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PID Principles to Obtain Adaptive Variable Gains for a Bi-order Sliding
Mode Control
Sergio Alvarez-Rodríguez* � and Gerardo Flores

Abstract: A new model to obtain adaptive variable gains for a bi-order Sliding Mode Control is proposed in this
work. The variable gains for the controller are designed to dynamically adapt their values, using principles of the
well-known Proportional-Integral-Derivative control technique, where the magnitude of the tracking error is the
signal feedback. According to the way to tune parameters, it can become a first-order or a second-order controller.
This design takes into account the actuators’ constraints (operational limits of the plant to control). As a result of the
adaptive properties of the proposed scheme, the new controller significantly reduces the energy consumption in con-
trol processes, and it rejects the so-called chattering-effect, simultaneously maintaining the main robust properties
of the Sliding Mode strategy. In order to show the feasibility and effectiveness of the proposed design, simulation
results are presented, where the performance of the proposed controller is compared with the conventional Sliding
Modes of order one and two, and also with the classical PID controller. A strong stability analysis in the sense of
Lyapunov is presented, showing global exponential stability for the equilibrium point of the closed-loop control
system when the proposed control design is used.
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1. INTRODUCTION

Sliding Mode Control (SMC) is used to design robust
controllers for a large variety of nonlinear systems (see
[1]). SMC strategy uses a discontinuous control law to
drive the system state from an arbitrary initial state to the
origin along a previously specified trajectory, i.e., the slid-
ing manifold [2]. The main advantages of Sliding Modes
(SM) are robustness to parameter uncertainty and invari-
ance to unknown disturbances [3]. However, as it is stated
by [4–6] (among others), SMC has a major drawback,
which is known as the chattering-effect. This effect is
caused when the control signal switches at a high fre-
quency (see [7, 8]), causing several problems in the plant
under control such as heat, mechanical wear, noise, and
delay in the actuator response. The Twisting Algorithm
(TA), is one of the main modalities of the so called High
Order Sliding Mode Control (HOSM), which was de-
signed to deal with the chattering-effect (see [9,10]). SMC
is capable to modify the amplitude and the shape of the
switching control signal by correctly tuning its parame-
ters.

To achieve robustness with low levels of chattering,

both the conventional SMC of the first order and the TA of
the second order are chosen to set the basis of this work.
Further, this study considers the use of proportional inte-
gral derivative (PID) control concepts to get adaptability
and flexibility properties for the variable gains of the SM
controller proposed along this manuscript. Even when tra-
ditionally, the SMC parameters are adjusted manually by
trial and error, some previous efforts have been made in
designing adaptive variable gains for the SMC, which con-
stitutes the following state-of-the-art:

In [11], a robust adaptive SMC is proposed to deal
with nonlinear systems with uncertain parameters. In [12]
a logic concept is developed where the control gain de-
pends on the distance of the system state to a discontinu-
ity surface. In [13,14], Lyapunov-based variable gains for
the Super-Twisting algorithm are proposed to ensure the
global and finite-time convergence to the desired sliding
surface, claiming an attenuation of the chattering-effect;
this approach is applied to linear time invariant systems.
In [15] a new TA with dynamic adaptation gains is de-
veloped, in which the controller does not require com-
plete information of system uncertainties. Regarding con-
trol of an electro-pneumatic actuator, in [16] an adaptive
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Super-Twisting algorithm is proposed, where the Super-
Twisting control gains are not overestimated. In [17] a
nonlinear adaptive second order SM is presented to deal
with system uncertainties and external disturbances. In
[18], an Adaptive Continuous Twisting Algorithm is pro-
posed, which produces a continuous control signal ensur-
ing finite time convergence, this is due to the control signal
compensates the Lipschitz perturbations in finite time. To
achieve this goal the proposed controller needs the calcu-
lation of four different gains, this fact complicates the gain
adjustment. In [19], a PID SMC is also proposed to reduce
the chattering-effect, designed from the Lyapunov stabil-
ity theory, for a specific class of uncertain nonlinear sys-
tems. In [20] an output feedback control law for the TA is
designed to deal with uncertainties and disturbances, tak-
ing into account saturated control signals. In [21], an adap-
tive SMC framework is proposed for the tracking control
of a particular class of uncertain nonlinear systems where
the overall uncertainty of the system or its time deriva-
tive is not bounded by a constant. In [22], a PID sliding
mode controller is proposed, which uses a multi-objetive
optimization bat algorithm to control a gyroscope, how-
ever, this idea is focused only on the super-twisting (sec-
ond order SMC). In [23], a robust adaptive controller is
presented combining SMC with a kind of neural network
to control industrial robot manipulators with uncertain dy-
namical environments. In [24], a SMC with variable gains
is designed to not overestimate system disturbances, re-
jecting the chattering-effect by using the positioning track-
ing error, but, estimation of both future and past values
of system states are not introduced yet. In [25], a slid-
ing surface is designed from a conventional PID control
according to system parameters, and the tuning rules for
the PID are based on the assumption that the closed-loop

