))ds

+(ᾱ−α(t−η(t))− ᾱ)(L⊗B)Kx(t−η(t)).
(5)

Definition 1 [14]: The consensus of system is said to
be achieved asymptotically in the sense of mean-square
if, for each agent i ∈ {1, 2, ..., N}, there is a local state
feedback ui of xi : j ∈ Ni such that the closed loop system
satisfies limt→∞E{‖xi(t)− x j(t)‖2}= 0.

Lemma 1 [24]: For any constant matrix M ∈ Rn×n,
MT = M > 0, scalars α and β with α > β and vector
x : [β ,α]→ Rn, such that the following integrations are
well defined, then

− (α−β )
∫

α

β

xT (s)Mx(s)ds

≤−
(∫

α

β

x(s)ds
)T

M
(∫

α

β

x(s)ds
)
,

− (α−β )2

2

∫
α

β

∫
α

u
xT (s)Mx(s)dsdu

≤−
(∫

α

β

∫
α

u
x(s)dsdu

)T

M
(∫

α

β

∫
α

u
x(s)dsdu

)
.

Lemma 2 [25]: For any constant positive matrix V ∈
Rn×n, scalar 0 ≤ τ(t) ≤ τ, and vector function ẋ(t) :
[−τ,0]→ Rn, it holds that

− τ

∫ t

t−τ

ẋT (s)V ẋ(s)ds

≤

 x(t)
x(t− τ(t))

x(t− τ)

T−V V 0
∗ −2V V
∗ ∗ −V

 x(t)
x(t− τ(t))

x(t− τ)

.
(6)

Lemma 3 [5]: For any given X , Y ∈ Rn, matrices
F > 0, Γ and Σ have appropriate dimensions, one has
−2XT ΓΣY ≤ XT ΓFΓT X +Y T ΣT F−1ΣY .
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3. MAIN RESULTS

In this section, the consensus criteria for the closed loop
system (7) can be achieved in the form of LMIs using the
sampled-data controller.

Theorem 1: For any known positive scalars 0 < h1 <
h2, µ1, µ2, q0, the consensus of system (7) can be reached,
if there exist positive definite symmetric matrices P > 0,
Qi > 0, Ri > 0, Si > 0, Tj > 0, (i = 1, ..., 4), ( j = 1, 2) and
positive diagonal matrices M, N1, O, any matrix W with
appropriate dimensions such that the following inequality
hold:

[Ψ̆]15×15 < 0, (7)

where

Ψ̆11 = (IN⊗Q1)+(IN⊗Q2)+(IN⊗Q3)+(IN⊗Q4)

+(IN⊗R3)−(1−µ1)(IN⊗S2)−(1−µ2)(IN⊗S3)

−(IN⊗S4)−h2
1(IN⊗T1)−Λ1(IN⊗M)+(IN⊗W )

×(IN⊗Aa)+(IN⊗Aa)
T(IN⊗W)T+ᾱ(LLT⊗BBT)X ,

Ψ̆12 = (IN⊗P)− (IN⊗W )+(IN⊗W )(IN⊗Aa),

Ψ̆13 = (1−µ1)(IN⊗S2),Ψ̆14 = (1−µ2)(IN⊗S3),

Ψ̆17 = (IN⊗S4),

Ψ̆19 = Λ2(IN⊗M)+(IN⊗W )(IN⊗Ab),

Ψ̆1,10 = q0(IN⊗W )(IN⊗Ac),

Ψ̆1,11 = (1−q0)(IN⊗W )(IN⊗Ac),

Ψ̆1,12 = h1(IN⊗T1), Ψ̆1,15 = (IN⊗W )(IN⊗Ad),

Ψ̆22 = h2
2(IN⊗S1)+h2

1(IN⊗S2)+h2
2(IN⊗S3)+η

2(IN⊗S4)

