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Optimal Tracking Performance of NCSs with Time-delay and Encoding-
decoding Constraints
Jun-Wei Hu, Xi-Sheng Zhan* � , Jie Wu, and Huai-Cheng Yan

Abstract: In this paper, the tracking performance of networked control systems (NCSs) under energy constraints
with time-delay and encoding-decoding is studied. Through spectral factorization and partial decomposition tech-
niques, we can obtain the explicit representation of the optimal performance. It is shown that the optimal perfor-
mance is affected by non minimum phase (NMP) zeros, unstable poles and other multiple communication con-
straints such as time-delay, encoding-decoding and additive white Gaussian noise (AWGN). At the same time, the
obtained result shows that a two-parameter compensator is superior to a one-parameter compensator. In addition,
it is found that time-delay, encoding-decoding and AWGN affected the tracking capability of NCSs. Finally, an
example is given for verifying the correctness of the conclusions.
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1. INTRODUCTION

Automation technology is widely used in the process
of production, living, and management [1–5]. NCSs offer
many to people’s lives [6–10]. In NCSs, data is passed
through a communication network, and both the band-
width of the communication network and channel capac-
ity are limited, which can produce a packet loss and delay
problems. These cause and even lead to system instabil-
ity. Faced with new problems in NCSs, many scholars
have conducted work regarding their solutions. The prob-
lem of stability analysis was considered in [11–19]. Paper
[20] designed symbolic controllers for NCSs. The stabil-
ity analysis of NCSs has been well studied, but tracking
performance limitation is still a problem for consideration.

The research on performance of NCSs is another hot
issue, and the research on performance of NCSs is get-
ting more and more attention [21–27]. The performance
of NCSs is a worthy question investigated in [28]. Paper
[29] investigated the tracking performance limitations of
linear time-invariant NCSs with two-channel constraints
for a random reference signal. The optimal performance
and optimal modified performance with multi-parameter
constraints were studied in [30, 31], respectively. Paper
[32] investigated the performance limitations of NCSs

with quantization and packet-dropouts. The optimal track-
ing performance of NCSs with communication delay and
AWGN was investigated in [33]. The above studies did
not consider the impact of time-delay, encoding-decoding
with power constraint. Channel coding and decoding tech-
nology can check and correct errors, it is an important part
of network communication. In the design of NCSs, the
channel input power cannot be infinite. The NCSs can be
applied to many fields, including safety control of large
power grid. However, in the application process, due to
the characteristics of the communication network, NCSs
have factors like delay, packet loss, AWGN and coding,
which inevitably affect the performance control of the sys-
tem. In this paper we will analyze the the optimal tracking
performance between NCSs and these factors. In general,
the communication delay is time varying, uncertain or ran-
dom. The optimal performance analysis of NCS is diffi-
cult because of the time varying delay. When there are no
relay devices such as gateway and router in the commu-
nication network, the delay in the communication channel
can be fixed, or can be converted into a constant delay by
some measures. For the convenience of analysis, the opti-
mal performance of the NCSs with a constant time delay,
encoding-decoding and two-channel AWGN constraints is
studied in this paper.
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The main contributions of this paper are as follows: (i)
It is considered with two-channel constraints, the time-
delay, encoding-decoding and AWGN. (ii) Relationships
between the optimal tracking performance of the NCSs.
(iii) The optimal tracking performance of the NCSs is
achieved by applying a one-parameter or two-parameter
structure. The accurate mathematical expression of the
optimal tracking performance is achieved by using the fre-
quency domain method. That the optimal tracking perfor-
mance depends on the NMP zeros, the unstable poles of a
given plant, the characteristics of the reference signal, the
channel input power, the time-delay, encoding-decoding,
two-channel AWGN.

This paper is structured as follows: A description of
the problem is covered in Section 2. Section 3 shows
the performance of NCSs with a one-parameter compen-
sator with time-delay consideration, encoding-decoding
and AWGN under channel input power constraints. Sec-
tion 4 studies the performance of NCSs under a two-
parameter compensator. Section 5 illustrates the results
through some typical examples. Section 6 provides the
conclusion and future directions.