poles are located in left hand side of the complex plane,
nevertheless, this approach is focused only on SMC of the
first order. In [26], a mass property-resilient controller for
position and attitude control of a free-flying spacecraft is
presented, which combines the two techniques, PID and
SMC, however, this design has some troubles in dealing
with the chattering-effect produced by the Sliding mani-
fold. In [27], a combination between a self-tuning-fuzzy
PID nonsingular-fast-termnal-sliding-mode control and a
time delay estimator is proposed to control a PUMA robot,
nevertheless, this approach becomes complex to imple-
ment on other applications. The most recent SM studies
that hold on methodologies to deal with adverse effects
caused by the uncertainties are presented in [28–30]. In
[28], a SMC is applied to space robot manipulator mod-
els, under the assumption that these can be treated as
nonlinear stochastic semi-Markovian switching systems.
In [29], networked systems are considered to involve a
Takagi-Sugeno model based SMC study. In the most re-
cent [30], passivity-based robust SMC is involved to deal
with a class of uncertain delayed system, using a state ob-
server.

Even when the priority of the mentioned research
works, is the application of adaptive principles or other
novel strategies to increase the SM performance (e.g.,
to reduce the problems caused by the chattering-effect
[31], increase the SM robust properties), the possibility to
choose the order of the SMC, by just tuning the PID, has
not previously proposed.

According to the state-of-the-art, the manuscripts that
are most related to our work are [19, 22, 25–27]. In Ta-
ble 1, a comparison of the main features and differences
of these other control schemes with respect to our work, is
presented.

Table 1. Comparison between the most recent PID SM control literature ( [19, 22, 25–27]) and our research.

[19] [22] [25] [26] [27] Our
Research

Is the proposed controller a multi-order
approach?

No No No No No Yes

Type of SMC involved Conventional Super-
twisting

Conventional Conventional Conventional First order
and twisting

The level of chattering generated by
the controller is:

Low Low Low-Medium Medium-High Low Low

The robustness of the presented control
system is:

High High High High High High

The sensitivity to PID parameters of
the controller is:

Low Low-Medium Medium High High Low

Is it designed to deal with generic
control systems?

Yes No No No No Yes

The controller is designed to deal with:

Generic
electro-

mechanical
systems

Gyroscope-
type

models

Levitation-
based

models

Space-
craft

based models

Exact
dynamics

math models

Generic
electro-

mechanical
systems
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1.1. Motivation
From the revision of the presented state-of-the-art and

SM literature, three main drawbacks in implementing
SMC can be mentioned:

1) Conventional SMC overestimates disturbances (even
when the controller is correctly tuned). This drawback
produces unnecessary amounts of chattering-effect.

2) Commonly, the controller is either of order one or of
order two, i.e., the chance to select the controller’s order
by just tuning parameters does not exist in previous PID
SM controllers.

3) Commonly, actuators constraints of the plant under
control are not explicitly taken into account.

In the presented state-of-the-art and SM literature, is-
sues 1 and 3, have been separately treated using different
methods, but issue 2 has not been previously solved when
PID principles are combined with SMC.

The motivation of this work, is to design a SM-based
controller that simultaneously deal with these three issues,
to obtain a control law with the potential to greatly sim-
plify the task of robust control free from unnecessary chat-
tering.

1.2. The main contribution
The main contribution of this work is the design of

adaptive variable gains to obtain a SM-based controller,
with the following properties:

The adaptive variable gains are adjusted taking the
present, the past, and an estimation of future values of
the tracking error magnitude. The resulting controller does
not overestimates disturbances, but a minimum, necessary,
and sufficient Sliding manifold is ensured, to maintain its
robust properties.

The design allows to tune the controller as a first or as
a second order SM controller (bi-order approach).

Actuators constraints are assumed bounded to obtain
global exponential stability of the equilibrium point.

To achieve these SM control goals, the magnitude of the
tracking error is used to feed proportional, integral, and
derivative terms, for dynamic calculations of the adaptive
variable gains, which are engaged from each other accord-
ing to a novel design.

The main advantage of the proposed controller is the
drastically reduction of the chattering-effect, saving en-
ergy consumption, but preserving the robust properties of
SMC, when it is solving the trajectory tracking problem
for the plant under control. Even when the controller does
not overestimates internal and external disturbances, a rig-
orous stability analysis in the Lyapunov approach shows
global exponential stability around the equilibrium point
of the closed-loop control system.

The remainder of the document has the following pre-
sentation: in Section 2 the design of the proposed con-
troller is presented; in Section 3, the stability analysis

in the sense of Lyapunov is provided, as the proof of
the given theorem; simulation results of controller perfor-
mance are given in Section 4, where an inclined piston
is the plant under control; a further discussion along with
ideas for a future work is provided in Section 5; and fi-
nally, conclusions are presented in Section 6.

