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Event-triggered Stabilization of Linear Time-delay Systems by Static Out-
put Feedback Control
Xiaoli Wang, Peng Xiang, Wenfeng Hu* � , and Tingwen Huang

Abstract: In this paper, we study the stabilization problem for a class of linear systems with a time-varying state
delay. An event-triggered static output feedback controller is proposed, such that the sampling frequency and the
update time of the controller are both lowered. First, we present a novel event-triggering mechanism depending not
only on the output but also on an exponential term, with which less sampling is required and Zeno behavior can be
excluded at the same time. Some sufficient conditions are then obtained, under which an exponential convergence
can be achieved by means of the comparison principle approach. It is further shown that the parameters design can
be easily given if the case reduces to the state feedback control. Moreover, two examples are presented to show the
effectiveness of the results.
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1. INTRODUCTION

As one fundamental issue, stabilization problem has
been extensively studied for both linear and nonlinear sys-
tems. Many control problems, including the networked
control problem and the state estimation problem, can be
eventually converted into the stabilization problems (see
[1, 2]).

According to the information available for feedback
control, the controller can be divided into state feedback
and output feedback (see [3–7]). In particular, compared
with the state feedback controller, the output feedback
controller is more practical, because the system state may
not be measurable in many scenarios. From a viewpoint
of application, the static output feedback controller is eas-
ier for implementation, in contrast with the observer-based
output feedback controller [8]. On the other hand, in prac-
tice, the time delay is unavoidable when the remote con-
trol systems through the Internet are distant from each
other in the remote locations, which often leads to instabil-
ity, oscillation, or other poor performance [9, 10]. In par-
ticular, compared with other types of time delays, the state
delays are more general and inevitable. Recently, many at-
tentions have been devoted to the stability analysis of the
systems with time-varying delays, see [11–13] and the ref-
erences therein.

In the implementation of the controllers, the informa-
tion used is usually sampled periodically, which may
cause the huge waste of energy. As an alternative method,
the event-triggered control strategy can be used to lower
the sampling frequency, which is quite important in
a resource-limited environment [14]. Hence, the event-
triggered control has received considerable attention in re-
cent years and a lot of research results have been reported,
such as [15–17, 19–21]. However, it is worth mentioning
that the developed controllers in the aforementioned liter-
atures are state dependent, and few event-triggered con-
trollers are static output feedback.

Motivated by this observation, the event-triggered con-
trol for various systems based on output feedback has
been recently studied, e.g., [22–27]. More specifically,
in [22], the distributed control problem for large-scale
systems was studied via static output feedback and an
event-triggered control scheme was introduced to reduce
the communication frequency. Under a distributed self-
triggered control framework, the authors in [23] studied
the consensus problem for multi-agent systems via lo-
cal static output feedback or observer-type dynamic feed-
back. However, in [22–24], the time delays were ne-
glected, which may cause instability or other poor per-
formance. The considered time-varying state delay in this
paper makes the approaches in the aforementioned litera-
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tures not applicable anymore. It is noted that many event-
triggered control problems for linear multi-agent systems
can be eventually converted to the stabilization problem
of linear time-delay systems. In particular, in [25–27], the
closed-loop system with the event-triggered mechanism
was represented by a linear system with an interval time-
varying delay, which is similar to the system in the paper.
However, the developed techniques are different in the fol-
lowing two aspects. First, the event-triggered mechanisms
in [25–27] were based on the sampled data, where the
Zeno exclusion problem no longer needs to be considered
due to the introduction of the sampler, while the event-
triggered mechanism in this paper is based on the con-
tinuous signal. Second, different from the stability proof
in [25–27] where the Lyapunov-Krasovskii functional ap-
proach was utilized and the derived sufficient conditions
were given in the form of some linear matrix inequali-
ties (LMIs), this paper adopts the comparison principle
approach and the proof by contradiction, and a relatively
simple inequality condition is obtained with less dimen-
sion and computational complexity. In this case, it is fur-
ther shown that under some extra conditions, the solu-
tions to such inequality can be guaranteed. Moreover, with
our approach, the exponential convergence is achieved
with the convergence rate being able to be estimated. Un-
til recently, there have been some results on the event-
triggered output-feedback control problem with time de-
lays [28,29]. However, the authors in [28] were concerned
with the stability of the input feed-forward output feed-
back passive system. In [29], the observer-based dynamic
output-feedback approach was applied, which makes the
implementation of the controller relatively complicated.

In this paper, by incorporating a novel event-triggering
mechanism into a static output feedback controller, we in-
vestigate the event-triggered stabilization problem for a
class of linear systems subject to a time-varying state de-
lay. In comparison with some existing results, the main
contributions of this paper lie in the following four as-
pects:

• The stabilization problem for a class of linear sys-
tems with a time-varying state delay is addressed. Un-
der the obtained sufficient conditions, an exponential
convergence can be achieved by means of the com-
parison principle approach.

• We propose a novel event-triggered control scheme,
where both the controller and the triggering mecha-
nism are only based on the measured output without
involving any extra dynamic observer. Besides, dif-
ferent from those state-dependent triggering mech-
anisms in [15–17], an exponential term is intro-
duced in the triggering mechanism. The proposed
triggering mechanism is somehow different from the
solely time-dependent triggering mechanism [18] in
the sense that our triggering mechanism incorporates

not only a static output-feedback term but also an ex-
ponential term. With the developed event-triggering
mechanism, the time interval of two consecutive trig-
gering times can be further prolonged, and Zeno be-
havior can be strictly excluded.

• In contrast to the event-triggered dynamic output
feedback controllers [29, 30], which rely on the
observer-based approach, this paper develops the
event-triggered static output feedback controller,
which is relatively simple for implementation.

• If the states are available for feedback control, the de-
rived results can also be applied to such scenario, un-
der which the solutions always exist, and the event-
triggered control law can be easily designed.

The rest of the paper is organized as follows: The prob-
lem is formulated in Section 2, and the main results are
derived in Section 3. The Zeno behavior exclusion prob-
lem is discussed in Section 4, and a numerical example is
presented in Section 5 to verify the obtained results. The
conclusion is further drawn in Section 6.

