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Robust Static Output Feedback H2/H∞ Control Synthesis with Pole Place-
ment Constraints: An LMI Approach
Hadi Behrouz, Iman Mohammadzaman* � , and Ali Mohammadi

Abstract: This paper studies the robust static output feedback (SOF) problem considering pole placement con-
straints for linear systems with polytopic uncertainty as well as linear parameter varying (LPV) systems. New linear
matrix inequality (LMI) approaches are proposed for the SOF controller design while the pole placement, H2, and
H∞ constraints are guaranteed. In addition, the gain-scheduled SOF controller will be designed for LPV systems if
system parameters are measured. The proposed methods can be applied to general linear systems without imposing
any constraints on system matrices. The performance and effectiveness of the proposed methods are shown using
two examples.

Keywords: Gain-scheduled controller, linear parameter dependent system, pole placement constraint, robust static
output feedback.

1. INTRODUCTION

In control theory and practical applications, the ro-
bust static output feedback (SOF) controller design is one
of the important and challenging problems. SOF con-
trollers have simpler structures with a lower implemen-
tation cost in comparison with the other control methods
[1]. In general, the design problems of such controllers
are non-convex or the sufficient conditions cannot be de-
rived by linear matrix inequality (LMI) optimization so-
lutions [2–5]. However, many researchers have employed
iterative and non-iterative solution algorithms to use LMI-
based methods [6].

The SOF problem has been proposed in [7–9] through
iterative LMI algorithms. A two-step optimization method
has been developed to solve the H∞ problem in [10]. Addi-
tionally, an SOF controller with a limited frequency range
has been developed in [11] for an isolator model. In [12],
by defining two change variables, a non-iterative method
has been suggested for the SOF problem. However, the
proposed methods in [7–12] are presented for linear time-
invariant (LTI) systems. Using the change variables de-
fined in [12], the parameter-dependent SOF control has
been obtained in [13]. Moreover, sufficient LMI condi-
tions in the SOF problem have been obtained in [6] for
LTI systems with parametric uncertainties. In addition, the
SOF controller has been given for LTI systems with poly-
topic uncertainty in [14–16]. However, the algorithms pre-
sented in [12,16] need to have the full row rank output ma-

trix. Further, only the robust stability has been considered
in [14, 15].

In addition to the robust stability, an SOF controller has
been designed by imposing additional constraints on the
transient closed-loop response which is related to the loca-
tion of closed-loop poles [17]. The sufficient LMIs consid-
ering the pole placement constraints have been studied in
[18,19], and [20]. Additionally, the problem of designing a
robust linear parameter varying (LPV) state-feedback has
been solved in [21] so that the pole placement constraints
are satisfied.

This paper combines the robust SOF controller design
with the closed-loop poles location concepts to derive
the LMI approaches for both LTI systems with polytopic
uncertainty and LPV systems. Accordingly, the closed-
loop poles are located in the desired region of the com-
plex plane. Furthermore, the robust stability is guaranteed
without imposing any constraints on output matrix. In ad-
dition, the robust SOF is studied as a gain-scheduled prob-
lem for LPV systems to achieve better robustness.

The stability is the first requirement in control theory
and practice. Sometimes, when noise, disturbance, and
unmodeled dynamics are considered, the robust H2 and
H∞ performances will be necessary [22]. Furthermore, a
mixed H2/H∞ control can guarantee the robustness of the
design as well as better performance on control and state
signals [23]. An SOF H∞ controller using an iterative al-
gorithm in [7], SOF H∞ controller with pole placement
constraint using a non-smooth method in [24], SOF H2

Manuscript received April 28, 2019; revised December 6, 2019 and February 25, 2020; accepted April 1, 2020. Recommended by Associate
Editor Young Ik Son under the direction of Editor Yoshito Ohta.