2. THE PROPOSED CONTROLLER

2.1. Problem setting
Consider the dynamical system,

ẋ1 = x2,

ẋ2 = f (t)+u, (1)

where x1, x2 ∈ R are time dependant variables which rep-
resent the tracking and velocity errors respectively; f (t) ∈
R is a bounded function-possible dependent on the states
which may include modelled and non-modelled dynamics
of the plant, parametric variations, and disturbances; and
u∈R represents the control variable. Variables x1(t), x2(t)
also construct the sliding manifold with the target

x1 = χ1− xd = 0,

x2 = χ2− ẋd = 0, (2)

where χ1, χ2 represent the actual system states for posi-
tion and velocity respectively, and xd(t) ∈R is the desired
state of the plant (i.e., the reference signal to track).
The TA (see [9, 15, 33]), as a especial case of HOSM,
has been designed for control systems with relative degree
equals two, as such, system (1) can be controlled by

u =−r1sgn(x1)− r2sgn(x2),

r1 > r2 ≥ 0, (3)

where r1, r2 ∈R are the so called twisting parameters; and
sgn(·) is the well known sign function.

But system (1), can also be controlled by the conven-
tional SMC of order one, which can be expressed as

u =−r1sgn(x1), (4)

for the case r2 = 0.
The problem setting consist in extending the concept

for r1 and r2 from constant parameters to Sliding and state-
dependent variable gains,

r1→ ρ1(x1),

r2→ ρ2(x1). (5)

They are now called SM adaptive variable gains, rather
than just constant gains.

These variable gains must adapt their values and the
PID concept is proposed to achieve this goal.
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Fig. 1. Bounds of the control signal generated by the TA
with r1 = 40 and r2 = 15.

2.2. Bounds of the SMC law of order two
According to (3), the bounds of the control (3) are

u =

{
r1 + r2, if : sgn(x1) = sgn(x2) =−1,
−r1− r2, if : sgn(x1) = sgn(x2) = +1.

(6)

Note that the case sgn(x1) 6= sgn(x2) ensures that the
control signal is also bounded by max(| − r1sgn(x1)−
r2sgn(x2)|) and min(−|− r1sgn(x1)− r2sgn(x2)|), where
| · | represents the absolute value of any function. Also note
that for the case r2 = 0, (6) is also valid.

Fig. 1 is given to exemplify the region of the TA bounds
given by (6), selecting r1 = 40, r2 = 15, and U0 = 55 [Nm],
where U0 represents the saturation constraints of the plant
or process to control, (e.g., the nominal limits of the actu-
ators, and/or the operational limits of the plant). Also note
that the TA parameters r1 and r2 must be selected, in such a
way that the saturation constraints of the plant (U0) cannot
be exceeded, otherwise, the actuators could be damaged
due to overloads with excessive amounts of power signals
as electric currents, voltages, hydraulic flows, and so on.
Thus, r1 + r2 ≤U0 must be fulfilled.

2.3. Design of the proposed controller
Including (5) in (3),

u =−ρ1sgn(x1)−ρ2sgn(x2),

ρ1 > ρ2 ≥ 0. (7)

Now, let us define the variable gains as

ρ1 = k1Γ,

ρ2 = k2Γ, (8)

where k1, k2 ∈ R+ are constant parameters, and Γ =
Γ(x1,x2) is a states dependant function. Giving rise to

u =−k1Γsgn(x1)− k2Γsgn(x2). (9)

The next step is devoted to give the controller a bi-order
feature [24].

To get a SMC of both first and second order (by just
tuning parameters), a linear dependency between ρ1 and

ρ2 is required. To achieve this goal, a parameter µ ∈ R
must be introduced, in the interval 0≤ µ < 1, such that

k1 =
1

1+µ
,

k2 = µk1. (10)

Note that

k1 + k2 =
1

1+µ
+

µ

1+µ
= 1. (11)

Combining (8) with (11)

Γ(x1,x2) = ρ1 +ρ2, (12)

which corresponds to the region for the bounds exempli-
fied by (6) and Fig. 1. Note that r1 + r2 is a constant value,
while ρ1+ρ2 is a variable one in the interval 0< ρ1+ρ2≤
U0.

Combining (8)-(12), control (7) is verified, and also the
following linear dependency is obtained

ρ2 = µρ1. (13)

Observe that when µ = 0, the SMC of order one is ob-
tained as

u =−Γsgn(x1). (14)

As (12) just set the Γ bounds and does not provides the
method to obtain its adaptive values, the final part of the
controller design consists in propose the algorithm to ob-
tain Γ using PID principles, as follows:

Let us include a proportional variable as Γp(x1), an in-
tegral term as Γi(x1), and a derivative one as Γd(x1,x2).
Each one of them are tracking error dependant functions.
Now, define ψ(x1,x2) = |Γp +Γi +Γd | ≥ 0, and, consider
that Γ = Γ(ψ).