− (IN⊗W )− (IN⊗W )T + ᾱ(LLT ⊗BBT )X

+
h4

1

4
(IN⊗T1)+

h4
21

4
(IN⊗T2),

Ψ̆29 = (IN⊗W )(IN⊗Ab),

Ψ̆2,10 = q0(IN⊗W )(IN⊗Ac),

Ψ̆2,15 = (IN⊗W )(IN⊗Ad), Ψ̆3,10 = Λ2(IN⊗N1),

Ψ̆33 =−(1−µ1)(IN⊗Q1)− (1−µ1)(IN⊗S2)

−Λ1(IN⊗N1),

Ψ̆2,11 = (1−q0)(IN⊗W )(IN⊗Ac),

Ψ̆44 =−(1−µ2)(IN⊗Q3)− (1−µ2)(IN⊗S3)

−Λ1(IN⊗O),

Ψ̆4,11 = Λ2(IN⊗O),

Ψ̆55 =−(IN⊗Q2)−h2
21(IN⊗T2),

Ψ̆5,13 = h21(IN⊗T2),

Ψ̆66 =−(IN⊗Q4),Ψ̆77 =−2(IN⊗S4)+2ᾱ,

Ψ̆78 = (IN⊗S4), Ψ̆88 =−(IN⊗R3)− (IN⊗S4),

Ψ̆99 = (IN⊗R1)+(IN⊗R2)− (IN⊗M)

+d2(IN⊗R4),

Ψ̆10,10 =−(1−µ1)(IN⊗R1)− (IN⊗N1),

Ψ̆11,11 =−(IN⊗O)− (1−µ2)(IN⊗R2),

Ψ̆12,12 =−(IN⊗T1), Ψ̆13,13 =−(IN⊗T2),

Ψ̆14,14 =−(IN⊗S1), Ψ̆15,15 =−(IN⊗R4),

and other terms are zero. Moreover the control gain matrix
is given as K =W−1X .

Proof: We construct Lyapunov-Krasovskii functional
as follows:

V (t,xt) =V1(t,xt)+V2(t,xt)+V3(t,xt)+V4(t,xt)

+V5(t,xt),

where

V1(t,xt) = xT (t)(IN⊗P)x(t),

V2(t,xt) =
∫ t

t−h1(t)
xT (s)(IN⊗Q1)x(s)ds

+
∫ t

t−h1

xT (s)(IN⊗Q2)x(s)ds

+
∫ t

t−h2(t)
xT (s)(IN⊗Q3)x(s)ds

+
∫ t

t−h2

xT (s)(IN⊗Q4)x(s)ds,

V3(t,xt) =
∫ t

t−h1(t)
f T (x(s))(IN⊗R1) f (x(s))ds

+
∫ t

t−h2(t)
f T (x(s))(IN⊗R2) f (x(s))ds

+
∫ t

t−η

xT (s)(IN⊗R3)x(s)ds

+d
∫ 0

−d(t)

∫ t

t+β

f T (x(s))(IN⊗R4) f (x(s))ds,

V4(t,xt) = h2

∫ 0

−h2

∫ t

t+β

ẋT (s)(IN⊗S1)ẋ(s)dsdβ

+h1

∫ 0

−h1(t)

∫ t

t+β

ẋT (s)(IN⊗S2)ẋ(s)dsdβ

+h2

∫ 0

−h2(t)

∫ t

t+β

ẋT (s)(IN⊗S3)ẋ(s)dsdβ

+η

∫ 0

−η

∫ t

t+β

ẋT (s)(IN⊗S4)ẋ(s)dsdβ ,

V5(t,xt) =
h2

1

2

∫ t

t−h1

∫ t

γ

∫ t

β

ẋT (s)(IN⊗T1)ẋ(s)dsdβdγ

+
h2

21

2

∫ t−h1

t−h2

∫ t−h1

γ

∫ t−h1

β

ẋT(s)(IN⊗T2)ẋ(s)dsdβdγ,

with h21 = h2− h1. Then by calculating the derivative of
V (t,xt) along the trajectories of system, we get