Notations: Throughout this paper, R is the set of real
numbers, Rn denotes the n dimensional Euclidean space,
Rn×m is the real matrices set with dimension n×m, and
Cn×n is the complex matrices set with dimension n× n.
The notation X ≤ Y (respectively, X < Y ), where X and
Y are symmetric matrices, means that the matrix X −Y
is negative semidefinite (respectively, negative definite).
For vector x ∈ Rn, ‖x‖ =

√
xT x. For matrix A ∈ Rn×n,

‖A‖ =
√

λmax(AT A), AH denotes the conjugate transpose
of A, λmax(A) and λmin(A) represents the largest and min-
imum eigenvalue of matrix A, respectively. In denotes the
n dimensional unit matrix.

2. PROBLEM FORMULATION

Consider the following linear system with the time-
varying state delay

ẋ(t) = Ax(t)+Bu(t)+Cx(t− τ(t)),

y(t) = Dx(t), (1)

where x(t)∈Rn is the system state, u(t)∈Rl is the control
input, y(t)∈Rm is the measured output and A∈Rn×n, B∈
Rn×l , C ∈ Rn×n, D ∈ Rm×n are constant system matrices.
Besides, τ(t) describes the unknown time-varying delay.

We will consider a static output feedback controller of
the following form

u(t) = Ky(ti), t ∈ [ti, ti+1), (2)

where K ∈ Rl×m is the gain matrix to be designed, and
the time instants ti(i ∈ N) are considered as the execution
times when the plant’s output is sampled and they satisfy
t0 < t1 < · · ·< ti < · · · .
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To determine ti, we consider the following triggering
mechanism that based on the output information,

ti+1 = inf{t > ti|eT (t)e(t)≥ αyT (t)y(t)+β1e−β2t},
(3)

where α , β1 and β2 are design parameters, and e(t) is the
measurement error defined as

e(t) = y(ti)− y(t), t ∈ [ti, ti+1). (4)

With (2) and (4), the closed-loop system is then written as

ẋ(t) =Ax(t)+BK(e(t)+Dx(t))+Cx(t− τ(t))

=(A+BKD)x(t)+Cx(t− τ(t))+BKe(t). (5)

Definition 1: Consider the linear time-delay system
(1). Design a static output feedback controller of form
(2) with the event-triggering mechanism (3), such that the
closed-loop system (5) is exponentially stable. We say that
the event-triggered stabilization of system (1) is achieved
by static output feedback control.

3. MAIN RESULTS

Before obtaining the main results, we need the follow-
ing assumptions and lemmas:

Assumption 1: (A,B) is stablizable.

Assumption 2: The unknown time-varying delay sat-
isfys 0 < τ(t)< τ , where τ is a positive constant.

Lemma 1 (Lemma 4.6.11 of [31]): If P ∈ Rn×n is a
symmetric and positive definite matrix and Q ∈ Rn×n is
a symmetric matrix, then there must exist a nonsingular
matrix T ∈ Cn×n such that

T HPT = In, T HQT = Λ,

where Λ is a diagonal matrix which can be denoted as Λ =
diag[λ1, λ2, · · · , λn].

Lemma 2: If P∈Rn×n is a symmetric and positive def-
inite matrix and Q ∈ Rn×n is a symmetric matrix, then

λmin(P−1Q)xT Px≤ xT Qx≤ λmax(P−1Q)xT Px.

Proof: Based on Lemma 1, let T = [θ1, · · · , θn]
where θi represents the ith column vector of ma-
trix T . From Lemma 1, we have QT = (T H)(−1)Λ =
PT Λ = P[λ1θ1, · · · , λnθn]. Thus, Qθi = λiPθi. Since
P is nonsingular, the equation can be converted to
P−1Qθi = λiθi, which implies that λi is the eigen-
value of P−1Q associated with eigenvector θi. Ob-
viously, λmin(P−1Q) ≤ λi ≤ λmax(P−1Q). Note that
Q = (T−1)HΛT−1 and (T−1)Hλmin(P−1Q)T−1 ≤
(T−1)HΛT−1 ≤ (T−1)Hλmax(P−1Q)T−1. Then, we can
get

(T−1)H
λmin(P−1Q)T−1 ≤ Q

≤ (T−1)H
λmax(P−1Q)T−1.

(6)

By noting that P = (T−1)HT−1, left multiplying (6) by xT

and right multiplying (6) by x yields that

λmin(P−1Q)xT Px≤xT Qx

≤λmax(P−1Q)xT Px. �
Then, we are ready to present the main result of this

paper, which can be summarized as the following theorem.

Theorem 1: Under Assumptions 1 and 2, consider the
linear time-delay system (1) with the control law (2). Sup-
pose B has full row rank. If there exists a symmetric and
positive definite matrix P ∈ Rn×n, a matrix K ∈ Rl×m and
two constants ρ > 0, µ > η = 1

λmin(P)
, such that the follow-

ing inequality is satisfied,

PA+AT P+PBKD+(PBKD)T +PCCT P

+
PBKKT BT P

ρ
≤−µP, (7)

then the closed-loop system is exponentially stable with
the properly designed event-triggering mechanism (3).
The parameters are chosen as follows, α = γλmin(P)

ρ‖D‖2 , β2 >

µ−γ and 0< β1 ≤ β2+γ−µ

ρ
, where 0< γ < µ−η . Further-

more, the convergence rate σ is determined by the solution
of σ +ηeστ = µ− γ .

Proof: Consider the following Lyapunov function

V (t) = xT (t)Px(t).

Then, the time derivative of the Lyapunov function along
the trajectory of (5) is

V̇ (t) =2xT (t)Pẋ(t)

=2xT (t)P
[
(A+BKD)x(t)+Cx(t− τ(t))

+BKe(t)
]
. (8)

By using some matrices inequality, one can derive that

2xT (t)PCx(t− τ)

≤ xT (t)PCCT Px(t)+ xT (t− τ(t))x(t− τ(t))

≤ xT (t)PCCT Px(t)

+
1

λmin(P)
xT (t− τ(t))Px(t− τ(t)), (9)

2xT (t)PBKe(t)

≤ xT (t)PBKKT BT Px(t)
ρ

+ρe(t)T e(t), (10)

where ρ > 0 is a scalar. On the other hand, it follows from
the event-triggering condition (3) and Lemma 2 that

eT (t)e(t)≤αyT (t)y(t)+β1e−β2t
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=αxT (t)DT Dx(t)+β1e−β2t

≤ α‖D‖2

λmin(P)
xT (t)Px(t)+β1e−β2t . (11)

Denoting η = 1
λmin(P)

,γ = ρα‖D‖2

λmin(P)
and taking (9), (10), (11)

into (8) yields

V̇ (t) =xT (t)
[
PA+AT P+PBKD+(PBKD)T

+PCCT P+
PBKKT BT P

ρ

]
x(t)+ γxT (t)Px(t)

+ηxT (t− τ(t))Px(t− τ(t))+ρβ1e−β2t . (12)

It follows from (7) that

V̇ (t)≤ (−µ + γ)V (t)+ηV (t− τ(t))+ρβ1e−β2t .