Conventional PID control takes the tracking error to
compute the control signal, however, in this study the ab-
solute value for the tracking error is proposed to get the
SM adaptive gains, otherwise the control system can be
destabilized.

Let us introduce a constant gain γp, to give the controller
adaptability and flexibility. The proportional term is pro-
posed as

Γp = γp|x1|, (15)

where γp is a positive real number. Equation (15) takes into
account the present values of the main sliding variable,
however, its past and future values can also be considered.

The integral variable is designed as

Γi = γi

∫ t1

t0
|x1|dt, (16)
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where γi is a positive real gain. Expression (16) accounts
for past values of the sliding variable, then, if the output
is not sufficient to reduce the size of x1, the control vari-
able will accumulate over time, causing the controller to
apply a stronger action. Although the wind-up effect pro-
duced by PID control is not the subject of this work, it
must be remembered that bounded integral gains must be
appropriately selected to avoid saturation drawbacks.

The derivative variable is designed as

Γd = γd
d
dt
|x1|, (17)

where γd is also a positive real gain, and Γd = Γd(x1,x2)
because in the first time derivative of x1, also x2 explicitly
appears. Equation (17) accounts for possible future values
of the sliding variable, based on its current rate of change.
In its expanded form ψ is given by,

ψ =

∣∣∣∣γp|x1|+ γi

∫ t1

t0
|x1|dt + γd

d
dt
|x1|
∣∣∣∣ . (18)

To tune γp,γi,γd , the Ziegler-Nichols technique, the alge-
braic method, or even the heuristic method can be used.

Even more, the case ψ = 0 is possible when x1 = x2 = 0
and when Γp +Γi = |Γd | ∀Γd < 0, then, to ensure that the
SM never decays to zero (i.e., the robust properties of the
SMC remain ∀t > 0), a finite and positive constant δ ∈ R
is included in this design, in the interval 0≤ δ <U0, such
that, the algorithm to dynamically update the value for Γ

is proposed as

Γ(x1,x2) = ψ(x1,x2)+δ . (19)

Then, the adaptive variable gains are expressed in its ex-
panded form as,

ρ1 =

(∣∣∣∣γp|x1|+ γi

∫ t1

t0
|x1|dt + γd

d
dt
|x1|
∣∣∣∣+δ

)
k1,

ρ2 =

(∣∣∣∣γp|x1|+ γi

∫ t1

t0
|x1|dt + γd

d
dt
|x1|
∣∣∣∣+δ

)
k2.

(20)

In (20), ρ1 > ρ2 ≥ 0 is fulfilled, because k1Γ > µ(k1Γ),
for all 0 ≤ µ < 1 and δ > 0. Once again, it is easy to see
that from (20) ρ1 +ρ2 = Γ, because k1 + k2 = 1.

As it can be seen ψ is designed as a non-negative func-
tion, to ensure that ρ1,ρ2 ≥ 0, ∀δ ,k1 > 0 and k2 ≥ 0. But
remark that other way to obtain ψ ≥ 0 is defining func-
tion (18) as ψ = Γp +Γi + |Γd |, however, when the three
terms are positive ∀t > 0, the risk to get the well-known
wind-up effect increases, while when allowing Γd to take
also negative values, the system is less prone to saturation
drawbacks.

Further, from the Adaptive Variable Gains of the Twist-
ing Algorithm with PID (AVG-TA-PID) (9) and the Adap-
tive Variable Gains of the first order SM with PID (AVG-
SM-PID) (14), both the conventional TA of order two and

the conventional SMC of order one, can be obtained by
making γp = γi = γd = 0, and selecting a convenient con-
stant value for δ , thus, conventional SM controllers are
included in the proposed control scheme.

Defining δ ∗ = 0 to take the place of δ , Γ = ψ is ob-
tained. In such a case, the concept of “Sliding-PID” con-
troller can be defined, which can be expressed similarly to
(9) as

u =−k1ψsgn(x1)− k2ψsgn(x2). (21)

From the concept of equation (21), also the Sliding-PI, and
the Sliding-PD controllers can be suggested.

Remark 1: The amount and intensity of the chattering-
effect produced by SMC depends on the amplitude and
frequency of its switching control signal. The constant
amplitude of the conventional second order SM (3) is r1 +
r2 =U0, while the variable amplitude of the control signal
produced by (9) is given by k1Γ+ k2Γ = (k1 + k2)Γ = Γ

(see (11)). Thus, the value of the amplitude of the pro-
posed control only depends on Γ. As δ ≤ Γ ≤ U0, then
Γ ≤ r1 + r2. It is clear that the chattering produced by (9)
never exceeds the one produced by (3), when both con-
trollers work at the same frequency (theoretically infinite).
Even more, in control (21) the chattering-effect decays to
zero in the steady state (i.e., if (x1,x2)= (0,0), then ψ = 0,
and the amplitude of the control action becomes zero).