Hadi Behrouz, Iman Mohammadzaman, and Ali Mohammadi are with the Faculty of Electrical and Computer Engineering, Malek Ashtar
University of Technology, Tehran, Iran (e-mails: {Hadi_behrouz, mohammadzaman}@mut.ac.ir, Ali_mohammadi@yahoo.com).
* Corresponding author.

c©ICROS, KIEE and Springer 2021

http://www.springer.com/12555
https://orcid.org/0000-0002-9346-6541


242 Hadi Behrouz, Iman Mohammadzaman, and Ali Mohammadi

controller with eigenvalue assignment in [25], and sub-
optimal H2/H∞ controller by bilinear matrix inequality-
based algorithm in [16] have been proposed for LTI sys-
tems. However, these methods can be applied for neither
LPV systems nor LTI systems with polytopic uncertainty
since the proposed linear inequalities become nonlinear
due to time-varying/uncertain parameters. Moreover, for
satisfying H∞, H2, and H2/H∞ performances for LTI sys-
tems with polytopic uncertainty, the SOF controller has
been presented in [15, 16, 26], and [27], respectively. Fur-
thermore, a line search method calculating the suboptimal
gain-scheduled SOF controller has been introduced in [28]
for LPV systems. In [29], the SOF control synthesis sat-
isfying the H2 performance has been developed for LPV
systems using an iterative two-stage algorithm. Addition-
ally, the problem of designing the robust H∞ SOF con-
troller for polynomial systems using an iterative sum of
squares decomposition has been presented in [30]. A de-
sign method for the gain-scheduled SOF controller for an
LPV system has been presented in [31]. However, the sys-
tem output matrix in [31] is constant and the effects of
disturbance and noise on the system output are not taken
into account.

In this paper, some LMI-based algorithms based on H2,
H∞, and H2/H∞ criteria have been proposed to design the
SOF controller considering the pole placement constraints
for general linear systems. These LMI approaches use a
line search over some scalar variables. The methods can
be applied even if the output system matrix is not full
rank. Furthermore, for reducing the conservatism, the Lya-
punov matrix is considered to be parameter-dependent for
LTI systems with polytopic uncertainties. The SOF gain-
scheduled controller is also designed for LPV systems to
reduce the conservatism and achieve better performance.
The gain-scheduled controllers use measured system pa-
rameters and interpolate them in real-time. However, if
system parameters are not available, it will be shown that
one fixed SOF can be designed. The proposed methods
have several advantages over recent works: a) the con-
troller is output feedback that can guarantee pole loca-
tion constraints. However, the methods in [12,14,15] only
satisfy the closed-loop stability. In addition, the full-state
measurement has been assumed in [16, 19]. b) the tech-
niques suggested in [15, 16, 26], and [27] cannot be used
for LPV systems, neither would they consider the con-
straints on the closed-loop pole locations. c) in [27], a
low pass filter, in series to the measured output of the sys-
tem has been added to the open-loop model to derive SOF
conditions. Without additional filters in [15] and [31], the
problem synthesis has been extended to the SOF controller
design where the output matrix should be full row rank.
However, these studies on SOF synthesis do not take ac-
count the linear systems without imposing no limitations
on system matrices. Furthermore, the proposed methods
in [29] and [30] are iterative.

The rest of this paper is organized as follows: Section
2 presents the problem description and some preliminary
lemmas. Section 3 provides a robust SOF method guar-
anteeing the stability and pole placement constraints. Two
H2 LMI-based methods are proposed in Section 4. In Sec-
tion 5, the H∞ and H2/H∞ algorithms are introduced with
pole placement constraints. Finally, two numerical exam-
ples are given in Section 6.

The notation is fairly standard. In symmetric matrices,
the symbol (∗) shows a term which can be derived by sym-
metry. I, diag(. . .), trace(. . .), and ⊗ indicate the iden-
tity matrix with the appropriate dimension, a block diago-
nal matrix, the trace of a matrix, and Kronecker product,
respectively. The notation Fpn indicates that F ∈ Rp×n.
He(F) = F +FT will also be used in this paper.