By using the Comparison Lemma [32], we can get the in-
equality as follows:

V (t)≤Me(−µ+γ)(t−t0)

+
∫ t

t0
e(−µ+γ)(t−s)[ηV (s−τ(s))+ρβ1e−β2s]ds,

(13)

where M = supt0−τ<t<t0 V (t). To complete the proof, the
mathematical induction approach will be used. First, we
will consider the following two cases: t ∈ [t0− τ, t0] and
t ∈ (t0,+∞].

1) If t ∈ [t0− τ, t0], we can easily get

V (t)≤M < (M+1)e−σ(t−t0),

where σ > 0 is a constant.
2) If t ∈ (t0,+∞], the proof is completed by contra-

diction. Suppose that V (t) < (M + 1)e−σ(t−t0) does not
hold for some t

′
, that is, there exists t∗ ∈ (t0, t

′
] such that

t∗ = inf{t > t0|V (t)≥ (M+1)e−σ(t−t0)}. Then, we have

V (t∗) = (M+1)e−σ(t∗−t0), (14)

and

V (t)< (M+1)e−σ(t−t0),

for t0 < t < t∗. Then, according to (13), one has

V (t∗)≤Me(−µ+γ)(t∗−t0)

+
∫ t∗

t0
e(−µ+γ)(t∗−s)[ηV (s−τ(s))+ρβ1e−β2s]ds

<e(−µ+γ)(t∗−t0){M+
∫ t∗

t0
e(µ−γ)(s−t0)[ρβ1e−β2s

+η(M+1)e−σ(s−τ(s)−t0)]ds}

<e(−µ+γ)(t∗−t0){M+
∫ t∗

t0
ρβ1e(µ−γ−β2)s−(µ−γ)t0 ds

+(M+1)ηeστ

∫ t∗

t0
e(µ−γ−σ)(s−t0)ds}. (15)

Furthermore, it follows from µ− γ > 0 that

0 < e(µ−γ−β2)s−(µ−γ)t0 < e(µ−γ−β2)s.

Then (15) can be rewritten as

V (t∗)<e(−µ+γ)(t∗−t0){M+(M+1)[e(µ−γ−σ)(t∗−t0)−1]

+
∫ t∗

t0
ρβ1e(µ−γ−β2)s ds}

=e(−µ+γ)(t∗−t0){(M+1)e(µ−γ−σ)(t∗−t0)−1

+
∫ t∗

t0
ρβ1e−(−µ+γ+β2)s ds},

where the equation σ + ηeστ = µ − γ is used. Accord-
ing to the fact that the exponential distribution func-
tion satisfies

∫
∞

0 σe−σsds ≤ 1, (σ > 0), we can get∫ t∗
t0 ρβ1e−(−µ+γ+β2)s ≤ 1 if 0 < ρβ1 ≤−µ + γ +β2. Then

V (t∗)<e(−µ+γ)(t∗−t0){(M+1)e(µ−γ−σ)(t∗−t0)}
=(M+1)e−σ(t∗−t0),

which is contradictory with (14) and therefore we have
V (t) < (M +1)e−σ(t−t0) for all t ≥ t0− τ . Then, it is con-
cluded that the considered closed-loop system is exponen-
tially stable.

In the end, we will discuss the existence of σ . Define
f (σ) = σ +ηeστ−µ +γ . Obviously, f (σ) is a monotone
increasing function since ḟ (σ) = 1+ητeστ > 0. Then, as
f (0) = γ +η−µ < 0 and lim

σ→∞
f (σ) = ∞, it follows from

the Zero Point Theorem [33] that a positive solution σ > 0
to σ +ηeστ = µ− γ always exists. �

It is noted that in some existing results on event-
triggered output feedback control (see in [26,28]), the con-
ventional triggering mechanisms are usually given as fol-
lows:

ti+1 = inf{t > ti|eT (t)e(t)≥ αyT (t)y(t)}. (16)

Next, the following proposition shows that, under the
same initial conditions, the next triggering time deter-
mined by (3) is larger than that given by (16).

Proposition 1: Let t1
i+1 be given by the rule (3) and t2

i+1
be given by the rule (16), then t1

i+1 ≥ t2
i+1.

Proof: Suppose that t1
i+1 < t2

i+1. Then, from rule (16),
we can get

eT (t1
i+1)e(t

1
i+1)< αyT (t1

i+1)y(t
1
i+1). (17)

Since t1
i+1 is the next triggering time determined by (3), we

have

eT (t1
i+1)e(t

1
i+1)≥αyT (t1

i+1)y(t
1
i+1)+β1e−β2t1

i+1

>αyT (t1
i+1)y(t

1
i+1),

which contradicts (17). Therefore, t1
i+1 ≥ t2

i+1.
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Given the previous discussions, it can be concluded that
the introduction of the addition exponential term has two
advantages. First, with the help of the exponential term,
we would get a longer triggering time interval in com-
parison with the conventional output dependent trigger-
ing condition (16), while an exponential convergence is
achieved. Second, the exponential term plays an important
role in the Zeno exclusion proof, as shown in the proof of
Theorem 2.

Remark 1: It is noted that Theorem 1 is a sufficient
condition for the solvability of the stabilization problem
of (1) with (2). The parameters of the controller and trig-
gering mechanism are given at the same time. Besides, it
can be easily seen that the decay rate σ is proportional
to β2 while it is inversely proportional to the parameters
α and β1. Since σ is the positive solution to equation
σ +ηeστ = µ − γ , the larger τ is, the smaller σ will be.
Therefore, if the time delay increases, α and β1 will in-
crease, while β2 will decrease.

To explicitly determine above parameters, the following
algorithm is developed.

Algorithm 1:
i) Choose a relatively large positive µ > 0;
ii) Solve the following LMI to get P > 0, W , and ρ > 0,PA+AT P+WD+DTW T +µP PC W

CT P −In 0
W T 0 −ρ

< 0,

if µ ≤ 1
λmin(P)

, go back to i, otherwise go to iii);
iii) Solve W = PBK to get gain matrix K;
iv) Choose 0 < γ < µ−η ;
v) Choose α = γλmin(P)

ρ‖D‖2 , β2 > µ − γ , and 0 < β1 ≤
β2+γ−µ

ρ
.