In the real-world control implementations, overflows,
overcharges, and other imbalances on the control signal
may occur. To protect the control system from these draw-
backs, and in order to not exceed actuator limits, the fol-
lowing assumption is presented:

Assumption 1: Control (9) is assumed bounded by
|u| ≤ U0 where U0 ∈ R+ is defined by the user consid-
ering actuator constraint (actuator’s upper limit). Control
(9), can also be expressed as

u = (ψ +δ )[−k1sgn(x1)− k2sgn(x2)].

According to the natural behaviour of the SMC of or-
der two (see Fig. 1), the bounds of the control signal are
reached only when sgn(x1) = sgn(x2) =±1. Then, for the
upper and lower variable bounds, |u| = (ψ + δ )[k1 + k2].
Involving (11), it is obtained ψ = |u| − δ (which is also
valid for the SMC or order one). Then, the following in-
equality holds

ψ ≤U0−δ = ρ, (22)

where ρ ∈ R+
0 .

3. STABILITY ANALYSIS

In this section global exponential stability of the closed-
loop system is demonstrated via Lyapunov analysis. The
following theorem resumes the main result of this paper.
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Theorem 1: Consider the nonlinear system (1) and As-
sumption 1, then the control law

u =−k1Γ(x1,x2)sgn(x1)− k2Γ(x1,x2)sgn(x2),

where

Γ =

∣∣∣∣γp|x1|+ γi

∫ t1

t0
|x1|dt + γd

d
dt
|x1|
∣∣∣∣︸ ︷︷ ︸

ψ(x1,x2)≤ρ

+δ ,

with γp, γi, γd , δ ∈ R+,

globally exponentially stabilizes the origin of (1)-(2).

Proof: The proof is divided in two parts. The first
part demonstrates that the closed-loop trajectories are
bounded. The second part finish the proof using the first
results obtaining a global exponential stability.

Consider the following candidate Lyapunov function,
inspired by [34]

V (x1,x2) = ā|x1|+
1
2

x2
2. (23)

where ā ∈ R is a positive definite constant.

As
d
dt
|x1|= ẋ1sgn(x1),

d
dt

x2
2 = 2x2ẋ2, ẋ1 = x2 and ẋ2 =

f (t) + u (as stated in (1)), the time-derivative of (23) is
computed as follows:

V̇ = āx2sgn(x1)+ x2 ( f (t)+u) . (24)

Substituting the control (9) in (24) it follows that

V̇ =āx2sgn(x1)+ x2 f (t)− k1Γ(x1,x2)x2sgn(x1)

− k2Γ(x1,x2)x2sgn(x2). (25)

Substituting (19) in (25),

V̇ =āx2sgn(x1)+ x2 f (t)− k1ψ(x1,x2)x2sgn(x1)

− k1δx2sgn(x1)− k2Γ(x1,x2)|x2|,

then, if ā = k1δ and considering the boundedness of f (t),
i.e. | f (t)| ≤ c it follows that

V̇ ≤− k1ψ(x1,x2)x2sgn(x1)− k2Γ(x1,x2)|x2|+ c|x2|
≤k1|ψ(x1,x2)||x2|−k2ψ(x1,x2)|x2|−k2δ |x2|+c|x2|,

where we have used (19). Then,

V̇ ≤ (k1− k2) |ψ(x1,x2)||x2|− (k2δ − c) |x2|.

In the last inequality we consider that k1 > k2 to accom-
plish the well-known restriction in the second order slid-
ing mode based-control. Then (k1−k2) = r > 0 and using
Assumption 1 for this part of the proof we conclude that

V̇ ≤− (k2δ − c− r|ψ(x1,x2)|) |x2|
≤− (k2δ − c− rρ) |x2| ≤ 0, (26)

as long as

k2 >
c+ rρ

δ
=

c+ r(U0−δ )

δ
.

Last inequality shows that the closed-loop system is stable
and the closed-loop trajectories are bounded.

In order to demonstrate that the closed-loop system is
GES let consider the following second part of this analy-
sis. Define the compact set

Ωl = {(x1,x2) ∈ R2,V (x1,x2)≤ l}, (27)

where V ∈ R+ and Ωl is an arbitrarily small vicinity with
centre at the origin. Let’s propose a positive definite func-
tion VΩ > 0\{(x1,x2) = 0} in Ωl , given as

VΩ =V +V1 = ā|x1|+
1
2

x2
2︸ ︷︷ ︸

V

+Kx1x2︸ ︷︷ ︸
V1

, (28)

where the function V1 = Kx1x2 with K ∈ R+ has been
added to the original Lyapunov function V . From the com-
pact set Ωl in (27) and (28) it follows that

|x1| ≤
l
ā

and |x2| ≤
√

2l. (29)

To observe the positive definiteness of VΩ consider that the
polynomial K (x1 + x2)

2 is positive for all (x1,x2) except
when x1 = x2 = 0.
Then K (x1 + x2)

2 = K
(
x2

1 +2x1x2 + x2
2

)
> 0, and thus

Kx1x2 ≥−
K
2

x2
1−

K
2

x2
2.