LV1(t,xt) = 2xT (t)(IN⊗P)ẋ(t),

LV2(t,xt)≤ xT (t)[(IN⊗Q1)+(IN⊗Q2)+(IN⊗Q3)

+(IN⊗Q4)]x(t)− (1−µ1)xT (t−h1(t))
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× (IN⊗Q1)x(t−h1(t))− xT (t−h1)

× (IN⊗Q2)x(t−h1)− (1−µ2)xT

× (t−h2(t))(IN⊗Q3)x(t−h2(t))

− xT (t−h2)(IN⊗Q4)x(t−h2),

LV3(t,xt) = f T (x(t))[(IN⊗R1)+(IN⊗R2)] f (x(t))

− (1−µ1) f T (x(t−h1(t)))(IN⊗R1)

× f (x(t−h1(t)))−(1−µ2) f T(x(t−h2(t)))

×(IN⊗R2) f (x(t−h2(t)))+xT (t)(IN⊗R3)

× x(t)− x(t−η)(IN⊗R3)x(t−η)

+d2 f T (x(t))(IN⊗R4) f (x(t))

−d
∫ t

t−d(t)
f T (x(s))(IN⊗R4) f (x(s))ds.

By using Lemma 1, the above integral terms will become

−d
∫ t

t−d(t)
f T (x(s))(IN⊗R4) f (x(s))ds

≤
(∫ t

t−d(t)
f (x(s))ds

)T
(IN⊗R4)

(∫ t

t−d(t)
f (x(s))ds

)
,

LV4(t,xt) = h2
1ẋT (t)[h2

2(IN⊗S1)

+h2
2(IN⊗S2)+h2

2(IN⊗S3)

+η
2(IN⊗S4)]ẋ(t)

−h2

∫ t

t−h2

ẋT (s)(IN⊗S1)ẋ(s)ds

− (1−µ1)h1

∫ t

t−h1(t)
ẋT (s)(IN⊗S2)ẋ(s)ds

− (1−µ2)h2

∫ t

t−h2(t)
ẋT (s)(IN⊗S3)ẋ(s)ds

−η

∫ t

t−η

ẋT (s)(IN⊗S4)ẋ(s)ds.

By using Lemma 1, in the above integral term,

−h2

∫ t

t−h2

ẋT (s)(IN⊗S1)ẋ(s)ds

≤−
(∫ t

t−h2

ẋ(s)ds
)
(IN⊗S1)

(∫ t

t−h2

ẋ(s)
)

ds. (8)

By using Lemma 1, and then simplifying the terms we get

− (1−µ1)h1

∫ t

t−h1(t)
ẋT (s)(IN⊗S2)ẋ(s)ds

≤−(1−µ1)[x(t)− x(t−h1(t))]T (IN⊗S2)

× [x(t)− x(t−h1(t))], (9)

− (1−µ2)h2

∫ t

t−h2(t)
ẋT (s)(IN⊗S3)ẋ(s)ds

≤−(1−µ2)[x(t)− x(t−h2(t))]T (IN⊗S3)

× [x(t)− x(t−h2(t))]. (10)

By using Lemma 2, we get

η

∫ t

t−η

ẋT (s)(IN⊗S4)ẋ(s)ds

≤

 x(t)
x(t−η(t))

x(t−η)

T−(IN⊗S4) (IN⊗S4) 0
∗ −2(IN⊗S4) (IN⊗S4)
∗ ∗ −(IN⊗S4)


×

 x(t)
x(t−η(t))

x(t−η)

 ,
LV5(t,xt) =

h4
1

4
ẋT (t)(IN⊗T1)ẋ(t)

+
h4

21

4
ẋT (t−h1)(IN⊗T2)ẋ(t−h1)

− h2
1

2

∫ t

t−h1

∫ t

β

ẋT (s)(IN⊗T1)ẋ(s)dsdβ

− h2
21

2

∫ t−h1

t−h2

∫ t−h1

β

ẋT (s)(IN⊗T2)ẋ(s)dsdβ .