2. PROBLEM FORMULATIONS

In this article, unified standard notation is used. z̄
denotes complex conjugate of any complex number z.
X (t) is the Laplace transform of any continuous-time
signal x(t). C− = {s : Re(s)< 0} is the open left-half
plane, and C+ = {s : Re(s)> 0} indicates the right
correspondingly. L2 is the Hilbert spaces, 〈 f , g〉 :=
1

2π

∫ +∞

−∞
tr
[

f H ( jw)g( jw)
]
, for any f ,g ∈ L2. From [34],

H2 and H⊥2 are decomposed from L2, then: H2 := {P :
P(s) analytic in C+,‖P‖2

2:=sup
σ>0

1
2π

∫
∞

−∞
‖P(σ + jw)‖2dw<

∞}, and H⊥2 := {P : P(s) analytic in C−,‖P‖2
2:=

sup
σ<0

1
2π

∫
∞

−∞
‖P(σ + jw)‖2dw < ∞}.

The NCSs are constructed base on time-delay,
encoding-decoding, and AWGN shows in Fig. 1.

In Fig. 1, G acts as the plant, and K denotes the one-
parameter compensator. G(s) and K (s) represents trans-
fer functions, which are shorthand for G and K. The char-
acteristics of communication channel have three parame-
ters: encoding-decoding are represented by A and A−1; τ

Fig. 1. NCSs with a one-parameter compensator con-
troller.

is time-delay; and n1 is the AWGN of the feedback chan-
nel, while n2 represents the AWGN of the forward chan-
nel. The time-delay is a common problem in practical ap-
plication of the system.

The signals r, y, and u are defined as reference in-
puts, the system output and the system input, whose trans-
fer functions are R(s), Y (s) and U (s), which can be
simply expressed as R, Y and U . The reference signal
r is regarded as Brownian motion, and E {|r (t)|} = 0,
E
{
|r (t)|2

}
= σ 2

r . We denote the signals r, n1 and n2 by

the variances σ 2
r , σ 2

n1
and σ 2

n2
.

We assume that the reference signal and AWGN are un-
related to each other. For signal r, a tracking error of NCS
is defined as:

E = R−Y. (1)

From Fig. 1, we get:

U = KR−K (Y +n1)e−τs, (2)

Y = GA−1 (AU +n2) . (3)

According to (2) and (3), we have:

Y =
GKR

1+ e−τsGK
− e−τsGKn1

1+ e−τsGK
+

GA−1n2

1+ e−τsGK
. (4)

From (1) and (4), we can obtain:

E =

(
1− GK

1+ e−τsGK

)
R−

(
e−τsGK

1+ e−τsGK

)
n1

+

(
GA−1

1+ e−τsGK

)
n2. (5)

To obtain the performance of NCSs, which considers
the channel input power constraint, we define its perfor-
mance index as follows:

J
∆
=(1− ε){‖E (s)‖ 2}+ ε

(
E {‖Y (s)‖ 2}−Γ

)
, (6)

where 06 ε 6 1, if ε = 0, then there is no power constraint
in the channel input.

When selecting the controller (K represented) among
all possible stable controllers, we can express the optimal
performance of the NCSs as:

J∗ = inf
K∈κ

J. (7)

For G, the factorization is as follows:

G =
N
M
,N,M ∈ℜH∞. (8)

From the Bezout’s identity [30],

MX− e−τsNY = 1,X ,Y ∈ℜH∞. (9)
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From [35], K can be described by Youla parameteriza-
tion:

κ :=
{

K :=− Y −MQ
X− e−τsNQ

, Q ∈ℜH∞

}
. (10)

From [36] that any NMP transfer function can be de-
composed two parts:

N (s) = Lz (s)Nm (s) ,

M (s) = Bp (s)Mm (s) , (11)

where Lz (s) and Bp (s) are all pass factors, and Nm (s) and
Mm (s) are minimum phase parts, and it can factor as:

Lz(s) =
n

∏
j=1

s− zi

s+ z̄i
,

Bp(s) =
m

∏
j=1

s− pi

s+ p̄i
. (12)

3. OPTIMAL TRACKING PERFORMANCE
WITH ONE-PARAMETER COMPENSATOR

From (4), (5) and (6), we get:

J =(1− ε)

E

∥∥∥∥∥∥∥∥∥∥

(
R+e−τsKGR−KGR+e−τsKGn1

−GA−1n2
)

1+e−τsKG

∥∥∥∥∥∥∥∥∥∥

2
+
∥∥NA−1 (X− e−τsNQ

)∥∥2
2 σ

2
n2

+ ε ‖N (Y −MQ)‖2
2 σ

2
r − εΓ. (13)