Combining (28) and (29) it follows that

VΩ =ā|x1|+
1
2

x2
2 +Kx1x2

≥ā|x1|+
1
2

x2
2−

K
2

x2
1−

K
2

x2
2

≥1
2
(1−K)x2

2 +

(
ā− lK

2ā

)
|x1|> 0, (30)

with K = min{1, 2ā2

l } in Ωl except at the origin (x1,x2) =
(0,0).

Now lets compute the time derivative of V1 = Kx1x2,

V̇1 =Kx2
2 +K (x1)( f (t)− k1Γ(x1,x2)sgn(x1)

− k2Γ(x1,x2)sgn(x2))

≤Kx2
2 +Kc|x1|−Kk1Γ(x1,x2)|x1|

+Kk2Γ(x1,x2)|x1|.

The last inequality holds because Γ(·) = |Γ(·)|. Since Γ =
ψ +δ ,

V̇1 ≤K(x2
2 + c|x1|− k1ψ(x1,x2)|x1|

− k1δ |x1|+ k2ψ(x1,x2)|x1|+ k2δ |x1|).
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We know that 0 ≤ ψ ≤ ρ and from the first part of the
proof also k1 > k2, then,

V̇1 ≤ K(x2
2 + c|x1|− k1δ |x1|+ k2δ |x1|), or

V̇1 ≤ K(|x2||x2|− (k1δ − k2δ − c) |x1|).

From the last inequality and (26) the time derivative of VΩ

is given by

V̇Ω ≤− (k2δ − c− rρ) |x2|+K|x2||x2|
− (Kk1δ −Kk2δ −Kc) |x1|

≤−
(

k2δ − c− rρ−K
√

2l
)
|x2|

− (Kk1δ −Kk2δ −Kc) |x1|, (31)

since |x2| ≤
√

2l in the compact set Ωl . And V̇Ω ≤ 0 holds
provided that

k1 > k2 +
c
δ
,

k2 >
c+ rρ +K

√
2l

δ
, (32)

from which k1 > k2 > 0. Remark that for an extremely
perturbed system, i.e., c >> r, ρ , K, l, (32) become

δk1 > 2c,

δk2 > c,or

k1 > 2k2. (33)

Furthermore from (31) we conclude that

V̇Ω ≤−|x2|
(

k2δ − c− rρ−K
√

2l
)

−|x1|K (k1δ − k2δ − c)

≤− γ (|x1|+ |x2|) , (34)

where γ = min{k2δ −c− rρ−K
√

2l, K(k1δ −k2δ −c)}.
Notice that the compact set (27) can be arbitrarily large;
this achieves a global result. �

4. SIMULATION RESULTS

4.1. Stability result
Fig. 2 shows a simulation of the actual behaviour of

V̇ for the closed-loop control system (1), perturbed with
a white noise function (in thick line), which is bounded
by an amplitude from +5.5 to −5.5 and a frequency of
∼ 26.67 [Hz]. It can be observed that V̇ (in thin line) has
always values under the zero, and the simulation confirms
stability for the closed-loop system.

4.2. Implementation example
The system under consideration to obtain simulation re-

sults is an inclined piston, with the following dynamics,

ẋ1 = x2,

Fig. 2. Behaviour of V̇ for the perturbed system.

ẋ2 =−I−1[ f f riction + fnoise + fgrav]+ I−1u, (35)

where I is the inertia moment and has the value I = 1; the
friction force is f f riction = 0.14+ 0.27sgn(x2); fnoise is a
random white noise function bounded by an amplitude of
2.3 [Nm], and frequency of ∼ 650 [Hz]; the gravitational
force is fgrav = 4.12 [N]; and u represents the control law
(9), which is bounded by the actuator constraint U0 = 75
[Nm].

Simulations taking the AVG-TA-PID were preferred,
because the AVG-SM-PID of the first order is included
in the first one. The AVG-TA-PID has been tuned with the
intermediate value µ = 0.5 (except for Fig. 3). The lower
bound for the SM has been selected as δ = U0/3 = 25
[Nm] (except for Fig. 6), while γp = 1000, γi = 100, and
γd = 100. The reference signal to track was selected as a
square wave form with an amplitude of 0.4 [m] (from -0.2
to 0.2), with frequency of 0.5 [Hz].

4.2.1 Study of µ and δ

The way to select γp, γi and γd is widely studied in litera-
ture relate to PID tuning, however, about the way to select
µ and δ there is not any information (since they belong to
novel control designs). Thus, from simulation results, the
behaviour of the controller working under different values
of µ and δ is studied, and mathematical tools are proposed
to help the designer in understanding its behaviour to se-
lect them according to specific applications.