2. PROBLEM DESCRIPTION AND
PRELIMINARIES

Consider a continues-time system described by the fol-
lowing state-space equations:

ẋ(t) = A(θ)x(t)+B(θ)u(t)+E(θ)w(t),

z2(t) =C1(θ)x(t)+D(θ)u(t),

z∞(t) =C∞1(θ)x(t)+D∞(θ)u(t)+F∞(θ)w(t),

y(t) =C2(θ)x(t)+H(θ)w(t), (1){
θ , A(θ), B(θ), E(θ), C1(θ), D(θ), C∞1(θ),

D∞(θ), F∞(θ), C2(θ),

H(θ) =
µ

∑
i=1

αi
[
θi,Ai,Bi,Ei,C1i,Di,C∞1i,D∞i,

F∞i,C2i,Hi
]}

, (2)

where θ is the time-varying parameter vector, x(t)∈Rn is
the state variable, u(t) ∈ Rm is the control input, w(t) ∈
R f is the noise, disturbance, or un-modeled dynamics,
z2(t) ∈ Rq1 is the H2 controlled output variable, z∞(t) ∈
Rq2 is the H∞ output variable, and y(t) ∈ Rp is the mea-
surement output. The system matrices and the parameters
belong to the polytope set (see (2)) where µ is the num-
ber of parameter vertices. System (1) can be stated as an
LTI system with polytopic uncertainty or an LPV system.
Additionally, either D(θ) or H(θ) is zero in the open-loop
system (1) because z2(t) in the closed-loop system should
not have a direct dependency of w(t) [27]. The goal of this
paper is to design the control feedback

u(t) = K y(t) = K (C2(θ)x(t)+H(θ)w(t)) , (3)

such that the closed-loop system

ẋ(t) = Acl(θ)x(t)+Bcl(θ)w(t),

z∞(t) =C∞cl(θ)x(t)+D∞cl(θ)w(t),

z2(t) =Ccl(θ)x(t), (4)
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where

Acl(θ) = A(θ)+B(θ)KC2(θ),

Bcl(θ) = E(θ)+B(θ)KH(θ),

Ccl(θ) =C1(θ)+D(θ)KC2(θ),

C∞cl(θ) =C∞1(θ)+D∞(θ)KC2(θ),

D∞cl(θ) = F∞(θ)+D∞(θ)KH(θ) (5)

satisfy the following conditions:
a) The closed-loop poles are located in the desired re-

gion of the complex plane.
b) The H2 performance from z2(t) to w(t) and H∞ per-

formance from z∞(t) to w(t) are simultaneously guaran-
teed or

‖T∞‖∞
< γ, ‖T2‖2 < γ. (6)

Furthermore, the gain-scheduled controller will be pro-
posed if the system is considered LPV. In the following,
some preliminary lemmas have been brought.

Remark 1: In many previous studies, the matrices C2

and H are based on some assumptions. The output matrix
C2 in [12] and [16] is assumed to be full-rank. The matri-
ces C2 and H are deemed to be constant and zero in [31],
respectively. The matrix C2 is an identity matrix and the
matrix H is zero in [18, 19] and [20]. However, the meth-
ods proposed in this paper impose any limitations on these
matrices.

Lemma 1 [12]: By assuming C2(θ) is a full rank ma-
trix, if there exist matrices W = W T > 0, M, and R such
that

He(A(θ)W +B(θ)RC2(θ))< 0, (7a)

MC2(θ) =C2(θ)W, (7b)

then the open-loop system (1) will be stable by consider-
ing K = RM−1.

Lemma 2 [18]: The poles of the closed-loop system (4)
are in the desired region, if there exists a symmetric matrix
W > 0 satisfying

ᾱ⊗W +He
(
β̄ ⊗ (Acl(θ)W )

)
< 0, (8)

where matrices α and β define the desired region of the
complex plane.

Lemma 3: If there exist matrices M, R, and W =W T >
0 such that

ᾱ⊗W+He(β̄⊗(A(θ)W+B(θ)RC2(θ)))<0, (9a)

MC2(θ) =C2(θ)W, (9b)

then controller K = RM−1 locates the poles of the closed-
loop system (4) in the selected region of the complex
plane. Furthermore, if α = 0 and β = 1 are selected, the
inequalities (9) conclude the inequalities (7), i.e., the prob-
lem is converted into the stability problem.