Remark 2: Since P is a positive definite matrix, we
have BK = P−1W . Let K = [k1, k2,· · · , km] and Z =
P−1W = [z1, z2, · · · , zm] where ki is a l dimensional col-
umn vector and zi is a n dimensional column vector for
any i = 1, 2, · · · , m. Then, the matrix equality W = PBK
can be converted to the following m linear equations,

Bk1 = z1,

Bk2 = z2,

...

Bkm = zm.

Since B is full row rank, the above m linear equations with
respect to ki have unique solutions.

It is worth mentioning that the problem considered in
the paper includes the state feedback control problem as
a special case. In particular, by letting m = n, D = In, the
system reduces to

ẋ(t) = Ax(t)+Bu(t)+Cx(t− τ(t)),

y(t) = x(t). (18)

which implies that the state of the system is available for
feedback control. In this case, the results in Theorem 1 can
reduce to the state feedback controller. Before deriving the
main result, we need the following lemma.

Lemma 3: Under Assumptions 1 and 2, for any suffi-
ciently large µ̄ , there always exists K ∈Rl×n and a positive
definite matrix P ∈ Rn×n, such that

PA+AT P+PBK +KT BT P+ µ̄PP = 0. (19)

Proof: Under Assumption 1, it can be concluded that
there always exists a matrix K such that (A+BK) is Hur-
witz, and then so is (A+BK)T . It follows from the Lya-
punov’s Theorem that, for any −µ̄In, the following equa-
tion

Q(A+BK)T +(A+BK)Q =−µ̄In (20)

has a unique solution Q > 0. Left multiply and right mul-
tiply Q−1 on both two sides yields that

(A+BK)T Q−1 +Q−1(A+BK) =−µ̄Q−1Q−1, (21)

which is equivalent to (19) by letting P = Q−1. �
Then, the results are summarized as Corollary 1.

Corollary 1: Consider the linear time-delay system
(18) with the control law u(t) = Kx(ti), t ∈ [ti, ti+1). Un-
der Assumption 1, choose proper K such that (A+BK)
is Hurwitz, and select sufficiently large µ̄ > 0 and ρ > 0
such that µ̄ −‖C‖2 − ‖BK‖2

ρ
> 1

λ 2
min(P)

, where K and P >

0 are the solutions to (19). Then, the closed-loop sys-
tem is exponentially stable with some properly designed
event-triggering mechanism (3). More specifically, let µ =

λmin(P)(µ̄ −‖C‖2− ‖BK‖2

ρ
), α = γλmin(P)

ρ
, β2 > µ − γ and

0 < β1 ≤ β2+γ−µ

ρ
, where 0 < γ < µ− 1

λmin(P)
.

Proof: Under Assumption 1, there always exists K such
that (A + BK) is Hurwitz, and it further follows from
Lemma 3 that there always exists a positive definite ma-
trix P to equation (19). By letting D = In, it follows from
(19) that

PA+AT P+PBKD+(PBKD)T +PCCT P

+
PBKKT BT P

ρ

=−P(µ̄In−CCT − BKKT BT

ρ
)P

≤−λmin(P)(µ̄−‖C‖2− ‖BK‖2

ρ
)P

=−µP, (22)

which implies that inequality (7) in Theorem 1 is satisfied.
Some other parameters can be obtained from Theorem 1.
The proof is thus completed. �
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Remark 3: It is noted that the event-triggered control
in Corollary 1 reduces to the state feedback control law
if the state is available. In this case, by choosing proper
K, there always exists a solution to (7). Moreover, how to
choose the optimal parameters is another interesting prob-
lem to be addressed in the future.

Remark 4: As we mentioned before, the derived re-
sults can also be applied to the multi-agent systems with
general linear dynamics. In particular, if ẋi =Axi+Bui and
ui = K ∑

N
j=1(x̂ j− x̂i) where xi and x̂i represent the state of

agent i and the state at the triggering time, respectively.
In this case, the closed-loop system in compact form is
ẋ = (In⊗A− L⊗BK)x+(−L⊗BK)e, and the coopera-
tive control of such multi-agent systems can be converted
to the stabilization problem of the closed-loop system.

4. ZENO BEHAVIOR EXCLUSION

Zeno behavior is an abnormal behavior caused by the
triggering execution, which means there appears accumu-
lation of infinite number of triggering instants in a finite
time. Thus, it is necessary to exclude Zeno behavior such
that the feasibility of this proposed triggering mechanism
can be guaranteed.

Definition 2: If there exists a positive constant T0 such
that lim

i→∞
ti = T0, then it implies that Zeno behavior appears.

Theorem 2: Under Assumptions 1 and 2, consider the
linear time-delay system (1) and the output feedback con-
troller (2). With the event-triggering mechanism (3), Zeno
behavior is excluded.

Proof: Firstly, suppose that Zeno behavior appears,
then it follows from Definition 2 that there exists a pos-
itive constant T0 such that lim

i→∞
ti = T0. From the definition

of the limit, for any ε > 0, there exists N(ε) such that if
i>N(ε), ti ∈ [T0−ε , T0], which implies tN(ε)+1−tN(ε)≤ ε .
Then, for t ∈ [tN(ε), tN(ε)+1), computing the upper right-
hand Dini derivative of ‖e(t)‖ yields

D+‖e(t)‖ ≤ ‖ė(t)‖. (23)

It follows from (4) and (5) that

ė(t) =−ẏ(t) =−Dẋ(t)

=−D[(A+BKD)x(t)+Cx(t− τ(t))+BKe(t)].
(24)

Then substituting (24) into (23) leads

D+‖e(t)‖ ≤‖ė(t)‖
≤‖D‖[‖A+BKD‖‖x(t)‖+‖C‖‖x(t−τ(t))‖
+‖BK‖‖e(t)‖]. (25)

We further have

‖x(t)‖ ≤

√
xT Px

λmin(P)
<

√
(M+1)e−σ(t−t0)

λmin(P)

<

√
(M+1)
λmin(P)

,

and

‖e(t)‖=
√

e(t)T e(t)≤
√

αy(t)T y(t)+β1e−β2t

<
√

αxT DT Dx+
√

β1

≤
√

αλmax(P−1DT D)V (t)+
√

β1

<
√

αλmax(P−1DT D)(M+1)+
√

β1.