By using Lemma 1 in the above integral terms and sim-
plifying, then we get

− h2
1

2

∫ t

t−h1

∫ t

β

ẋT (s)(IN⊗T1)ẋ(s)dsdβ

≤−
[
h1x(t)−

∫ t

t−h1

x(s)ds
]T

(IN⊗T1)

[
h1x(t)−

∫ t

t−h1

x(s)ds
]
,

− h2
21

2

∫ t−h1

t−h2

∫ t−h1

β

ẋ(s)(IN⊗T2)ẋ(s)dsdβ

≤−
[

h21x(t−h1)−
∫ t−h1

t−h2

x(s)ds
]T

(IN⊗T2)

×
[

h21x(t−h1)−
∫ t−h1

t−h2

x(s)ds
]
.

For positive diagonal matrices M, N1, O, from Assump-
tion 1, we have

0≤
[

x(t)
f (x(t))

]T[−Λ1(IN⊗M) Λ2(IN⊗M)
∗ −(IN⊗M)

][
x(t)

f (x(t))

]
,

0≤
[

x(t−h1(t))
f (x(t−h1(t)))

]T [−Λ1(IN⊗N1) Λ2(IN⊗N1)
∗ −(IN⊗N1)

]
×
[

x(t−h1(t))
f (x(t−h1(t)))

]
,

0≤
[

x(t−h2(t))
f (x(t−h2(t)))

]T [−Λ1(IN⊗O) Λ2(IN⊗O)
∗ −(IN⊗O)

]
×
[

x(t−h2(t))
f (x(t−h2(t)))

]
.

For appropriated positive matrix (IN ⊗W ), the following
equation hold:

E
{

2[xT (t)(IN⊗W )+ ẋ(t)(IN⊗W )]

×
[
− ẋ(t)+(IN⊗Aa)x(t)+(IN⊗Ab) f (x(t))

+q0(IN⊗Ac) f (x(t−h1(t)))+(1−q0)(IN⊗Ac)

× f (x(t−h2(t)))+(q(t)−q0)(IN⊗Ac)
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× [ f (x(t−h1(t))− f (x(t−h2(t)))]+(IN⊗Ad)

×
∫ t

t−d(t)
f (x(s))ds)+(ᾱ−α(t−η(t)− ᾱ)

× (L⊗BK)x(t−η(t))
]}

= 0. (11)

From the above equation we get

−2xT (t)(IN⊗W )ẋ(t)+2xT (t)(IN⊗W )(IN⊗Aa)x(t)

+2ẋ(t)(IN⊗W )(IN⊗Ab) f (x(t))

+2xT (t)q0(IN⊗W )(IN⊗Ac) f (x(t−h1(t)))

+ xT (t)(1−q0)(IN⊗W )(IN⊗Ac) f (x(t−h2(t)))

+ xT (t)(ᾱ− ᾱ(t−η(t))− ᾱ)(IN⊗W )(L⊗B)K

× x(t−η(t))−2ẋT (t)(IN⊗W )ẋ(t)

+2ẋT (t)(IN⊗W )(IN⊗Aa)x(t)

+2ẋT (t)(IN⊗W )(IN⊗Ab) f (x(t))

+2ẋ(t)q0(IN⊗W )(IN⊗Ac) f (x(t−h1(t)))

+2ẋT (t)(1−q0)(IN⊗W )(IN⊗Ac) f (x(t−h2(t)))

+2xT (t)(IN⊗W )(IN⊗Ac)
∫ t

t−d(t)
f (x(s))ds

+2ẋ(t)(IN⊗W )(IN⊗Ad)
∫ t

t−d(t)
f (x(s))ds

+2xT (t)(ᾱ−α(t−η(t))− ᾱ)(IN⊗W )(L⊗B)

×Kx(t−η(t))+2ẋT (t)(ᾱ−α(t−η(t))− ᾱ)

× (IN⊗W )(L⊗BK)x(t−η(t)) = 0. (12)