Proof: By substituting the change variable (7b) into (8),
the inequalities (9) will be proved. �

Lemma 4 [32]: If there exist matrices X = XT > 0 and
Z that satisfies(

He(XAcl(θ)) ∗
BT

cl(θ)X −γI

)
< 0,(

X ∗
Ccl(θ) Z

)
> 0, trace(Z)< γ, (10)

or if there exist matrices W =W T > 0 and Z such that(
He(Acl(θ)W ) ∗

Ccl(θ)W −γI

)
< 0, (11a)(

W ∗
BT

cl(θ) Z

)
> 0, trace(Z)< γ, (11b)

then ‖T2‖2 < γ will be guaranteed.
Lemma 5: By considering H(θ) is zero and C2(θ) is

full rank, if there exist matrices M, R, and W = W T > 0
such that(

He(A(θ)W +B(θ)RC2(θ)) ∗
ET (θ) −γI

)
< 0, (12a)(

W ∗
C1(θ)W +D(θ)RC2(θ) Z

)
> 0, trace(Z)< γ,

(12b)

MC2(θ) =C2(θ)W, (12c)

or the following inequalities are guaranteed(
He(A(θ)W +B(θ)RC2(θ)) ∗

C1(θ)W +D(θ)RC2(θ) −γI

)
< 0,(

W ∗
ET (θ) Z

)
> 0, trace(Z)< γ, (13a)

MC2(θ) =C2(θ)W, (13b)

then controller K = RM−1 satifies ‖T2‖2 < γ .
Proof: By defining W = X−1 and pre- and post-

multiplying (10) by diag(W, I) and its transpose, the in-
equalities (12a) will be obtained from the change variable
(12c). Furthermore, the inequality (13a) can be derived
from the change variable (13b), the closed-loop system
matrices (5), and the inequality (11). �

Lemma 6 [33]: ‖T∞‖∞
is less than γ if there exists a

symmetric matrix W > 0 such that the following LMI is
satisfied. He(Acl(θ)W ) ∗ ∗

BT
cl(θ) −λ I ∗

C∞cl(θ)W D∞cl(θ) −λ I

< 0. (14)

Lemma 7 [26]: The following LMIs are equivalent.

(i)
(

T̄ ∗
β P̄T +Ū Ā −β

(
Ū +ŪT

) )< 0,

(ii) T̄ < 0, T̄ + ĀT P̄T + P̄Ā < 0, (15)

where the matrices T , P, U , and A have the appropriate
dimension and parameter β is a positive scalar.
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3. SYNTHESIS GUARANTEEING THE
CLOSED-LOOP POLES LOCATION

In this section, the object is to introduce a sufficient
LMI-based condition for SOF controller design consider-
ing pole placement constraints. These constraints define
the location of the poles of the closed-loop system in the
desired region of the complex plane. Further information
about the determination of the desired region has been il-
lustrated in [18]. By applying pole placement constraints,
Theorem 1 shows the sufficient conditions for SOF con-
troller design if the system (1) is LTI with polytopic un-
certainty.

Theorem 1: Consider the open-loop system (1) with
polytopic uncertainty (2). For known matrices α and β

that determine the desired region of the complex plane,
and scalar β , if there exist matrices U , V , and symmetric
matrices Q j > 0, i = 1, 2, . . . , µ satisfying

φii < 0, i = 1,2, ...,µ,

φi j +φ ji < 0, i < j = 1,2, ...,µ, (16)

where

φi j =

(
A11 ∗
A21 −β I⊗

(
U +UT

) ) ,

A11 = ᾱ⊗Q j +He
(
β̄ ⊗

(
AiQ j +BiV F j

pn

))
,

A21 = (β̄ Im1)⊗ (V T BT
i )+ β̄ ⊗

(
C2iQ j−UF j

pn

)
, (17)

F j
pn =


(
C2CT

2

)−1
C2, C2 is fixed and full rank,

C2, C2 is fixed and not full rank,

C2 j, C2 is non-fixed,
(18)

then the SOF controller

K =V U−1, (19)

locates the system poles (1) in the desired region of the
complex plane.