Fig. 3 shows a generic behaviour of AVG-TA-PID con-
troller tracking the specified reference signal located at
0.2 [m], with values of µ selected from 0 to 0.6, (this is
the range that showed better robustness performance in
simulations for the perturbed system (35)). As it can be
observed, the higher the value of µ , the more the conver-
gence time increases, and, the value of the corresponding
overshoot peak decreases. Thus, the inverse of the ampli-
tude value of overshoots can be considered as an index of
convergence time, according to the model

tC = α
1
η
, (36)
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Fig. 3. Behaviour of the AVG-TA-PID controller working
with different values of µ (from 0 to 0.6) and δ =
25.

where, tC is the convergence time, η is the maximum over-
shoot amplitude, and α > 0 is a correlation function. Tak-
ing the maximum value in each overshoot peak to measure
its amplitude, a natural decay process can be observed (see
the logarithmic behaviour curve in Fig. 3), which can be
modelled by the differential decay equation

η̇ = βη ,η(t0) = max(η), (37)

where β > 0 is a constant gain, and t0 is initial time. As it
is well known, the general solution of (37) is

η(t) =Ceβ tP , (38)

where C is a constant of integration, and tP is the time to
get the maximum overshoot value.

Note that two initial conditions are needed to get partic-
ular solutions from (38), and the statistical α is required
to estimate tC from (36), for every desired value of µ .

For the application example under consideration, two
initial conditions measured in the logarithmic curve are
η(1.1967) = 0.2453 and η(1.2343) = 0.2308, for µ = 0.1
and µ = 0.4 respectively. Substituting this data in (38), the
following particular solution is obtained

η = 1.7057e−1.6205tP . (39)

Even more, when more than two initial conditions are
available, graphics of time versus µ can be obtained, as
those given in Fig. 4, where actual values of time of
the overshoot peak are represented in the left hand side
(dashed blue curve), while actual values of convergence
time are in the right hand side (dashed cyan curve). Both
curves can be easily adjusted by polynomial expressions
of the form

y = anxn + · · ·+a2x2 +a1x+a0. (40)

Fig. 4. The tP (left side curves) and tC (right side curves)
versus µ values, along with their polynomial ad-
justs.

Fig. 5. Overshoot amplitude versus µ values, along with
its respective polynomial adjust.

For our example, n = 3 (which is more than enough), and
according to data obtained from simulations, the polyno-
mials are

tP = 0.3746µ3−0.1056µ2 +0.0996µ +1.1874,
tC = 0.3182µ3−0.0886µ2 +0.0889µ +1.3001,

(41)

which are the red and black curves respectively in Fig. 4.
Graphic η versus µ is given in Fig. 5, where actual values
are represented in dashed blue line, and its polynomial ad-
just is

η = 0.0079µ
3−0.0254µ

2−0.037µ +0.2492. (42)

Using (41)-(42), the time to reach the peak, the conver-
gence time, and the maximum overshoot amplitude, can
be estimated for any value of µ , and also an estimation for
α in (36) can be obtained.

Numerical example: Let us consider µ = 0.35, then,
according to (41), tP = 1.2254 s and tC = 1.334 s, while
according to (42), η = 0.2335. These results are in accor-
dance to (39).

Further, observe in Fig. 6, that the behaviour of the con-
troller for different values of δ (fixing µ at any desired
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Fig. 6. Behaviour of the AVG-TA-PID controller working
with different values of δ (from 0 to U0 = 75) and
µ = 0.5.

value), has also a similar logarithmic behaviour. Thus, the
same method can be used to estimate tP, tC, and η for any
value of parameter δ . According to this methodology, ac-
curate estimations for the convergence time and features
of the overshoot can be obtained for every value of µ

and/or δ , to help the reader in selecting parameters ac-
cording to every specific application and needing.

4.2.2 Performance results
Results to know the actual performance of the AVG-TA-

PID controller compared with the TA and PID controllers
are showing up next.

After a large number of simulations, the best parameters
for TA and PID controllers were heuristically obtained, to
simultaneously get a correct combination of robustness,
fast convergence, and low chattering levels, for the control
of (35). They are: r1 = 46, and r2 = 29 for the conventional
TA; and Kp = 1052, Ki = 348, and Kd = 21 are the clas-
sic PID gains for the proportional, integral and derivative
terms, respectively.

Taking these working conditions, Fig. 7 shows the com-
parative performance for AVG-TA-PID (thick line), con-
ventional PID (dashed line), and the conventional TA (thin
line). As it can be seen, the AVG-TA-PID the lower over-
shoot in the transient.

Fig. 8 is an enlarged view of Fig. 7 to show the conver-
gence time for the three controllers, where it is clear that
AVG-TA-PID has the faster convergence. Fig. 9 is a zoom
view inside Fig. 8, to show that the PID controller is un-
able to satisfactory reach convergence under the presence
of the gravitational force.