By using Lemma 3,

−2ᾱxT (t)(IN⊗W )(L⊗B)Kx(t−η(t))

≤ ᾱxT (t)(LLT ⊗BBT )(IN⊗W )(IN⊗W )T KKT x(t)

+ ᾱxT (t−η(t))x(t−η(t)), (13)

−2ᾱ ẋT (t)(IN⊗W )(L⊗B)Kx(t−η(t))

≤ ᾱ ẋT (t)(LLT ⊗BBT )(IN⊗W )(IN⊗W )T KKT ẋ(t)

+ ᾱxT (t−η(t))x(t−η(t)). (14)

From (11)-(14) and taking expectation, we can obtain that

E{LV (t,xt)} ≤ E{ζ T (t)[Ψ̆]15×15ζ (t)}, (15)

where ζ T (t) =
[
xT (t) ẋT (t) xT (t − h1(t)) xT (t −

h2(t)) xT (t − h1) xT (t − h2) xT (t − η(t)) xT (t − η)
f T (x(t)) f T (x(t − h1(t))) f T (x(t − h2(t)))

∫ t
t−h1

xT (s)ds∫ t−h1
t−h2

xT (s)ds
∫ t

t−h2
ẋT (s)ds

∫ t
t−d(t) f T (x(s))ds

]
.

From (9), it is noticed that E{LV (t,xt)} < 0 which
clearly implies that E{‖xi(t)− x j(t)‖2} → 0 as t → ∞.
Therefore, it concludes that the closed loop system (7) is
mean square asymptotic stable. Then by Definition 1, the
MASs (1) will reach the consensus in the mean square us-
ing the sampled data control. This completes the proof. �

Remark 1: If there is no distributed delay in MASs (5)
then it will became

ẋ(t) =(IN⊗Aa)x(t)+(IN⊗Ab) f (x(t))

+q0(IN⊗Ac) f (x(t−h1(t)))

+(1−q0)(IN⊗Ac) f (x(t−h2(t)))

+(q(t)−q0)(IN⊗Ac)

× [ f (x(t−h1(t))− f (x(t−h2(t)))]ds

+(ᾱ−α(t−η(t))− ᾱ)(L⊗BK)x(t−η(t)).
(16)

Corollary 1: For any known positive scalars 0 < h1 <
h2, µ1, µ2, q0, the consensus of system (31) can be
reached, if there exist positive definite symmetric matrices
P > 0, Qi > 0, R j > 0, Si > 0, Tk > 0, (i = 1, ..., 4), ( j = 1,
2, 3), (k = 1, 2) and positive diagonal matrices M,N1, O,
any matrix W with appropriate dimensions such that the
following inequality hold:

Ω1 =



Ψ̆11 Ψ̆12 Ψ̆13 Ψ̆14 0 0 Ψ̆17 0
∗ Ψ̆22 0 0 0 0 0 0
∗ ∗ Ψ̆33 0 0 0 0 0
∗ ∗ ∗ Ψ̆44 0 Ψ̆46 0 0
∗ ∗ ∗ ∗ Ψ̆55 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ̆66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ̆77 Ψ̆78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̆88
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Ψ̆19 Ψ̆1,10 Ψ̆1,11 Ψ̆1,12 0 0
Ψ̆29 Ψ̆2,10 Ψ̆2,11 0 0 0

0 Ψ̆3,10 0 0 0 0
0 0 Ψ̆4,11 0 0 0
0 0 0 0 Ψ̆5,13 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

Ω199 0 0 0 0 0
∗ Ψ̆10,10 0 0 0 0
∗ ∗ Ψ̆11,11 0 0 0
∗ ∗ ∗ Ψ̆12,12 0 0
∗ ∗ ∗ ∗ Ψ̆13,13 0
∗ ∗ ∗ ∗ ∗ Ψ̆14,14



< 0,

(17)

where Ω199 = (IN ⊗ R1) + (IN ⊗ R2)− (IN ⊗M) and all
other terms are already mentioned in Theorem 1 More-
over the control gain matrix is K =W−1X .