Proof: The closed-loop poles will be in the desired re-
gion of the complex plane if the inequality (8) is guaran-
teed or

ᾱ⊗Q(θ)+He
(
β̄ ⊗AclQ(θ)

)
< 0, (20)

where W = Q(θ), N = µ , and Acl = A(θ)+B(θ)KC2(θ).
By utilizing the basic property of Kronecker product
(AC)⊗ (BD) = (A⊗ B)(C⊗D), the inequality (20) can
also be represented as T +A

T
PT

+PA < 0 if

T̄ = ᾱ⊗Q(θ)+He(β̄⊗(A(θ)Q(θ)+B(θ)V Fpn(θ))),

P̄ = I⊗ (B(θ)V ) ,

Ā =
(
I⊗U−1)(

β̄ ⊗ (C2(θ)Q(θ)−UFpn(θ))
)
,

Ū = I⊗U. (21)

From Lemma 7, if the following inequality is held, T +

A
T

PT
+PA < 0 is also satisfied.(

ζ11 ∗
ζ21 −β

(
(I⊗U)+(I⊗U)T

) )< 0,

ζ11 = ᾱ⊗Q(θ)

+He
(
β̄ ⊗ (A(θ)Q(θ)+B(θ)V Fpn(θ))

)
,

ζ21 = (β I⊗B(θ)V )T + β̄ ⊗
(
C2(θ)Q(θ)−UFpn(θ)

)
.

(22)

Now, by substituting the polytopic uncertainties (2) and

defining Fpn(θ) =
µ∫

j=1
α jF

j
pn and Q(θ) =

µ∫
j=1

α jQ j, the in-

equality (22) can be rewritten as follows:
µ

∑
i=1

α
2
i φii +

µ

∑
i=1

µ

∑
i< j

αiα j (φi j +φ ji)< 0, (23)

where φi j is given in (17). The inequalities (23) will be
satisfied if (16) is feasible. �

Remark 2: In this paper, the proposed techniques use
a simple procedure to convert the inequality (22) into a
set of inequalities. It should be noted that this technique is
also used in [15, 26]. Furthermore, the suggested method
in [34] can also be applied.

However, if the system is LPV and the inequality (8)
is used, Theorem 1 cannot be applied because the Lya-
punov matrix Q should be considered constant [32]. The
sufficient conditions guaranteeing the pole placement con-
straints for an LPV system have been presented in the fol-
lowing corollary.

Corollary 1: Consider the closed-loop LPV system (4).
By assuming known matrices α , β , and scalar β , if there
exist matrices V , Ui ∀i = 1, 2, ..., µ , and symmetric fixed
matrix Q> 0 such that the following LMIs are guaranteed,

ϕii < 0, i = 1,2, ...,µ,

ϕi j +ϕ ji < 0, i < j = 1,2, ...,µ, (24)

where

ϕi j =

(
A11 ∗
A21 −β I⊗

(
Ui +UT

i

) ) ,

A11 = ᾱ⊗Q+He
(
β̄ ⊗

(
AiQ+BiV F j

pn

))
,

A21 =
(
β̄ I
)
⊗
(
V T BT

i

)
+ β̄ ⊗

(
C2iQ−UiF j

pn

)
, (25)

then the gain-scheduled SOF controller

K(θ) =
µ

∑
i=1

V (αiUi)
−1 , (26)

places the closed-loop poles in the desired region of the
complex plane.

Proof: By defining Q(θ) =
µ

∑
j=1

α jQ, U(θ) =
µ

∑
i=1

αiUi,

i = 1, 2, . . . , µ , and the controller (26), this proof will be
similar to the proof of Theorem 1. �
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Remark 3: If α = 0 and β = 1 are selected for The-
orem 1 and Corollary 1, the pole placement problem is
converted into a robust SOF problem. Additionally, for
reducing the conservatism, Corollary 1 proposes an LPV
controller in which the parameters αi should be measured
in real-time. However, if αi cannot be measured or esti-
mated, the gain-scheduled problem should be expressed
as a fixed LTI controller. Therefore, Ui =U , i = 1, 2, ..., µ

should be selected for Corollary 1.
Furthermore, if the output matrix C2 has full row rank,

Lemma 3 shows that the pole placement problem becomes
an LMI-based approach. The following theorem illustrates
that the proposed techniques in Theorem 1 and Corollary
1 can achieve the less, or at least the same conservatism re-
sults in comparison with the method presented by Lemma
3.

Theorem 2: If the conditions of Lemma 3 are held, then
the proposed conditions of Theorem 1 and Corollary 1 will
be satisfied too.

Proof: In this proof, the dependency of system matri-
ces (1) on parameter θ has been ignored for simplicity;
e.g., C2 shows the matrix C2(θ). From (9b), the following
relation can be obtained.