Then, (25) can be rewritten as

D+‖e(t)‖<‖D‖[(‖A+BKD‖+‖C‖)

√
(M+1)
λmin(P)

+‖BK‖
√

αλmax(P−1DT D)(M+1)

+‖BK‖
√

β1].

Denoting

ξ =‖D‖[(‖A+BKD‖+‖C‖)

√
(M+1)
λmin(P)

+‖BK‖
√

αλmax(P−1DT D)(M+1)+‖BK‖
√

β1].

Obviously, ξ > 0. Then

D+‖e(t)‖< ξ .

Finally, by using Comparison Lemma, we have

‖e(t)‖< ξ (t− tN(ε)).

Considering t = t−N(ε)+1, we can get

‖e(t−N(ε)+1)‖< ξ (t−N(ε)+1− tN(ε)),

that is,

t−N(ε)+1− tN(ε) >
‖e(t−N(ε)+1)‖

ξ
. (26)

Besides, it follows from (3) that the next event will not
be triggered before ‖e(t)‖=

√
α‖y(t)‖2 +β1e−β2t , which

implies

‖e(t−N(ε)+1)‖ ≥
√

β1e
−β2

2 t−N(ε)+1 . (27)

Define ε =

√
β1e

−β2
2 T0

ξ
, and take (27) into (26). we can fi-

nally obtain

tN(ε)+1− tN(ε) >
‖e(t−N(ε)+1)‖

ξ
≥
√

β1e
−β2

2 T0

ξ
= ε,

which contradicts the fact that tN(ε)+1− tN(ε) ≤ ε for any
ε > 0. Thus Zeno behavior can be excluded. �
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5. EXAMPLES

5.1. Example 1: Reactor train with delayed recycle
In this section, we present a two stage chemical reactor

with recycle as an example to illustrate the usefulness of
our results to some practical system, which was first con-
sidered in [10].

As shown in Fig. 1, we consider the irreversible, first
order, isothermal reaction which occurs in the two stage
reactor system. To maintain constant reactor temperature,
the composition of product streams from the two reactors
c1, c2 need to be controlled via manipulating the feed com-
positions to the two reactors, namely, c1 f , c2 f . In some
ideal cases, we can ignore the process disturbance caused
by extra feed streams, namely Fd = 0 and cd = 0. The flow
rates to the reactor system are fixed and only the composi-
tions vary. In this case, the state delay is usually inevitable
due to the transportation lag in the recycle stream.

A material balance on the reactor train yields

V1
dc1

dt
=F1c1 f +Rc2(t− τ)+Fdcd

− (F1 +R+Fd)c1−V1k1c1, (28)

V2
dc2

dt
=(F1 +R+Fd−Fp1)c1 +F2c2 f

− (Fp2 +R)c2−V2k2c2. (29)

where the second product stream, Fp2 is given by Fp2 =
F1 +Fd−Fp1 +F2.

Define the following variables

θ1 =
V1

F1 +R+Fd
, θ2 =

V2

Fp2 +R
,

λR =
R

F1 +R+Fd
, µ =

Fp2−F2 +R
Fp2 +R

,

λd =
Fd

F1 +R+Fd
,

V

fcF
R c t

dF dc

V

pF c

fcF

pF c

R c

Fig. 1. Two stage chemical reactor train with delayed re-
cycle.

and make the following transformations: u1 = c1 f − c1 fs ,
u2 = c2 f −c2 fs , x1 = c1−c1s, and x2 = c2−c2s, where c1 fs ,
c2 fs , c1s, and c2s denote steady-state values. Let x = [x1,
x2]

T and u = [u1, u2]
T , by using vector-matrix notation,

systems (28) and (29) become

ẋ = Ax(t)+Bu(t)+Cx(t− τ), (30)

y = Dx(t), (31)

where y is the measured output and

A =

(
− 1+k1θ1

θ1
0

µ

θ2
− 1+k2θ2

θ2

)
, B =

(
1−λR−λd

θ1
0

0 1−µ

θ2

)
,

C =

(
0 λR

θ1

0 0

)
, D =

(
1 0
0 1

)
.

It is noted that in (31), it is assumed that x can be mea-
sured directly, and thus D = I. In this case, the stabiliza-
tion of (30) is to design proper control input u1 and u2,
such that the x = [0, 0]T is asymptotically stable, which
implies that c1→ c1s and c2→ c2s as t→∞. Then, we can
determine the feed compositions for the two reactors as
follows: c1 f = u1 + c1 fs , c2 f = u2 + c2 fs .

Then we use the example that first used in [34] with

ignoring any disturbances, where A =

[
−2 0
0.5 −2

]
,B =[

0.4 0
0 0.5

]
,C =

[
0 0.5
0 0

]
, and τ = 1.

It is noted that the system is a special case of (1)
with τ(t) ≡ 1 and D = I. In this case, we can design the
event-triggered controller according to Corollary 1. The

parameters are as follows, K =

[
−0.7148 −1.4297
−0.4693 −0.9387

]
,

α = 0.1268, β1 = 0.021, and β2 = 2. The time response
of the system state with the proposed event-triggered con-
troller is shown in Fig. 2. The simulation result shows the
effectiveness of the results.
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Fig. 2. Time response of the system state with the pro-
posed controller.
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5.2. Example 2: Numerical model with time-varying
delay

In this section, we consider a 2-dimensional example of
the model (1) with

A =

[
0 4
1 −3

]
, B =

[
−4 0
0 2

]
,

C =

[
0.5 0
1 −1

]
, D =

[
0.5 1

]
.

The time-varying delay is τ(t)= et

1+et , and the parameter is
selected as µ = 4. Then, according to Theorem 1, we can
get the following parameters that satisfy the inequality (7),

P =

[
0.6013 −0.2431
−0.2431 1.6100

]
, ρ = 9.4650, γ = 2.2.

Further more, we can obtain the design parameters as fol-
lows

K=

[
1.7593
−1.5517

]
, α =0.1268, β1=0.021, β2=2.

With the proposed event-triggered controller, simula-
tion results are presented with the arbitrarily chosen initial
states x0 = [4,4]T . In particular, the time response of the
system state with the proposed event-triggered controller
is shown in Fig. 3. It can be easily observed from Fig. 3
that the state of the linear time-delay system indeed con-
verges to 0 eventually.

