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Iterative Learning Control for Fractional Order Linear Systems with
Time Delay Based on Frequency Analysis
Yugang Wang, Fengyu Zhou* � , Lei Yin, and Fang Wan

Abstract: To overcome the deficiencies of time delay in the repetitive control of fractional-order linear systems,
PDα -type iterative learning control (ILC) law and P & convolution-type ILC law are designed for input and state
time delay, respectively. Convergence conditions are derived in frequency domain via contraction mapping princi-
ple. Besides, the convergence frequency domain of proposed feedback controllers is obtained over a finite frequency
range to design the controllers effectively. Then, the effectiveness of the proposed theoretical schemes is demon-
strated using two numerical examples. The influence of time delay is eliminated, and output trajectory convergence
to the desired one is guaranteed. Moreover, the Nyquist diagram of transfer function G(s) and time delay variation
are analyzed in frequency domain to reveal the influence of convergence on the system.
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1. INTRODUCTION

Fractional calculus was originated in the 17th century,
whereas it has been applied in control field for only a few
decades [1, 2]. Many practical energizing systems, such
as viscoelastic systems, system identification and colored
noise, can be described accurately with the help of frac-
tional calculus [3,4]. Fractional control systems frequently
suffer from time delay frequently, as reported by Wang et
al. [5], Zhu et al. [6] and Lan et al. [7]. The controller
design (e.g., fractional order state predictor [8]; algebraic
and linear matrix inequality forms [9] and reduced-order
observer and output feedback controller [10]) and stabil-
ity analysis [11] have been widely investigated. However,
these previous methods and designed controllers are un-
suitable for time-delayed, repetitive, fractional-order con-
trol frameworks.

Iterative ideas and theories, which existed in estimation
algorithm [12,13], identification [14] and other areas [15],
can resolve the aforementioned problem. Iterative learning
control (ILC), which was first introduced by Uchiyama
[16], is an effective control method that iteratively im-
proves the performance of a process that is repetitive in na-
ture. Arimoto et al. [17] further developed and presented
ILC in English. Compared with traditional control meth-
ods, such as optimal control, adaptive control and sliding

mode control [18], ILC can track the desired trajectory in
repetitive systems more precisely via an unknown model
during a finite duration [19,20]. For a repetitive fractional
order time delayed system, Lan et al. [7, 21–23] proposed
Dα -type, P-type and second-order P-type ILC for frac-
tional order linear and nonlinear time delay systems and
derived the convergence conditions. Yan et al. [24–26]
designed P-type and Dα -type ILC that focused on time
delay in fractional order linear and nonlinear systems, re-
spectively. Lazarević et al. [27, 28] presented PDα -type
ILC for fractional order singular time delay system. Mean-
while, the convergence condition of closed-loop PDα -type
ILC for fractional nonlinear systems with time delay was
described by Chenchen and Jing in [29]. The asymptotic
stability of error-tracking ILC for nonlinearly parametric
time delay systems with initial state errors was investi-
gated by Yan et al. in [30].

Notably, aforementioned ILC laws for time delayed
fractional order systems were all studied in terms of time
domain. However, frequency responses and frequency
characteristics, which could be determined experimentally
without prior knowledge of the model and transfer func-
tion of system [31–33], play a crucial part in practical
applications. Analysis of ILC in frequency domain has
received increasing attention in recent years. In [34, 35],
the relationships of convergence condition of ILC in time
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and frequency domain were established clearly. Chen and
Moore. recently proved the convergence analysis of Dα -
type ILC [36] and discussed generalized fractional or-
der controllers PIλ Dµ recently in frequency domain [37],
However, other uncertainties and properties were not con-
sidered in these studies. Ye et al. [38] analyzed all-pass
filtering in ILC, unit-gain D-type ILC characteristics were
studied in frequency domain with no attenuation of learn-
ing speed. Ge et al. [39] considered the norm-optimal ILC
framework and study its robust monotonic convergence
in single-input-single-output integer linear time-invariant
systems in frequency domain. Li et al. [40] designed Dα -
ILC for integer order system without time delay in S-
domain, all-pass phase shifter was deployed in a unit-gain
D-type ILC, while the influence of frequency respond was
ignored for bounded time delays. Moreover, Tao et al. [41]
designed dynamic and static ILC for linear discrete sys-
tems with multiple time-delays and polytopic uncertainty.
Zhai et al. [42] discussed the ILC applied in integer or-
der networked control system with iterative varying refer-
ences and time-delayed states in frequency domain. Both
studies only considered the integer-order system.