Proof: As same as in Theorem 1. �
Remark 2: Sampled-data control is an increasingly

substantial technique for nodes to convey in network en-
vironment, which settles the weakness of continuous-time
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control. Theorem 1 guarantees the consensus of non-linear
multi-agent system. In the vast majority of the writing,
the consistency issue for MASs has been examined in
[20, 21, 23] by using sampled-data control. Be that as it
may, in actuality, applications, the sampling intervals may
meddle by the outside unsettling influence. By utilizing
the algorithm suggested in Theorem 1, assures the con-
sensus of multi-agent system via sampled-data control un-
der undirected graph with random packet loss. In the pres-
ence of random packet losses, the control gain matrix is
designed.

Remark 3: When compare to the existing results in [16]
random packet loss is considered in this paper under undi-
rected graph along with probabilistic time varying delay.
The consensus of non-linear multi-agent system in (7) via
sampled- data control with random packet loss illuminate
the interplay among the sampling interval η , the probabil-
ity of packet losses ᾱ , and the control gain matrix K.

4. NUMERICAL EXAMPLES

In this section, two examples are given to illustrate the
effectiveness of the proposed method.
Let us consider a three agents i.e., N = 3 and each agents
are interconnected with one another through undirected
graph.

Example 1: Consider mixed delay nonlinear multi-
agent system (7), with parameters as µ1 = 0.2, µ2 =
0.7, h1 = 0.3, h2 = 1, d = 0.30, ᾱ = 0.5, q0 = 0.6 and

Aa =

[
−2.5 0.1
0.3 0.05

]
, Ab =

[
2 −0.1
−3 1.5

]
, Ac =

[
2.5 0
0 0.1

]
,

Ad =

[
−0.8 0.9
0.9 −0.8

]
, B =

[
−0.6 0.7
0.7 −0.6

]
, Λ1 = 0, Λ2 =[

0.01 0
0 0.01

]
.

The Laplacian matrix is L =

 2 −1 −1
−1 2 −1
−1 −1 2

, and

f (x(t)) = tanh(x(t)). By solving the LMIs in Theorem 1,
we obtain the control gain matrix as K =W−1X .

K =

[
−0.1659 −0.5939
0.1892 0.6712

]
.

Example 2: Consider the multi-agent system with-
out distributed delay in (31), with parameters µ1 = 0.3,
µ2 = 0.6, h1 = 0.3, h2 = 1, η = 0.6, d = 0.30, ᾱ = 0.4,

q0 = 0.5 and Aa =

[
−2.54 0.19

0.5 0.08

]
, Ab =

[
3 −0.1
−3 1.5

]
,

Ac =

[
2.5 0
0 0.3

]
, B =

[
−0.6 0.7
0.7 −0.6

]
, Λ1 = 0, Λ2 =[

0.02 0
0 0.02

]
. By solving the LMIs in Corollary 1 with

the same Laplacian matrix, the control gain matrix is ob-
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Fig. 1. State trajectory of the system in Example 1.
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Fig. 2. State trajectory of the system in Example 1.
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Fig. 3. State trajectory of the system in Example 1.

tained as

K =

[
−0.4624 −1.7199
0.8245 2.9753

]
.

5. CONCLUSION

In this paper, consensus of non-linear mixed delay
multi agent systems with probabilistic time delay and ran-
dom packet losses through the sampled-data control have
been studied. By utilizing a suitable Lyapunov-Krasovskii
functional with some integral inequality approach, suffi-
cient conditions are obtained through LMIs which can be
easily checked numerically by using the effective and well
known LMI tool box in MATLAB and it guarantees the
closed-loop multi-agent system to reach mean square con-
sensus and also get the value of controller gain matrix.
Furthermore, two numerical examples are given to show
the validity of the obtained results. The state trajectories
of Examples 1 and 2 are given in Figs. 1-6.
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