According to (8), (9), (10) and (13), we can obtain:

J =(1− ε)‖1−N (Y −MQ)‖2
2 σ

2
r

+
∥∥e−τsN(Y −MQ)

∥∥2
2 σ

2
n1

+
∥∥NA−1 (X− e−τsNQ

)∥∥2
2 σ

2
n2

+ ε ‖N (Y −MQ)‖2
2 σ

2
r − εΓ. (14)

From (7) and (14), we can write J∗ as follows:

J∗ = inf
Q∈ℜH∞

(∥∥∥∥[√1− ε (1+N (Y −MQ))√
εN (Y −MQ)

]∥∥∥∥2

2
δ

2
1

+
∥∥e−τsN (Y −MQ)

∥∥2
2 σ

2
2

+
∥∥NA−1 (X− e−τsNQ

)∥∥2
2 σ

2
3

)
− εΓ. (15)

Theorem 1: For the NCSs shown in Fig. 1, it is as-
sumed that a plant has NMP zeros zi ∈ C+, i = 1, · · · , n,
unstable poles p j ∈C+, j = 1, · · · , m, and satisfy equations
(8), (9), and (10), then the optimal tracking performance

of the NCSs with the time-delay, encoding-decoding, two-
channel AWGN constraints can be expressed as:

J∗ ≥(1− ε)
n

∑
i=1

2Re(zi)δ
2
r

+ ∑
j∈N

4Re(p j)Re(pi)

p̄ j + pi

λλ H

b̄ jbi
δ

2
r

+ ε
eτ p j L−1

z (p̄ j)

b̄ j
δ

2
r ε

eτ p j L−1
z (p̄i)

b̄i
δ

2
r − ε

2
δ

2
r

+ ∑
j∈N

4Re(p j)Re(pi)

p̄ j + pi

λλ H

b̄ jbi
σ

2
n1

+∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ωωH

li l̄ j
σ

2
n2
− εΓ. (16)

where λ = eτ p j L−1
z

(p j), ω = eτzi A−1 (zi)Nm (zi)M−1 (zi),

b j =
m
Π

i, j∈N
i 6= j

pi−p j
_
pi+p j

, and l j =
n
Π

i, j∈N
i6= j

zi−z j
_
zi +z j

.

From Theorem 1, the result shows that the optimal per-
formance of NCSs is not only affected by the intrinsic at-
tributes of the system, such as unstable poles and NMP
zeros, but also affected by channel input power, AWGN,
time-delay and decoding. We can get that the communi-
cation constraint is a factor may reduce the tracking capa-
bility of NCSs.

Proof: According to (15) and J∗, we can define:

J∗1 = inf
Q∈ℜH∞

∥∥∥∥[√1− ε (1+N (Y −MQ))√
εN (Y −MQ)

]∥∥∥∥2

2
δ

2
r , (17)

J∗2 = inf
Q∈ℜH∞

∥∥e−τs (Y −MQ)Nm
∥∥2

2 σ
2
n1
, (18)

J∗3 = inf
Q∈ℜH∞

∥∥NA−1 (X− e−τsNQ
)∥∥2

2 σ
2
n2
. (19)

Because Lz (s), Bp (s) and e−τs are all-pass factors, from
(11) and (18), based on partial fractions, we can obtain:

J∗2 = inf
Q∈ℜH∞

∥∥(B−1
p Y Nm−MmQNm

)∥∥2
2

σ
2
n1

= inf
Q∈ℜH∞

∥∥∥∥∥e−τs

(
∑
j∈N

(
s+ p̄ j

s− p̄ j

)
Y (p j)Nm (p j)

b j

+R1 (s)−MmQNm

)∥∥∥∥∥
2

2

σ
2
n1
,

where R1 ∈ℜH∞ and b j =
m
Π

i∈N
i 6= j

pi−p j

p j+
_
pi

.

From (9) and M (p j) = 0, we get:

Y (p j)=−eτ p j N−1
m (p j)L−1

z (p j) ,

then Nm (p j)Y (p j)=−eτ p j L−1
z (p j).