C2WCT
2 +C2WCT

2 = MC2CT
2 +C2CT

2 MT > 0. (27)

From (27), if the inequality (9a) is held, then there exists
a sufficiently small scalar β > 0 such that the following
condition is held too.

ᾱ⊗W +He
(
β̄ ⊗ (AW +BRC2)

)
+
(

β I⊗
(
RC2CT

2

)T
BT
)T

×
(
β I⊗

(
MC2CT

2 +C2CT
2 MT ))−1

×
(

β I⊗
(
RC2 CT

2

)T
BT
)
< 0. (28)

Further, the equality β ⊗C2W = β ⊗MC2 obtains from
the change variable (9b). Therefore, the following equality
can be written.

β I⊗
(
RC2CT

2

)T
BT

= β I⊗
(
RC2CT

2

)T
BT + β̄ ⊗C2W − β̄ ⊗MC2. (29)

Then, the inequality (28) by using (29) can be rewritten as
follows:

ᾱ⊗W +He
(
β̄ ⊗ (AW +BRC2)

)
+
(

β I⊗
(
RC2CT

2

)T
BT + β̄ ⊗C2W − β̄ ⊗MC2

)T

×
(
β I⊗

(
MC2CT

2 +C2CT
2 MT ))−1

×
(

β I⊗
(
RC2CT

2

)T
BT + β̄ ⊗C2W − β̄ ⊗MC2

)
< 0, (30)

or

ᾱ⊗W +He
(

β̄ ⊗
(

AW +BRC2CT
2

(
C2CT

2

)−1
C2

))
+
(

β I⊗
(
RC2CT

2

)T
BT + β̄ ⊗C2W

− β̄ ⊗MC2CT
2

(
C2CT

2

)−1
C2

)T

×
(
β I⊗

(
MC2CT

2 +C2CT
2 MT ))−1

×
(

β I⊗
(
RC2CT

2

)T
BT + β̄ ⊗C2W

− β̄ ⊗MC2CT
2

(
C2CT

2

)−1
C2

)
< 0. (31)

Now, by defining the change variabl V = RC2CT
2 , U =

MC2CT
2 , Q = W , and Fpn =

(
C2CT

2

)−1C2, the inequality
(31) will be

ᾱ⊗Q+He
(
β̄ ⊗ (AQ+BV Fpn)

)
+
(
β I⊗V T BT + β̄ ⊗C2Q− β̄ ⊗UFpn

)T

×
(
β I⊗

(
U +UT ))−1

×
(
β I⊗V T BT + β̄ ⊗C2Q− β̄ ⊗UFpn

)
< 0. (32)

Finally, by applying the schur complement of β I ⊗(
U +UT

)
to (32), the inequality (22) obtains. In addition,

if the inequality (22) is held, Theorem 1 using the con-

troller (19) and symmetric matrices Q =
µ

∑
j=1

α jQ j > 0 is

proved. Furthermore, if inequality (22) is satisfied, Corol-

lary 1 will be proved by using U =
µ

∑
i=1

αiUi, i = 1, 2, ..., µ ,

Q = QT > 0, and the controller (26). �

4. SOF HHH222 CONTROL SYNTHESIS

In this part with the extension of Lemma 4, the LMI
approaches are given for the SOF H2 problem. The fol-
lowing theorem shows the SOF H2 controller conditions
if the system is LTI with polytopic uncertainty.

Theorem 3: Consider the LTI system (1) with the
polytopic uncertainties (2) and matrix F j

pn from (18). For
known scalars ρ , ν , and β , if there exist matrices U , V , Z,
and symmetric matrices Qi > 0, i = 1, 2, . . . , µ such that
the following LMIs are satisfied,

δii < 0, i = 1,2, ...,µ,

δi j +δ ji < 0, i < j = 1,2, ...,µ, (33)

Θii < 0, i = 1,2, ...,µ,

Θi j +Θ ji < 0, i < j = 1,2, ...,µ,

trace(Z)< γ, (34)

or the following inequalities are feasible.