Given the advantages of analysis in frequency do-
main and time delay issue, two types(PDα -type and P &
convolution-type) of ILC laws were designed for a repeti-
tive Fractional Order Linear System(FOLS) with time de-
lay in this study. The convergence conditions were derived
in frequency domain on the basis of the contraction map-
ping principle. The results showed that the desired trajec-
tory tracking can be achieved for any bounded time delays.
In addition, the design procedure was explicitly outlined,
the corresponding convergence domain of the feedback
controllers was analyzed. From these, the magnitudes of
learning gain were selected to satisfy the convergence con-
dition. Finally, the Nyquist diagram of G1(s) and other
frequency characteristics were analyzed through simula-
tion examples to eliminate the influence of time delay.

The rest of this paper is organized as follows: Re-
lated mathematical definitions are recalled in Section 2.
In Section 3, two types of ILC laws are designed in fre-
quency domain for repetitive time delayed FOLS. The cor-
responding convergence conditions and convergence do-
main of the feedback controllers are derived in Section 4
and Section 5. In Section 6, simulation examples are pre-
sented to illustrate the effectiveness of proposed results.
Conclusion and future work are summarized in Section 7.

2. PRELIMINARIES

In this section, some mathematical definitions used in
later chapters are presented.

2.1. The operator norm

‖e(t)‖
∞
= max

1≤k<m
|ek(t)| ,

‖G‖
∞
= max

1≤k<m

{
m

∑
j=1

∣∣∣g(i, j)∣∣∣} , (1)

where ek(t) presents the kth element of e(t) ∈ Rm, g(i, j)

denotes the (i, j)th element of G ∈ Rm×m.

2.2. Fractional calculus
Fractional calculus plays an increasingly important role

in recent engineering science. Actually, The Caputo def-
inition is most commonly used in engineering because it
takes the same form as integer-order differential equations
in initial conditions. Therefore, the Caputo fractional def-
inition was adopted as the main tool in this study, and the
definition of function f(t) was similar to that in [2]

t0 Dα

t f (t) =



1
Γ(n−α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n dτ,

n−1 < α < n,
dn

dtn
f (t), α = n,

(2)

where t0 is initial time, t0 Dα
t presents fractional order inte-

gral operator in [t0, t], Γ(·) is Gamma function. Especially,
when 0 < α < 1, it has

t0 Dα

t f (t) =
1

Γ(n−α)

∫ t

t0

f ′(τ)
(t− τ)α dτ. (3)

2.3. Laplace transform
The laplace transform of Caputo fractional derivative is

described as follows [2]:

L( f α

t (t);s) = sα F(s)−
n−1

∑
k=0

sα−k−1 f (k)(0), (4)

where n−1<α ≤ n, k∈N+. Specifically, when f (0) = 0,
it obtains

L( f α

t (t);s) = sα F(s). (5)

3. PROBLEM FORMULATION

Some physical systems or processes that can be mod-
eled by the FOLS, such as Maxwell model, the general-
ized Kelvin-Voigt model [43], the voltage-current relation
of a semi-infinite lossy resistance-capacitance line or the
diffusion of heat in a semi-infinite solid [44, 45]. In this
study, repetitive FOLS with time delay in t ∈ [0,T ] is in-
troduced. Moreover, ILC laws are designed and listed to
track the reference trajectory.

Definition 1: 1) Let yd(t) be desired output trajectory
of system;

2) yd(t) is continuous differentiability in [0, T ];
3) System satisfies same initial conditions, initial value

is xk(0) = xd(0), initial control input is u(0) = 0.
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3.1. Case 1: Input time delay
For this case, repetitive FOLS with input time delay is

characterized by

xα

k (t) = Axk(t)+Buk(t−h1),

yk(t) =Cxk(t), (6)

where A, B and C are appropriate matrixes, α ∈ [0,1] de-
notes the α th-order Caputo derivative respect to t. u,y∈ Rr

and x ∈ Rn are control, output and state, respectively. k in-
dicates the number of iterations, h1 < t ∈ [0, T ] indicates
input time delay.