It can be seen that with relatively small β1 and rela-
tively large β2, the exponential term in the event-triggering
mechanism, i.e., β1e−β2t is quite small. To show the effect
of the exponential term, we carry out the simulation by us-
ing the event-triggering mechanism without the exponen-
tial term (case 2, in this case, β1 = β2 = 0), and the time re-
sponse of the system state is presented in Fig. 4. It follows
that a similar convergence rate is achieved, which implies
that the exponential term has little impact on the conver-
gence performance. Moreover, time response of the sys-
tem state with continuous controller is presented in Fig. 5,
which shows that with the proposed event-triggered con-
trol law, the convergence rate of the system remains simi-
lar as that with continuous controller, while sampling fre-
quency can be reduced. Besides, the triggering time in-
stants determined by the event-triggering mechanism with
or without the exponential term are recorded in Fig. 6, re-
spectively. It is noted that in Fig. 6, T1 is associated with
the case with the exponential term while T2 is associated
with the other case. It can be clearly observed that compar-
ing with T1, T2 has more triggering times and some trig-
gering time intervals even tend to be 0.

6. CONCLUSION

In this paper, the stabilization problem has been investi-
gated for a class of linear time-delay systems by proposing
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Fig. 3. Time response of the system state with the pro-
posed controller.
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Fig. 6. Event-triggering time instants in the two cases.

an event-triggered output feedback control law. A novel
event-triggering mechanism has been proposed to reduce
the communication burden, and sufficient conditions have
been obtained to ensure that the state of the controlled
system exponentially converges to zero. Meanwhile, Zeno
behavior has also been strictly excluded. Finally, a simu-
lation has been given to show the effectiveness of the suf-
ficient conditions. Future work will focus on the perfor-
mance analysis of event/self-triggered control framework
and its applications to the cooperative control of multi-
agent systems.

REFERENCES

[1] R. Olfati-Saber and R. Murray, “Consensus problems in
networks of agents with switching topology and time-
delays,” IEEE Transactions on Automatic Control, vol. 45,
no. 9, pp. 1520-1533, April 2003.

[2] W. Zhang, Z. Wang, Y. Liu, D. Ding, and F. Alssadi,
“Event-based state estimation for a class of complex net-
works with time-varying delays: A comparison principle
approach,” Physics Letters A, vol. 381, no. 1, pp. 10-18,
January 2017.

[3] Y. Cao, J. Lam, and Y. Sun, “Static output feedback stabi-
lization: an ILMI approach,” Automatica, vol. 34, no. 12,
pp. 1641-1645, December 1998.

[4] X. Han, E. Fridman, S. K. Spurgeon, and C. Edwards, “On
the design of sliding-mode static-output-feedback con-
trollers for systems with state delay,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 9, pp. 3656-3664,
September 2009.

[5] D. Yue, Q. Han, and C. Peng, “State feedback controller
design of networked control systems,” IEEE Transactions
on Circuits and Systems II Express Briefs, vol. 51, no. 11,
pp. 640-644, November 2004.

[6] Y. Gao, H. Li, M. Chadli, and H. Lam, “Static output-
feedback control for interval type-2 discrete-time fuzzy
systems,” Complexity, vol. 21, no. 3, pp. 74-88, February
2015.

[7] H. Li, Y. Gao, P. Shi, and X. Zhao, “Output-feedback con-
trol for T-S fuzzy Delta operator systems with time-varying
delays via an input-output approach,” IEEE Transactions
on Fuzzy systems, vol. 23, no. 4, pp. 1100-1112, August
2015.

[8] R. Findeisen, L. Imsland, F. Allgower, and B. Foss, “Sta-
bility conditions for observer based output feedback stabi-
lization with nonlinear model predictive control,” Proc. of
42nd IEEE Conference on Decision and Control, Maui, HI,
USA, December 2003.

[9] R. C. Luo and L. Y. Chung, “Stabilization for linear un-
certain system with time latency,” IEEE Transactions on
Industrial Electronics, vol. 49, no. 4, pp. 905-910, August
2002.

[10] B. A. Ogunnaike and W. H. Ray, “Multivariable controller
design for linear systems having multiple time delays,”
AIChE Journal, vol. 25, no. 6, pp. 1043-1057, November
1979.

[11] E. Fridman, M. Dambrine, and N. Yeganefar, “On input-
to-state stability of systems with time-delay: A matrix in-
equalities approach,” Automatica, vol. 44, no. 9, pp. 2364-
2369, September 2008.

[12] H. Gao and T. Chen, “New results on stability of discrete-
time systems with time-varying state delay,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 2, pp. 328-334,
February 2007.

[13] Q. Song, Z. Zhao, and Y. Liu, “Stability analysis of
complex-valued neural networks with probabilistic time-
varying delays,” Neurocomputing, vol. 159, no. 1, pp. 96-
104, July 2015.

[14] P. Tabuada, “Event-triggered real-time scheduling of sta-
bilizing control tasks,” IEEE Transactions on Automatic
Control, vol. 52, no. 9, pp. 1680-1685, September 2007.

[15] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson,
“Distributed event-triggered control for multi-agent sys-
tems,” IEEE Transactions on Automatic Control, vol. 57,
no. 5, pp. 1291-1297, May 2012.

[16] W. Hu, C. Yang, T. Huang, and W. Gui, “A distributed
dynamic event-triggered control approach to consensus of
linear multi-agent systems with directed networks,” IEEE
Transactions on Cybernetics, vol. 50, no. 2, pp. 869-874,
Febrary 2020.

[17] W. Hu, L. Liu, and G. Feng, “Event-triggered coopera-
tive output regulation of linear multi-agent systems under
jointly connected topologies,” IEEE Transactions on Auto-
matic Control, vol. 64, no. 3, pp. 1317-1322, March 2019.

[18] M. Guinaldo, D. V. Dimarogonas, D. Lehmann, and K.
H. Johansson, “Distributed event-based control for inter-
connected linear systems,” Asynchronous Control for Net-
worked Systems, pp. 149-179, Springer, 2015.