Therefore,

J2
∗ = inf

Q∈ℜH∞

∥∥∥∥∥∑
j∈N

(
s+ p̄ j

s− p̄ j
−1
)
−eτ p j L−1

z (p j)

b j
+R2 (s)
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−MmQNm)

∥∥∥∥∥
2

2

σ
2
n1
,

where R2 ∈ℜH∞ and R2 =
−eτ p j L−1

z (p j)
b j

+R1 (s).

Note that ∑
j∈N

(
s+

_
p j

s− _
p j
−1
)
−eτ p j L−1

z (p j)
b j

∈ H⊥2 , (R2(s) −

MmQNm)∈H2, and an appropriate Q can be selected such
that inf

Q∈ℜH∞

‖R2 (s)−MmQNm‖2
2 σ 2

2 = 0, and then

J2
∗ =

∥∥∥∥∥∑
j∈N

2Re(p j)

s− _
p j

−eτ p j L−1
z (p j)

b j

∥∥∥∥∥
2

2

σ
2
n1

=∑
j∈N

4Re(p j)Re(pi)
_
p j + pi

λλ H
_

b jbi
σ

2
n1
.

From (17), we get:

J∗1 = inf
Q∈ℜH∞

∥∥∥∥[√1−ε
(
L−1

Z −1+1+N(Y−MQ)
)

√
εN (Y −MQ)

]∥∥∥∥2

2
δ

2
r .

Because
(
L−1

Z −1
)
∈ H⊥2 ,

(
L−1

Z −1
)
∈ H⊥2 , we can ob-

tain:

J∗1 =

∥∥∥∥√1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ

2
r

+ inf
Q∈ℜH∞

∥∥∥∥[√1− ε (1+Nm (Y −MQ))√
εNm (Y −MQ)

]∥∥∥∥2

2
δ

2
r .

Definition: J∗2 = J∗11 + J∗12,

where J∗11 =

∥∥∥∥ √1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ 2

r , and J∗12 =

inf
Q∈ℜH∞

∥∥∥∥ √1− ε (1+Nm (Y −MQ))√
εNm (Y −MQ)

∥∥∥∥2

2
δ 2

r .

According to [37], we can obtain:

J∗11 =

∥∥∥∥√1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ

2
1

=(1− ε)
n

∑
i=1

2Re(zi)δ
2
1 .

Because Bp is the all pass factors, we can obtain:

NmY B−1
p

= ∑
j∈N

(
s+ p̄ j

s− p̄ j

)
Y (p j)Nm (p j)

b j
+R3 (s) .

where R3 ∈ℜH∞, b j =
m
Π

i∈N
i 6= j

pi−p j

p j+p̄i
.

From (10) and (12), then

J2
∗ = inf

Q∈ℜH∞

∥∥∥∥∥∑
j∈N

(
s+ p̄ j

s− p̄ j

)
Y (p j)Nm (p j)

b j

+R1 (s)−MmQNm

∥∥∥∥∥
2

2

σ
2
n1

+ inf
Q∈ℜH∞

∥∥∥∥∥
[√

1− ε

0

]
+

[√
1− ε√

ε

]
R4

−
[√

1− ε√
ε

]
NmQMm

∥∥∥∥∥
2

2

δ
2
r .

where R4 ∈ℜH∞ and R4 =
−eτ p j L−1

z (p j)
b j

+R3.
Define:

J∗12m =

∥∥∥∥∥
[ √

1− ε√
ε

]
∑
j∈N

2Re(p j)

s− p̄ j

−eτ p j L−1
z (p j)

b j

+

[ √
1− ε

0

]
∑
j∈N

2Re(p j)

s− p̄ j

∥∥∥∥∥
2

2

δ
2
r ,

J∗12n = inf
Q∈ℜH∞

∥∥∥∥∥
[√

1− ε

0

]
+

[√
1− ε√

ε

]
R4

−
[√

1− ε√
ε

]
NmQMm

∥∥∥∥∥
2

2

δ
2
r .

By a simple calculation as J∗2 , we get:

J∗12m = ∑
j∈N

4Re(p j)Re(pi)

p̄ j + pi

λλ H

b̄ jbi
δ

2
r + ε

eτ p j L−1
z (p̄ j)

b̄ j
δ

2
r

+ ε
eτ p j L−1

z (p̄i)

b̄i
δ

2
r − εδ

2
r ,

J∗12n =ε (1− ε)δ
2
r .