It is worth to mention that the apparent discontinuities
appearing in the PID line, are just produced by the white
noise function specified in system (35), since according to
theory, PID is free from chattering, although without the
robust properties of SMC. When the PID is tuned to re-
duce the overshoot (Kp = 150, Ki = 115 and Kd = 25), a
similar overshoot to the AVG-TA-PID is obtained, how-
ever, for this case, convergence is not achieved to the pro-

Fig. 7. Tracking process for AVG-TA-PID, Conventional
PID, and Conventional TA.

Fig. 8. Zoom view to show convergence time for the three
controllers.

Fig. 9. Fail of PID in tracking the reference signal.

posed reference signal, for the dynamics of the plant un-
der control, as it can be observed in Fig. 10. Even more,
increasing values for Ki also increases the risk to get the
wind-up effect. Fig. 11 shows the control signals produced
by conventional PID, conventional TA, and the AVG-TA-
PID controllers, where it can be seen the nature of both
continuous and discontinuous control signals. As it can be
observed the PID (in black thick line) is saturated at +75
and−75 [Nm] in the transient by the actuators constraints
(avoiding large overshoots), and before it arrives to the
steady state (0.35 s approximately), it becomes a contin-
uous signal. Conventional TA (in red line) and the AVG-
TA-PID (in blue line) present discontinuous control sig-
nals once the steady state is achieved, but observe that the
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Fig. 10. Low overshoot of PID in tracking the reference
signal.

Fig. 11. Control signal produced by AVG-TA-PID, PID,
and Twisting controllers.

Fig. 12. Chattering-effect produced by controllers under
study.

AVG-TA-PID reaches the steady faster than the conven-
tional TA, i.e., the sliding manifold for the AVG-TA-PID
is performed at 0.22 s (even at the nearest of 0.1 s there
is a small manifold), while the conventional TA reaches
its characteristic discontinuous control at 0.475 s. It is im-
portant to remember that according to theory [9], high fre-
quency discontinuous control provides robust properties
around the system’s equilibrium point, as such, Fig. 11
also shows that both AVG-TA-PID and conventional TA
present much more robustness respect the PID control.
Fig. 12 shows the actual vibration resulting from the com-

bination of the control signals produced by the SM (shown
in Fig. 11) and the dynamics of the plant. For AVG-TA-
PID (thick line) vs the conventional TA (thin line). As
it can be observed, the frequency for both is nearly the
same (∼700 [Hz]), however, the amplitude for the TA is
0.000012 [m], while for the AVG-TA-PID is 0.0000055
[m]. Thus, the chattering-effect for the TA is twice than
that of the AVG-TA-PID, under the specified working con-
ditions. It is important to note that in this figure the line for
the PID is out of the graphic because it do not achieved
convergence.

5. FURTHER DISCUSSION

For the case in which |x1(0)| >> |xd |, |x2(0)| >> |ẋd |,
the tracking errors (for position and velocity) have large
values, such that Γ has automatically the maximum pos-
sible value, while when the tracking errors are both zero,
the response for the controller must be the minimum, nec-
essary, but sufficient to maintain the convergence attached
to the reference signal. Thus, for nonautonomous systems,

Γ(x1,x2,0) =U0,

Γ(0,0, t) = δ . (43)

Another conclusion which can lead to future works, is that
taking the referenced nominal Sliding system

x2 = f (x1,x2, t) (44)

and considering that f , g : [0,∞)×D→ Rn are piecewise
continuous in t and locally Lipschitz in x1 on [0,∞)×D,
and D→ Rn is a domain which contains the origin (0,0),
then for the perturbed nonautonomous system

x2 = f (x1,x2, t)+g(x1,x2, t), (45)

(19) can be expressed by the most general form

Γ = γpx1 + γi

∫ t1

t0
x1,dt + γd

d
dt

x1 +g(x1,x2, t)w, (46)

were w is a secondary control variable, and g(x1,x2, t)w is
the control term designed specifically to predict and reject
perturbations and noise.

6. CONCLUSIONS

A technique to obtain adaptive variable gains, using
PID principles, has been designed for the SMC, which can
be tuned as a controller of order one, or order two (bi-order
approach). This is a robust SM-based controller capable to
reject unnecessary chattering, since it does not overesti-
mate external perturbations, noise, and non-modelled dy-
namics. The stability analysis shows Global Exponential
Stability in the sense of Lyapunov, for the trajectories of
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the control system under the action of the proposed control
technique.

Simulation results obtained from an electromechanical
system, show that the novel control technique has better
performance (in solving the trajectory tracking problem)
than both the conventional TA and the classical PID con-
trollers. In the same way, the AVG-TA-PID controller sig-
nificantly reduces the chattering-effect with respect to the
conventional TA.

Even more, the design of AVG-TA-PID helps in saving
energy, because it does not overestimate disturbances by
switching off unnecessary power control actions, as such,
this is an environmentally friendly controller.
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