[19] L. Zou, Z. Wang, H. Gao, and X. Liu, “Event-triggered
state estimation for complex networks with mixed time de-
lays via sampled data information: The continuous-time
case,” IEEE Transactions on Cybernetics, vol. 45, no. 12,
pp. 2804-2815, January 2015.

http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1016/j.physleta.2016.10.002
http://dx.doi.org/10.1016/j.physleta.2016.10.002
http://dx.doi.org/10.1016/j.physleta.2016.10.002
http://dx.doi.org/10.1016/j.physleta.2016.10.002
http://dx.doi.org/10.1016/j.physleta.2016.10.002
http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1109/TIE.2009.2023635
http://dx.doi.org/10.1109/TIE.2009.2023635
http://dx.doi.org/10.1109/TIE.2009.2023635
http://dx.doi.org/10.1109/TIE.2009.2023635
http://dx.doi.org/10.1109/TIE.2009.2023635
http://dx.doi.org/10.1109/TCSII.2004.836043
http://dx.doi.org/10.1109/TCSII.2004.836043
http://dx.doi.org/10.1109/TCSII.2004.836043
http://dx.doi.org/10.1109/TCSII.2004.836043
http://dx.doi.org/10.1002/cplx.21617
http://dx.doi.org/10.1002/cplx.21617
http://dx.doi.org/10.1002/cplx.21617
http://dx.doi.org/10.1002/cplx.21617
http://dx.doi.org/10.1109/TFUZZ.2014.2346237
http://dx.doi.org/10.1109/TFUZZ.2014.2346237
http://dx.doi.org/10.1109/TFUZZ.2014.2346237
http://dx.doi.org/10.1109/TFUZZ.2014.2346237
http://dx.doi.org/10.1109/TFUZZ.2014.2346237
http://dx.doi.org/10.1109/CDC.2003.1272810
http://dx.doi.org/10.1109/CDC.2003.1272810
http://dx.doi.org/10.1109/CDC.2003.1272810
http://dx.doi.org/10.1109/CDC.2003.1272810
http://dx.doi.org/10.1109/CDC.2003.1272810
http://dx.doi.org/10.1109/TIE.2002.801243
http://dx.doi.org/10.1109/TIE.2002.801243
http://dx.doi.org/10.1109/TIE.2002.801243
http://dx.doi.org/10.1109/TIE.2002.801243
http://dx.doi.org/10.1002/aic.690250616
http://dx.doi.org/10.1002/aic.690250616
http://dx.doi.org/10.1002/aic.690250616
http://dx.doi.org/10.1002/aic.690250616
http://dx.doi.org/10.1016/j.automatica.2008.01.012
http://dx.doi.org/10.1016/j.automatica.2008.01.012
http://dx.doi.org/10.1016/j.automatica.2008.01.012
http://dx.doi.org/10.1016/j.automatica.2008.01.012
http://dx.doi.org/10.1109/TAC.2006.890320
http://dx.doi.org/10.1109/TAC.2006.890320
http://dx.doi.org/10.1109/TAC.2006.890320
http://dx.doi.org/10.1109/TAC.2006.890320
http://dx.doi.org/10.1016/j.neucom.2015.02.015
http://dx.doi.org/10.1016/j.neucom.2015.02.015
http://dx.doi.org/10.1016/j.neucom.2015.02.015
http://dx.doi.org/10.1016/j.neucom.2015.02.015
http://dx.doi.org/10.1109/TAC.2007.904277
http://dx.doi.org/10.1109/TAC.2007.904277
http://dx.doi.org/10.1109/TAC.2007.904277
http://dx.doi.org/10.1109/TAC.2011.2174666
http://dx.doi.org/10.1109/TAC.2011.2174666
http://dx.doi.org/10.1109/TAC.2011.2174666
http://dx.doi.org/10.1109/TAC.2011.2174666
http://dx.doi.org/10.1109/TCYB.2018.2868778
http://dx.doi.org/10.1109/TCYB.2018.2868778
http://dx.doi.org/10.1109/TCYB.2018.2868778
http://dx.doi.org/10.1109/TCYB.2018.2868778
http://dx.doi.org/10.1109/TCYB.2018.2868778
http://dx.doi.org/10.1109/TAC.2018.2849587
http://dx.doi.org/10.1109/TAC.2018.2849587
http://dx.doi.org/10.1109/TAC.2018.2849587
http://dx.doi.org/10.1109/TAC.2018.2849587
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1109/TCYB.2014.2386781
http://dx.doi.org/10.1109/TCYB.2014.2386781
http://dx.doi.org/10.1109/TCYB.2014.2386781
http://dx.doi.org/10.1109/TCYB.2014.2386781
http://dx.doi.org/10.1109/TCYB.2014.2386781


2866 Xiaoli Wang, Peng Xiang, Wenfeng Hu, and Tingwen Huang

[20] H. Zhang, Z. Wang, H. Yan, F. Yang, and X. Zhou, “Adap-
tive event-triggered transmission scheme and H∞ filtering
co-design over a filtering network with switching topol-
ogy,” IEEE Transactions on Cybernetics, vol. 45, no. 12,
pp. 1-12, September 2018.

[21] H. Yan, H. Zhang, F. Yang, and X. Zhan, “Event-triggered
asynchronous guaranteed cost control for Markov jump
discrete-time neural networks with distributed delay and
channel fading,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 8, pp. 3588-3598, Au-
gust 2018.

[22] T. Shi, T. Tang, and J. Bai, “Distributed event-triggered
control co-design for large-scale systems via static output
feedback,” Journal of the Franklin Institute, vol. 356, no.
17, pp. 10393-10404, 2019.

[23] L. Xiang, W. Lan, J. Zhao and F. Chen, “Distributed con-
sensus via self-triggered output feedback,” IET Control
Theory and Applications, vol. 10, no. 10, pp. 1170-1180,
March 2016.

[24] Y. Qian, L. Liu, and G. Feng, “Output consensus of het-
erogeneous linear multi-agent systems with adaptive event-
triggered control,” IEEE Transactions on Automatic Con-
trol, vol. 64, no. 6, pp. 2606-2613, June 2019.

[25] X. Zhang and Q. Han, “Event-triggered dynamic output
feedback control for networked control systems,” IET Con-
trol Theory and Applications, vol. 8, no. 4, pp. 226-234,
March 2014.

[26] M. Shen, S. Yan, and G. Zhang, “A new approach to event-
triggered static output feedback control of networked con-
trol systems,” ISA Transactions, vol. 65, no. 4, pp. 468-474,
August 2016.

[27] X. Chen and F. Hao, “Periodic event-triggered state-
feedback and output-feedback control for linear systems,”
International Journal of Control, Automation and Systems,
vol. 13, no. 4, pp. 779-787, August 2015.