ψii < 0, i = 1,2, ...,µ,
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ψi j +ψ ji < 0, i < j = 1,2, ...,µ, (35)

Ψii < 0, i = 1,2, ...,µ,

Ψi j +Ψ ji < 0, i < j = 1,2, ...,µ,

trace(Z)< γ, (36)

where

δi j =

 He
(

AiQ j +BiV F j
pn

)
∗

ET
i +HT

j V T BT
i −γI

β (BiV )T +C2iQ j−UF j
pn Hi−UH j

∗
∗

−β
(
U +UT

)
 . (37)

Θi j =−

 Q j ∗
C1iQ j +DiV F j

pn Z +He(ρDiV Fpq1) ,

C2iQ j−UF j
pn −(DiV )T −ρFpq1

∗
∗

β
(
U +UT

)
 , (38)

ψii =

 He
(

AiQ j +BiV F j
pn

)
C1iQ j +DiV F j

pn−ρ (BiV Fpq1)
T

β (BiV )T +C2iQ j−UF j
pn

∗
−γI−He(ρDiV Fpq1)

β (DiV )T +ρUFpq1

∗
∗

−β
(
U +UT

)
 ,

(39)

Ψi j =

 −Q j +υHe
(

BiV F j
pn

)
∗

−ET
i −HT

j V T BT
i −Z

β (BiV )T −υUF j
pn −Hi +UH j

∗
∗

−β
(
U +UT

)
 , (40)

Fpq1 =


I, p = q1,(

Ip 0p×(q1−p)
)
, p < q1,(

Iq1

0(q1−p)×q1

)
, p > q1,

(41)

then the system (4) by using K =VU−1 guarantees the H2

performance γ as well as the asymptotic stability.
Proof: By considering W = X−1 and pre- and post-

multiplying (10) by diag(W, I) and its transpose, the fol-
lowing conditions will be obtained.(

He(Acl(θ)Q(θ)) ∗
BT

cl(θ) −γI

)
< 0,(

Q(θ) ∗
Ccl(θ)Q(θ) Z

)
> 0, trace(Z)< γ. (42)

The inequality (42) can also be rewritten as(
He(Acl(θ)Q(θ)) ∗

BT
cl(θ) −γI

)
< 0, (43a)

(
−Q(θ) ∗

−Ccl(θ)Q(θ) −Z

)
< 0, (43b)

trace(Z)< γ. (43c)

Since Lemma 7 will be used in this proof, the inequality
(42) has been shown as smaller than zero. Since Lemma 7
will be used in this proof, the inequality (42) has been con-
verted into the smaller than zero in the inequality (43b).
Now, by defining

T̄1 =

(
He(A(θ)Q(θ)+B(θ)V Fpn(θ)) ∗

ET (θ)+HT (θ)V T BT (θ) −γI

)
,

P̄1 =

(
B(θ)V
0

)
,

Ā1 =U−1 ( C2(θ)Q(θ)−UFpn(θ) H(θ)−UH(θ)
)
,

Ū1 =U,

T̄2 =

(
−Q(θ)

−C1(θ)Q(θ)−D(θ)V Fpn(θ)

∗
−Z−He(ρD(θ)V Fpq1)

)
,

P̄2 =

(
0
D(θ)V

)
,

Ā2 =U−1 ( UFpn(θ)−C2(θ)Q(θ) ρUFpq1

)
,

Ū2 =U, (44)

and by substituting the controller (19) in system (4), the
inequalities T 1 +A1

T
P1

T
+P1A1 < 0 and T 2 +A2

T
P2

T
+

P2A2 < 0 conclude the inequalities (43a) and (43b), re-
spectively. From Lemma 7, if the following conditions are
satisfied, then (43) will also be guaranteed. ζ11 ∗ ∗

ζ21 −γI ∗
ζ31 H(θ)−UH(θ) −β

(
U +UT

)
< 0,

 −Q(θ) ∗ ∗
σ21 σ22 ∗
σ31 σ32 −β

(
U +UT

)
< 0, (45)

where

ζ11 = He(A(θ)Q(θ)+B(θ)V Fpn(θ)) ,

ζ21 = ET (θ)+HT (θ)V T BT (θ),

ζ31 = β (B(θ)V )T +C2(θ)Q(θ)−UFpn(θ),

σ21 =−C1(θ)Q(θ)−D(θ)V Fpn(θ),

σ22 =−Z−He(ρD(θ)V Fpq1) ,

σ31 =−C2(θ)Q(θ)+UFpn(θ),

σ32 = β (D(θ)V )T +ρFpq1 . (46)