Taking Laplace transform of system (6), it is described
as following form

sα Xk(s) = AXk(s)+Be−h1sUk(s),

Yk(s) =CXk(s). (7)

PDα -type ILC law is considered to track the reference tra-
jectory yd(t) ,

uk+1(t) = uk(t)+ϒek(t)+Φeα

k (t), (8)

where ek(t) = yd(t)− yk(t) denotes the tracking error,
ϒ and Φ are appropriate positive learning gain. Taking
Laplace transform of (8), it yields

Uk+1(s) =Uk(s)+ϒEk(s)+Φsα Ek(s). (9)

3.2. Case 2: State time delay
For this case, repetitive FOLS with state time delay is

characterized by

xα

k (t) = Axk(t)+Ahxk(t−h2)+Buk(t),

yk(t) =Cxk(t), (10)

where Ah is dimensional system parameters, h2 < t ∈
[0,T ], which indicates state time delay, Other parameters
are same as in Case 1.

Taking Laplace transform of system (10), it is described
in the following format

sα Xk(s) = AXk(s)+Ahe−h2sXk(s)+BUk(s),

Yk(s) =CXk(s). (11)

In order to track the reference trajectory yd(t) as accu-
rately as possible when k goes to infinity for all t ∈ [0,T ] ,
P and convolution-type ILC law is applied

uk+1(t) = uk(t)+Ωek(t)+ϑ(t− τ)∗ ek+1(t− τ),
(12)

where ek(t) = yd(t)− yk(t), Ω is an appropriate positive
learning gain; ϑ(t−τ) is an appropriate positive feedback
learning gain; τ denotes the maximum time delay in this
form. Taking Laplace transform of (12), it has

Uk+1(s) =Uk(s)+ΩEk(s)+ϑ(s)e−τsEk+1(s). (13)

4. PROOF

4.1. Case 1
Theorem 1: For FOLS (7) and ILC law (9), given

U0(s)= 0 and Yd(s), if ρ1 < 1, we obtain ‖Ek+1(s)‖∞
≤

‖Ek(s)‖∞
, hence ||Ek(s)||∞ → 0, i.e., Yk(s) → Yd(s) as

k → ∞ uniformly, where ρ1 is defined in the following
proof:

Proof: Comparing with Ek+1(s) and Ek(s), it has

Ek+1(s)−Ek(s) (14)

= (Yd(s)−Yk+1(s))− (Yd(s)−Yk(s))

= Yk(s)−Yk+1(s)

=C(Xk(s)−Xk+1(s))

=C(sα I−A)−1Be−h1s(Uk(s)−Uk+1(s))

=C(sα I−A)−1Be−h1s(Uk(s)−
Uk(s)−ϒEk(s)−Φsα Ek(s))

=C(sα I−A)−1Be−h1s(−ϒEk(s)−Φsα Ek(s)).

It yields

Ek+1(s)

=C(sα I−A)−1Be−h1s(−ϒEk(s)−Φsα Ek(s))+Ek(s)

= [1−C(sα I−A)−1Be−h1s(ϒ+Φsα)]Ek(s). (15)

Taking the norm on both sides of (15), it simplifies

‖Ek+1(s)‖∞
≤ ρ1‖Ek(s)‖∞

, (16)

where ρ1 =
∥∥1−G1(s)e−h1sϒ−G1(s)Φsα)

∥∥
2. G1(s) is

defined as G1(s) =C(sα I−A)−1B.
Therefore, if ρ1 < 1, it obtains lim

k→∞

‖Ek+1(s)‖∞
= 0, the

convergence of system (7) is conducted.
Theorem 1 is proved. �

4.2. Case 2
Theorem 2: For fractional order linear system (10) and

ILC scheme (12), given U0(s)= 0 and Yd(s), if

ρ2 =

∥∥∥∥ I−G2(s)Ω
I +G2(s)ϑ(s)e−τs

∥∥∥∥
2
< 1,

it has ‖Ek+1(s)‖∞
≤ ‖Ek(s)‖∞

,hence ||Ek(s)||∞ → 0, i.e.,
Yk(s)→ Yd(s) as k→ ∞ uniformly, where the related pa-
rameters are defined in the following proof.