Because Lz (s), Bp (s) and e−τs are all-pass factors, we
have:

J∗3 = inf
Q∈ℜH∞

∥∥NA−1 (X− e−τsNQ
)∥∥2

2 σ
2
n2

= inf
Q∈ℜH∞

∥∥∥∥eτsA−1(s)Nm(s)X(s)
Bp(s)

−A−1(s)N2
m
(s)Q

∥∥∥∥2

2
σ

2
n2
.

According to partial factorization, we get:

eτsA−1 (s)Nm (s)X (s)
Bp (s)

= ∑
i∈N

(
s+ z̄i

s− z̄i

)
eτzi A−1 (zi)Nm (zi)X (zi)

li
+R5 (zi) ,

where, R5 ∈ℜH∞ and l j =
m
Π

i∈N
i 6= j

zi−z j
_
zi +z j

.

From M (p j) = 0, (10) and (12), we get: Nm (zi)X (zi) =
Nm (zi)M−1 (zi).

J∗3 = inf
Q∈ℜH∞

∥∥∥∥∥∑i∈N

(
s+z̄i

s−z̄i
−1
)

eτzi A−1(zi)Nm(zi)M−1(zi)

li

+R5 (zi)−A−1 (zi)N2
m (zi)Q

∥∥∥∥∥
2

2

σ
2
n2
,
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where ∑
i∈N

(
s+z̄i
s−z̄i
−1
)

eτzi A−1(zi)Nm(zi)M−1(zi )

li
∈H⊥2 , and (R5(zi)

−A−1(zi)N2
m(zi)Q) ∈ H2, we can get inf

Q∈ℜH∞

‖R5(zi) −

A−1(zi)N2
m(zi)Q‖2

2σ 2
2 = 0. Therefore,

J∗3 = ∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ωωH

li l̄ j
σ

2
n2
.

4. OPTIMAL TRACKING PERFORMANCE
WITH TWO-PARAMETER COMPENSATOR

We focus on the system shown in Fig. 2. A two-
parameter compensator controller is applied to the NCSs.
[K1K2] represents a two-parameter compensator, and
[K1 (s)K2 (s)] is the transfer function. The other variables
are the same as in Fig. 2. Then, the set of all stable func-
tion is as follows:

κ :={K : K = [K1K2] = [QY −RM](X− e−τsRN)−1,

R,Q ∈ℜH∞}. (20)

From Fig. 2, we can obtain:

U = K1R+K2 (Y +n1)e−τs, (21)

Y = GA−1 (AU +n2) . (22)

From (21) and (22), we can obtain:

Y =
K1GR

1− e−τsK2G
+

e−τsK2Gn1

1− e−τsK2G
+

GA−1n2

1− e−τsK2G
.

(23)

From (1) and (23), we get:

E(s) =
(

1− K1G
1−e−τsK2G

)
R(s)+

(
e−τsK2G

1− e−τsK2G

)
n1

+

(
GA−1

1− e−τsK2G

)
n2. (24)

According to (4), (5) and (23), we get:

J =(1− ε)E



∥∥∥∥∥∥∥∥∥∥
(R− e−τsK2GR−K1GR

− e−τsK2Gn1−GA−1n2)

1− e−τsK2G

∥∥∥∥∥∥∥∥∥∥

2

Fig. 2. NCSs with a two-parameter compensator con-
troller.

+ ε

E



∥∥∥∥∥∥∥∥∥∥
(K1GR+ e−τsK2Gn1

+GA−1n2)

1− e−τsK2G

∥∥∥∥∥∥∥∥∥∥

−Γ

 . (25)

From (8), (9), (20) and (25), we get:

J = (1− ε)‖1−NQ‖2
2 σ 2

r +‖e−τs (Y −RM)‖2
2 σ 2

n1

+
∥∥NA−1 (X− e−τsRN)

∥∥2
2 σ 2

n2

+ε ‖NQ‖2
2 σ 2

r − εΓ.

(26)

From (7) and (26), we get:

J∗ = inf
Q∈ℜH∞

(∥∥∥∥[ √1− ε (1−NQ)√
εNQ

]∥∥∥∥2

2
σ

2
r

+
∥∥e−τsN (Y −RM)

∥∥2
2 σ

2
n1

+
∥∥NA−1 (X− e−τsRN

)∥∥2
2 σ

2
n2

)
− εΓ. (27)

Obviously, to get J∗, Q and R ∈ ℜH∞ must be chosen
appropriately.