[28] H. Yu and P. Antsaklis, “Event-triggered output feedback
control for networked control systems using passivity:
Achieving L2 stability in the presence of communication
delays and signal quantization,” Automatica, vol. 49, no. 1,
pp. 30-38, January 2013.

[29] D. Sylvain, T. Lizeth, and F. Jose, “Event-triggered
observer-based output-feedback stabilization of linear sys-
tem with communication delays in the measurements,”
13th European Control Conference, Strasbourg, France,
Jun 2014.

[30] H. Zhang, G. Feng, H. Yan, and Q. Chen, “Observer-
based output feedback event-triggered control for consen-
sus of multi-agent systems,” IEEE Transactions on Indus-
trial Electronics, vol. 61, no. 9, pp. 4885-4894, September
2014.

[31] L. Huang, Linear Algebra in Systems and Control Theory
(in Chinese), Science Press, Beijing, 1984.

[32] H. Khalil, Nonlinear Systems, 3rd ed., Upper Saddle River,
2002.

[33] T. Apostol, Mathematical Analysis, 2nd ed., Addison-
Wesley, Boston, 1974.

[34] B. A. Ogunnaike and W. H. Ray, “Computer-aided multi-
variable control system design for processes with time de-
lays,” Computers & Chemical Engineering, vol. 6, no. 4,
pp. 311-326, 1982.

Xiaoli Wang is an Associate professor
at the School of Automation, Central
South University, Changsha, China. She
received her B.S., M.S., and Ph.D. degrees
from Central South University, Changsha,
China, in 2004, 2006, and 2011, respec-
tively. Her research interests include mod-
eling of complex industrial process and
intelligent information processing.

Peng Xiang is an M.S. candidate at the
School of Automation, Central South Uni-
versity, Changsha, China. She received her
B.S. degree from Central South University,
Changsha, China, in 2017. Her research in-
terests include event-triggered control, co-
operative control and distributed H∞ con-
trol.

Wenfeng Hu is an Associate professor at
the School of Automation, Central South
University, Changsha, China. He received
his B.Sc. degree in information and com-
puting science from Chongqing Univer-
sity of Technology, Chongqing, China, in
2009, an M.Eng. degree in computer soft-
ware and theory from Chongqing Univer-
sity, Chongqing, China, in 2012, and a

Ph.D. degree in mechanical and biomedical engineering from
City University of Hong Kong, Hong Kong, in 2016. His current
research interests include multi-agent systems, event-triggered
control, and output regulation.

Tingwen Huang is a Professor at the
Texas A&M University at Qatar, Doha,
Qatar. He received his B.S. degree from
Southwest Normal University (now South-
west University), China, in 1990, his M.S.
degree from Sichuan University, China, in
1993, and his Ph.D. degree from Texas
A&M University, College Station, Texas,
in 2002. After graduated from Texas A&M

University, he worked as a Visiting Assistant Professor there.
Then he joined Texas A&M University at Qatar (TAMUQ) as
an Assistant Professor in August 2003, then he was promoted to
Professor in 2013. Dr. Huang’s focus areas for research interests
include neural networks, computational intelligence, chaotic dy-
namical systems, complex networks, optimization and control.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

http://dx.doi.org/10.1109/TCYB.2018.2862828
http://dx.doi.org/10.1109/TCYB.2018.2862828
http://dx.doi.org/10.1109/TCYB.2018.2862828
http://dx.doi.org/10.1109/TCYB.2018.2862828
http://dx.doi.org/10.1109/TCYB.2018.2862828
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1109/TNNLS.2017.2732240
http://dx.doi.org/10.1016/j.jfranklin.2018.05.051
http://dx.doi.org/10.1016/j.jfranklin.2018.05.051
http://dx.doi.org/10.1016/j.jfranklin.2018.05.051
http://dx.doi.org/10.1016/j.jfranklin.2018.05.051
http://dx.doi.org/10.1049/iet-cta.2015.1104
http://dx.doi.org/10.1049/iet-cta.2015.1104
http://dx.doi.org/10.1049/iet-cta.2015.1104
http://dx.doi.org/10.1049/iet-cta.2015.1104
http://dx.doi.org/10.1109/TAC.2018.2868997
http://dx.doi.org/10.1109/TAC.2018.2868997
http://dx.doi.org/10.1109/TAC.2018.2868997
http://dx.doi.org/10.1109/TAC.2018.2868997
http://dx.doi.org/10.1049/iet-cta.2013.0253
http://dx.doi.org/10.1049/iet-cta.2013.0253
http://dx.doi.org/10.1049/iet-cta.2013.0253
http://dx.doi.org/10.1049/iet-cta.2013.0253
http://dx.doi.org/10.1016/j.isatra.2016.08.014
http://dx.doi.org/10.1016/j.isatra.2016.08.014
http://dx.doi.org/10.1016/j.isatra.2016.08.014
http://dx.doi.org/10.1016/j.isatra.2016.08.014
http://dx.doi.org/10.1007/s12555-013-0318-z
http://dx.doi.org/10.1007/s12555-013-0318-z
http://dx.doi.org/10.1007/s12555-013-0318-z
http://dx.doi.org/10.1007/s12555-013-0318-z
http://dx.doi.org/10.1016/j.automatica.2012.09.005
http://dx.doi.org/10.1016/j.automatica.2012.09.005
http://dx.doi.org/10.1016/j.automatica.2012.09.005
http://dx.doi.org/10.1016/j.automatica.2012.09.005
http://dx.doi.org/10.1016/j.automatica.2012.09.005
http://dx.doi.org/10.1109/ECC.2014.6862540
http://dx.doi.org/10.1109/ECC.2014.6862540
http://dx.doi.org/10.1109/ECC.2014.6862540
http://dx.doi.org/10.1109/ECC.2014.6862540
http://dx.doi.org/10.1109/ECC.2014.6862540
http://dx.doi.org/10.1109/TIE.2013.2290757
http://dx.doi.org/10.1109/TIE.2013.2290757
http://dx.doi.org/10.1109/TIE.2013.2290757
http://dx.doi.org/10.1109/TIE.2013.2290757
http://dx.doi.org/10.1109/TIE.2013.2290757
http://dx.doi.org/10.1016/0098-1354(82)85007-2
http://dx.doi.org/10.1016/0098-1354(82)85007-2
http://dx.doi.org/10.1016/0098-1354(82)85007-2
http://dx.doi.org/10.1016/0098-1354(82)85007-2