Proof: Comparing with Ek+1(s) and Ek(s) , it can be
easily shown that

Ek+1(s)−Ek(s)

= (Yd(s)−Yk+1(s))− (Yd(s)−Yk(s))

= Yk(s)−Yk+1(s)

=C(Xk(s)−Xk+1(s))

=C(sα I−A−Ahe−h2s)−1B(Uk(s)−Uk+1(s))
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=C(sα I−A−Ahe−h2s)−1B·
(Uk(s)−Uk(s)−ΩEk(s)−ϑ(s)e−τsEk+1(s))

=C(sα I−A−Ahe−h2s)−1B·
(−ΩEk(s)−ϑ(s)e−τsEk+1(s))

=−C(sα I−A−Ahe−h2s)−1BΩEk(s)−
C(sα I−A−Ahe−h2s)−1Bϑ(s)e−τsEk+1(s). (17)

It yields

Ek+1(s)+C(sα I−A−Ahe−h2s)−1Bϑ(s)e−τsEk+1(s)

= Ek(s)−C(sα I−A−Ahe−h2s)−1BΩEk(s). (18)

Transporting the related contents of (18), it has

[I +C(sα I−A−Ahe−h2s)−1Bϑ(s)e−τs]Ek+1(s)

= [I−C(sα I−A−Ahe−h2s)−1BΩ]Ek(s). (19)

Ek+1(s) can be simplified as follows:

Ek+1(s)

=
I−C(sα I−A−Ahe−h2s)

−1BΩ

I +C(sα I−A−Ahe−h2s)
−Bϑ(s)e−τs]

Ek(s). (20)

From above inequality it yields

Ek+1(s) =
I−G2(s)Ω

I +G2(s)ϑ(s)e−τs Ek(s), (21)

where G2(s) =C(sα I−A−Ahe−h2s)−1B.
Taking the norm on both sides of (21), it obtains

‖Ek+1(s)‖∞
≤ ρ2‖Ek(s)‖∞

, (22)

where, ρ2 =
∥∥∥ I−G2(s)Ω

I+G2(s)ϑ(s)e−τs

∥∥∥
2
.

Therefore, if ρ2 < 1, it can be obtained lim
k→∞

‖Ek+1(s)‖∞
=

0, the convergence of system (10) is conducted.
Proof of Theorem 2 is completed. �

5. THE CONVERGENCE DOMAIN OF THE
FEEDBACK CONTROLLER

The input-output relation described in the frequency do-
main can be expressed as

G( jω) = N(ω)e( jθ(ω)), (23)

where G( jω) is the input-output transfer function;
N(ω) , denotes magnitude characteristics, is defined as
|G( jω)|. θ(ω), presents phase characteristics, is defined
as ∠G( jω). ω is the corresponding frequency.

5.1. The convergence domain of the feedback con-
troller with input time delay

In Case 1, convergence condition is expressed

ρ1 =
∥∥1−G1(s)e−h1s

ϒ−G1(s)Φsα)
∥∥

2 < 1.

The convergence condition for the frequency components
to converge is equivalent to

ρ1 = |1−G1( jω)e−h1 jω
ϒ− ( jω)α G1( jω)Φ|< 1.

(24)

It follows from (23) and (24), expression is obtained

G1( jω)e−h1 jω
ϒ

= ϒNG1(ω)e j(θG1 (ω)−h1ω)

= ϒNG1(ω)( j sin(θG1
(ω)−h1ω)

+ cos(θG1
(ω)−h1ω)). (25)

Similarly,

ΦG1( jω)

= ΦNG1(ω)e jθG1

= ΦNG1(ω)[ j sin(θG1
(ω))+ cos(θG1

(ω)], (26)

where NG1(ω) presents magnitude characteristics of
G1(s), θG1

(ω) denotes phase characteristics of G1(s).
Applying the characteristics of N(ω) and θ(ω), the sta-

bility condition is shown as

ρ
2
1 ={1−G1( jω)e−h1 jω

ϒ− ( jω)α G1( jω)Φ}2

=1+N2
G1

ϒ
2 +N2

G1
Φ

2
ω

2α

−2NG1 ϒcos(θG1
−h1ω)

−NG1 Φω
α cos(

απ

2
+θG1

)

+2N2
G1

ϒΦω
α cos(

απ

2
+2θG1

−h1ω). (27)

Taking into account (24)-(27), the convergence domain of
the feedback controller is derived

N2
G1

γ
2+N2

G1
Φ

2
ω

2α

≤ 2NG1 ϒcos(θG1
−h1ω)+NG1 Φω

α cos(
απ

2
+θG1

)

−2N2
G1

ϒΦω
α cos(

απ

2
+2θG1

−h1ω). (28)

From (28), it concludes that small enough magnitudes of
learning gain can be found to satisfy the convergence con-
dition.