Theorem 2: For the NCSs shown in Fig. 2, it is as-
sumed that a plant has NMP zeros zi ∈C+, i = 1, · · · , n ,
unstable poles p j ∈C+, j = 1, · · · , m, and satisfy equations
(8), (9), and (20), then the optimal tracking performance
of the NCSs by applying two-parameter compensator can
be expressed as:

J∗ ≥(1− ε)
n

∑
i=1

2Re(zi)δ
2
r + ε(1− ε)σ 2

r

+ ∑
j∈N

4Re(p j)Re(pi)

p̄ j + pi

λλ H

b̄ jbi
σ

2
n1

+∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ωωH

li l̄ j
σ

2
n2
− εΓ, (28)

where λ = eτ p j L−1
z

(p j), ω = eτzi A−1 (zi)Nm (zi)M−1 (zi),

b j =
m
Π

i, j∈N
i 6= j

pi−p j

p̄ j+pi
, and l j =

n
Π

i, j∈N
i 6= j

zi−z j

z̄ j+zi
.

Proof: According to (27), we define:

J∗4 = inf
Q∈ℜH∞

∥∥e−τsN (Y −RM)
∥∥2

2 σ
2
n1
, (29)

J∗5 = inf
Q∈ℜH∞

∥∥∥∥[√1− ε (1+NQ)√
εNQ

]∥∥∥∥2

2
δ

2
r , (30)

J∗6 = inf
Q∈ℜH∞

∥∥NA−1 (X− e−τsRN
)∥∥2

2 σ
2
n2
. (31)

Because e−τs is all-pass factors, we may obtain:

J∗4 = inf
Q∈ℜH∞

‖N (Y −RM)‖2
2 σ

2
n1
.
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According to (29) and the same method of J∗1 , we can
get:

J∗4 = ∑
j∈N

4Re(p j)Re(pi)
_
p j +pi

×
eτ p j L−1

z
(p j)

−1(eτ p j L−1
z

(p j)
)H

_
b j bi

σ
2
n1

= ∑
j∈N

4Re(p j)Re(pi)
_
p j +pi

λλ H
_

b j bi
σ

2
n1
.

From (30), we can get:

J∗5 = inf
Q∈ℜH∞

∥∥∥∥[√1− ε
(
L−1

Z −1+1+NmQ
)

√
εNmQ

]∥∥∥∥2

2
δ

2
r .

Because
(
L−1

Z −1
)
∈ H⊥2 , (1−N (Y −MQ)) ∈ H2, we

have:

J∗5 =

∥∥∥∥√1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ

2
r

+ inf
Q∈ℜH∞

∥∥∥∥[√1− ε (1+NmQ)√
εNmQ

]∥∥∥∥2

2
δ

2
r .

Definition: J∗5 = J∗51 + J∗52, where

J∗51 =

∥∥∥∥√1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ

2
r ,

J∗52 = inf
Q∈ℜH∞

∥∥∥∥[√1− ε (1+NmQ)√
εNmQ

]∥∥∥∥2

2
δ

2
r .

Through simple calculation, J∗52 can be expressed as fol-
lows:

J∗52 = inf
Q∈ℜH∞

∥∥∥∥[√1− ε

0

]
+

[
−
√

1− ε

0

]
NmQ

∥∥∥∥2

2
δ

2
r .

According to [37], the internal and external factors are

decomposed
[
−
√

1− ε

ε

]
Nm = ∆i∆0.

To find the best Q, we introduce Ψ∆=

[
∆T

i (−s)
I−∆i∆

T
i (−s)

]
.

We know that ΨT
i Ψi = I, and then

J∗52 = inf
Q∈ℜH∞

∥∥∥∥∥Ψ

([√
1− ε

0

]
+

[
−
√

1− ε

ε

]
NmQ

)∥∥∥∥∥
2

2

δ
2
r

= inf
Q∈ℜH∞

∥∥∥∥∆
T
i

[ √
1− ε

0

]
+∆0Q

+
(
I−∆i∆

T
i

)[ −√1− ε

0

]∥∥∥∥2

2
σ

2
r

= inf
Q∈ℜH∞

∥∥∥∥∆
T
i

[ √
1− ε

0

]
+∆0Q

∥∥∥∥2

2
δ

2
r

+

∥∥∥∥(I−∆i∆
T
i

)[ −√1− ε

ε

]∥∥∥∥2

2
δ

2
r .

Because Q ∈ ℜH∞, Q can choose appropriately, so

inf
Q∈ℜH∞

∥∥∥∥∆T
i

[ √
1− ε

0

]
+∆0Q

∥∥∥∥2

2
δ 2

r = 0, we can obtain:

J∗52 = ε (1− ε)σ 2
r .

By J∗21, we have:

J∗51 =

∥∥∥∥ √1− ε
(
L−1

Z −1
)

0

∥∥∥∥2

2
δ

2
r

=(1− ε)
n

∑
i=1

2Re(zi)δ
2
r .

According to (31), we get:

J∗6 = ∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ωωH

li l̄ j
σ

2
n2
.

Theorem 2 shows that the performance of NCSs under a
two-parameter compensator is affected by inherent prop-
erties of the system, such as NMP zeros, instability, in-
put power constraints, communication delay, AWGN, and
encoding-decoding. The result shows that the constraint
may reduce the tracking capability of the NCSs. Accord-
ing to Theorems 1 and Theorems 2, the performance
can be improved by using the two-parameter compensator
control scheme.

Remark 1: Theorem 2 gives a complete expression on
how plant NMP zeros, unstable poles of a given plant and
time-delay and AWGN degrade the performance with the
NCSs. It can also be seen from the Theorem 2 that the
time-delay and AWGN of a communication channel will
in general degrade the performance. The following corol-
lary can be obtained by Theorem 2 directly.

Corollary 1: In Theorem 2, if the time-delay τ = 0,
then we can obtain:

J∗ >(1− ε)
n

∑
i=1

2Re(zi)δ
2
r + ε (1− ε)σ

2
r

+ ∑
j∈N

4Re(p j)Re(pi)

p̄ j + pi

ββ H

b̄ jbi
σ

2
n1

+∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ξ ξ H

li l̄ j
σ

2
n2
− εΓ,

where β = L−1
z

(p j), ξ = A−1 (zi)Nm (zi)M−1 (zi), b j =
m
Π

i, j∈N
i 6= j

pi−p j

p̄ j+pi
, and l j =

n
Π

i, j∈N
i 6= j

zi−z j

z̄ j+zi
.

Corollary 2: In Theorem 2, if the AWGN n1 = 0, we
can obtain:

J∗ >(1− ε)
n

∑
i=1

2Re(zi)δ
2
r + ε (1− ε)σ

2
r

+∑
i∈N

4Re(z j)Re(zi)

z̄ j + zi

ωωH

li l̄ j
σ

2
n2
− εΓ,

where ω = eτzi A−1 (zi)Nm (zi)M−1 (zi), and l j =
n
Π

i, j∈N
i6= j

zi−z j

z̄ j+zi
.
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It can be observed from Corollary 1 that the optimal
tracking performance only depends on the NMP zeros, the
unstable poles of a given plant, encoding-decoding and
AWGN. The result presented in Corollary 2 is similar to
those previously demonstrated in [33].

5. ILLUSTRATIVE EXAMPLE

Example: Consider the transfer function of the unsta-
ble system to be:

G(s) =
s− k

(s−2)(s+3)
, k ∈ (1,5).

The unstable pole is p = 2, and z = k is the NMP zeros
value. We choose the signals r, n1, and n2, as σ 2

r = 0.5,
σ 2

n1
= 0.2, and σ 2

n2
= 0.1. Choose Γ = 2, ε = 1

2 , τ = 0.2,
and A(s) = s+1

s+2 is used to represent the encoding, where
s = zi, so A(zi) =

zi+1
zi+2 and A−1 (zi) =

zi+2
zi+1 are obtained.

According to Theorem 1:

J∗ = 0.5k+2.8e0.8
(

k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

+2e0.8 k+2
k−2
−0.875.

According to Theorem 2:

J∗ = 0.5k+0.8e0.8
(

k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−0.875

Fig. 3 shows different NMP zeros values have effect on
performance of the NCSs. In the case of a one-parameter
compensator with a circle line, the performance of the
NCSs with AWGN, time-delay, and encoding-decoding is
optimized by considering the channel input power con-
straints. As shown in Fig. 3, the performance of time-
delay, AWGN, and coding fail to perform optimal track-
ing. At the same time, under the one-parameter compen-
sator structure, the performance is closely related to NMP
zeros and unstable poles. However, the performance has
been greatly improved under the two-parameter compen-
sator structure. Also, from Fig. 3, when the NMP zeros
and the unstable zeros position are close, the performance
is degraded seriously.