5.2. The convergence domain of the feedback con-
troller with state time-delay

In Case 2, convergence condition is expressed

ρ2 =

∥∥∥∥ I−G2(s)Ω
I +G2(s)ϑ(s)e−τs

∥∥∥∥
2
< 1.



1592 Yugang Wang, Fengyu Zhou, Lei Yin, and Fang Wan

 

!

 

!

! 

!

! 
"

!

 
"

Fig. 1. The learnable band of fractional order linear sys-
tem.

Correspondingly, the convergence condition for fre-
quency components to converge is expressed

ρ2 =

∣∣∣∣ I−G2( jω)Ω

I +G2( jω)ϑ( jω)e−τ jω

∣∣∣∣< 1. (29)

Same as Case 1, the convergence domain of the feedback
controller is derived

N2
G2

Ω
2−N2

G2
N2

ϑ

≤ 2NG2 Ωcos(θG2
)+2NG2 Nϑ cos(θG2

+θϑ − τω),
(30)

where NG2 and Nϑ present magnitude characteristics of
G2(s) and ϑ(s), respectively. θG2

and θϑ denote phase
characteristics of G2(s) and ϑ(s), respectively.

Similarly, from (30), it can obtained that small enough
magnitudes of learning gain can be calculated to satisfy
the convergence domain.

5.3. Learnable band of feedback controller
Notably, (28) and (30) hold for all ω ∈ [0,∞). They sat-

isfy the condition that all learnable bands belong to [−απ

2 ,
απ

2 ], which is the blue line area in Fig. 1.
In this study, the frequency range within which the con-

vergence conditions hold is called the learnable band. Fig.
1 shows that the frequency range of most FOLSs is smaller
than that of the conventional integer-order linear system.
By considering the convergence conditions in two cases,
the learning gains with an appropriate magnitude can be
selected to satisfy the convergence domain.

6. NUMERICAL SIMULATIONS

In order to verify the effectiveness of the proposed con-
vergence conditions and analysis frequency characteris-
tics, the previously presented ILC schemes are applied

�
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Fig. 2. The Nyquist diagram of G1(s).

to the FOLS with time delay. Examples are designed and
listed in this section. All simulations are implemented in
MATLAB/SIMULINK.

Example 1: Consider the following repetitive FOLS
with input time delay

xα

k (t) =−xk(t)+0.8uk(t−h1),

yk(t) = xk(t), (31)

where, h1 = 0.05 stands for input time delay, α = 0.5. The
desired trajectory is generated as yd(t) = sin(3πt), initial
state xk(0) = 0.

Taking Laplace transform of (31), it expressed

sα Xk(s) =−Xk(s)+0.8e−h1sUk(s),

Yk(s) = Xk(s). (32)

For the above system, PDα -type ILC updating law is ap-
plied

uk+1(t) = uk(t)+2ek(t)+ e0.5
k (t). (33)

Taking Laplace transform of (33), it yields

Uk+1(s) =Uk(s)+2Ek(s)+ s0.5Ek(s). (34)

According to the aforementioned information, the transfer
function G1(s) is calculated

G1(s) =C(sα I−A)−1B =
0.8

s0.5 +1
. (35)

1 ) The Nyquist diagram of G1(s) shows in Fig. 2.
Fig. 2 shows that the frequency domain result of G1(s)

is not necessarily considered for asymptotic stability of
system.

2 ) The tracking performance of system output under
PDα -type ILC is shown in Fig. 3. The values of trajectory
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Fig. 4. The norm of the tracking errors in each iteration.

error (error 1) are exhibited in Fig. 4 by numerical itera-
tions, where k = 8 and t ∈ [0, 2].

Figs. 3 and 4 (error 1) show that the system output ap-
proaches the desired trajectory accurately within a few it-
erations. The tracking error at the sixth iteration is very
small, which theoretically shows that the PDα -type ILC
scheme can be applied to the tracking control of FOLS
with input time delay h1. After 8 times iterations, the
tracking error converges to 0.