We can obtain the optimal tracking performance of
NCSs with different non-minimum phase zeros, as shown
in Fig. 4. The paper [38] studied the optimal tracking
problem of SISO networked systems with considering
only communication delays. The optimal tracking perfor-
mance of NCSs with communication delay and channel
input power constraints was studied in paper [33]. On the
basis of [33], the tracking performance of NCSs under en-
ergy constraints with time-delay, encoding-decoding and

Fig. 3. The optimal tracking performance with different
values of no-minimum phase zeros.

Fig. 4. The optimal tracking performance with different
values of no-minimum phase zeros.

AWGN constraints is studied in this paper. Through spec-
tral factorization and partial decomposition techniques,
we can obtain the explicit representation of the opti-
mal performance as Theorem 1 and Theorem 2. It is
shown that the optimal performance is affected by NMP
zeros, unstable poles and other multiple communication
constraints such as time-delay, encoding-decoding and
AWGN. In the Theorem 2, we assume σ 2

n1
= 0, σ 2

n2
= 0.2,

all other values remain the same. From Fig. 4, commu-
nication delay and AWGN damage the optimal tracking
performance, but coding can improve the optimal tracking
performance.

Consider taking different values of τ . When we take
τ1 = 0.2, τ2 = 0.4, and τ3 = 0.8, by Theorem 2, and get:

J∗τ1
= 0.5k+0.8e0.8

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2
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Fig. 5. The optimal tracking performance with different
values of time-delay.

−0.875,

J∗τ2
= 0.5k+0.8e1.6

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−0.875,

J∗τ3
= 0.5k+0.8e3.2

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−0.875.

As shown in Fig. 5, the performance of different values
varies with the value of τ . In addition, the delay increases
and the optimal tracking performance decreases. This pro-
vides some guidance between the time delay and the best
optimal tracking performance limitations.

Consider taking different values of ε , we take ε1 = 0.2,
ε2 = 0.4, and ε3 = 0.8, at this point Γ= 5, and by Theorem
2, and can get:

J∗ε1
= 0.8k+0.8e0.8

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−0.92,

J∗ε2
= 0.5k+0.8e1.6

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−2.375,

J∗ε3
= 0.2k+0.8e3.2

(
k+2
k−2

)2

+0.2k
(

k+2
(k+1)(k−2)

)2

−3.875.

We can see the same result in Fig. 6, which shows
the performance for different values of ε . As the value
changes, we can also observe that the communication
constraint increases and the performance decreases. This
clearly provides some guidance between the best tradeoffs
of the channel input power limit and the best tracking per-
formance.

Fig. 6. The optimal tracking performance with different
values of tradeoffs.

Fig. 7. The optimal tracking performance with different
values of NMP zeros and encoding-decoding.

Consider taking different values of A(zi). When we
take A(zi) =

zi+1
zi+A , and A−1 (zi) =

zi+A
zi+1 „ at this point Γ = 2,

by Theorem 2, we get:

J∗=0.5k+0.8e0.8
(

k+2
k−2

)2

+0.2k
(

k+A
(k+1)(k−2)

)2

−0.875.

As shown in Fig. 7, when the value of the encoding
decreases, the performance is better. In addition, the per-
formance of the system becomes worse when the value of
the unstable zeros value and the NMP zeros are similar.

6. CONCLUSION

In this paper, the optimal performance of NCSs un-
der both one-parameter and two-parameter compensators
with communication constraints. The network channel
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constraint taken into consideration of the AWGN, the
encoding-decoding of forward network channel, and in the
feedback network channel with time-delays and AWGN.
The explicit expressions of the optimal performance ob-
tained by applying the H2 norm and spectral factorization
technique. The optimal performance is influenced by the
non-minimum phase zeros and the unstable poles.

The complex network with packet loss, time-delay,
quantization error, encoding-decoding, and other con-
straints in the network channel, which have practical ap-
plication. The proposed method in this paper can be ap-
plied too the literature [39–42] such as signal modeling
and system identification [43–48].
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