Furthermore, for comparison, let Uk+1(s) = Uk(s) +
Φsα Ek(s) to design a Dα -type ILC (Yan et al. [20]). The
tracking errors show in Fig. 4 (error 2). It concludes that
PDα -type ILC updating law performs better in conver-
gence rate during the learning process.

Define Max{θ(ω)} = Max{(θG1
− h1ω), (απ

2 + θG1
),

(απ

2 + 2θG1
− h1ω)} in (27). In order to show the fre-

quency characteristics of PDα -type ILC applied in FOLS
with input time delay, the relationship of the value of
Max{θ(ω)} and frequency is shown in Fig. 5, where time
delay h1 is selected from 0 to 0.05 by 0.01.

From Fig. 5, it shows that when time delay h1 selected,
the Max{θ(ω)} first decreases to negative and then in-

desired trajectory Fig. 5. Time delay h1 selection for system.

creases due to the increasing compensation effect of ω in-
creases. The learnable band domain belongs to [−απ

2 , απ

2 ].
In this case, the learnable band is [−45◦, 45◦].

Example 2: Consider the following repetitive FOLS
with state time delay.

xα
k (t) =−xk(t)−

1
2

xk(t−h2)+
7
10

uk(t),

yk(t) = xk(t), (36)

where h2 = 0.1 stands for state time delay, α = 0.5.
Taking Laplace transform of system (36), it has

s0.5Xk(s) =−Xk(s)−
1
2

e−0.1sXk(s)+
7

10
Uk(s),

Yk(s) = Xk(s). (37)

For the above system, P and convolution-type ILC up-
dating law is applied.

uk+1(t) = uk(t)+1.03ek(t)+2(t− τ)∗ ek+1(t− τ),
(38)

where τ = 0.1, which denotes the maximum time delay in
this form.

According to (17), the updating law can be written sim-
ply in Laplace domain

Uk+1(s) =Uk(s)+1.03Ek(s)+2e−0.1sEk+1(s). (39)

Let the reference trajectory be yd(t) = 12t2(1− t), ini-
tial state xk(0) = 0. The transfer function of G2(s) is cal-
culated

G2(s) =C(s0.5I−A−Ahe−0.1s)−1B

=
0.7

s0.5−1−0.5e−0.1s . (40)

1) The Nyquist diagram of G2(s) is shown in Fig. 6. Fig. 6
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Fig. 7. The tracking performance of the system output.

shows that when FOLS has a state time delay, the Nyquist
diagram of G2(s) (green line) is different from that with
no time delays(blue line). From maximum time delay τ in
(38) and Fig. 6, we can conclude that the delay link can be
replaced by a small inertia link if the delay time is small.
Moreover, the convergence condition of system should be
considered in this case.

2) The tracking performance of the system output and
the norm of tracking error under P and convolution-type
ILC are shown in Figs. 7 and 8, respectively, where k = 10
and t ∈ [0, 1].

Figs. 7 and 8 indicate that the system output approaches
the desired trajectory accurately only after 10 times it-
erations. It theoretically shows that P and convolution-
type ILC updating scheme can be successfully applied. In
addition, from Fig. 8, when k = 10, ‖yd(t)− y10(t)‖2 =
1.86×10−3, it shows that the uniform convergence of the
tracking errors is guaranteed.

3) The relationship of time delay h2, frequency ω and
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Fig. 9. The relationship of time delay h2, frequency ω and
‖ρ2‖

‖ρ2‖ are shown in Fig. 9. Fig. 9 shows the effect of state
time delay on the convergence rate of the system at differ-
ent frequencies. In the low frequency case, time delay h2

is larger and its convergence speed is higher, while in high
frequency, the results are on the contrary.

7. CONCLUSION AND FUTURE WORK

In this study, the convergence conditions of the time-
delayed FOLS based on ILC schemes were derived and
analyzed in the frequency domain. The convergence fre-
quency domain of the feedback controller was obtained
in consideration of the magnitude and phase characteris-
tics. Two numerical examples were presented to illustrate
that the proposed theoretical schemes can be applied to
the tracking control of FOLS with time delay, and per-
form well in terms of convergence results. In addition,
the Nyquist diagram of transfer function G(s) and several
other properties in the frequency domain were analyzed in
detail.

Future work could investigate the properties of related
ILC schemes for FOLS in the frequency domain. The ap-
plication and analysis of ILC schemes for FOLS in engi-
neering practice are other possible research tasks.
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