In addition, by considering the system matrices (2) and

Fpn(θ) =
µ

∑
j=1

α jF
j

pn, the inequalities (45) can be repre-

sented as follows in which δi j and Θi j have been given
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in (37)-(38).
µ

∑
i=1

α
2
i δii +

µ

∑
i=1

µ

∑
i< j

αiα j (δi j +δ ji)< 0,

µ

∑
i=1

α
2
i Θii +

µ

∑
i=1

µ

∑
i< j

αiα j (Θi j +Θ ji)< 0,

trace(Z)< γ. (47)

The inequalities (47) are guaranteed if (33)-(34) are feasi-
ble. The similar procedure of the proof (33)-(34) should be
repeated for the proof of (35)-(36). Therefore, by choosing

T̄1 =

(
t11 ∗
t21 −γI−He(ρD(θ)V Fpq1)

)
,

t11 = He(A(θ)Q(θ)+B(θ)V Fpn(θ)) ,

t21 =C1(θ)Q(θ)+D(θ)V Fpn(θ)−(ρB(θ)V Fpq1)
T ,

P̄1 =

(
B(θ)V
D(θ)V

)
,

Ā1 =U−1 ( C2(θ)Q(θ)−UFpn(θ) ρUFpq1

)
,

Ū1 =U, (48)

T̄2 =

(
−Q(θ)+υHe(B(θ)V Fpn(θ)) ∗
−ET (θ)+HT (θ)V T BT (θ) −Z

)
,

P̄2 =

(
B(θ)V

0

)
,

Ā2 =U−1 ( −υUFpn(θ) −H(θ)+UH(θ)
)
,

Ū2 =U, (49)

and then by replacing (20), the inequalities (11a) and (11b)
obtain. Finally, the inequalities (35)-(36) are proved by us-
ing Lemma 7 and a similar procedure of the proof (33)-
(34). �

Theorem 3 introduces two methods for the SOF H2 con-
troller design if the system (1) is LTI with polytopic un-
certainty (2). However, if the open-loop system is LPV,
Theorem 3 cannot be applied because the Lyapunov ma-
trix Q should be considered constant [32]. The following
corollary considers the LPV systems.

Corollary 2: Consider the open-loop system (1) as an
LPV system. For known scalars ν , ρ , and β , if there exist
matrices V , Ui, i = 1, 2, ..., µ , and symmetric Lyapunov
matrix Q > 0 such that (33)-(34) are feasible in which δi j

and Θi j are redefined as

δi j =

 He
(

AiQ+BiV F j
pn

)
∗

ET
i +HT

j V T BT
i −γI

β (BiV )T +C2iQ−UiF
j

pn Hi−UiH j

∗
∗

−β
(
Ui +UT

i

)
 , (50)

Θi j =−

 Q ∗
C1iQ+DiV F j

pn Z +He(ρDiV Fpq1)

C2iQ−UiF
j

pn −(DiV )T −ρFpq1

∗
∗

β
(
Ui +UT

i

)
 , (51)

or the inequalities (35)-(36) are satisfied in which ψi j and
Ψi j are represented as

ψi j =

 He
(

AiQ+BiV F j
pn

)
C1iQ+DiV F j

pn−ρ (BiV Fpq1)

β (BiV )T +C2iQ−UiF
j

pn

∗
−γI−He(ρDiV Fpq1)

β (DiV )T +ρUiFpq1

∗
∗

−β
(
Ui +UT

i

)
 ,

(52)

Ψi j =

 −Q+υHe
(

BiV F j
pn

)
∗

−ET
i −HT

j V T BT
i −Z

β (BiV )T −υUiF
j

pn −Hi +UiH j

∗
∗

−β
(
Ui +UT

i

)
 , (53)

then the closed-loop system (4) by using the gain-

scheduled controller K(θ) =
µ

∑
i=1

V (αiUi)
−1 guarantees

both the asymptotical stability and ‖T2‖2 < γ .

Proof: By defining Q =
µ

∑
j=1

α jQ, U =
µ

∑
i=1

αiUi, i = 1, 2,

..., µ and using the SOF controller (26), the proof will be
similar to that of Theorem 3 and is omitted. �

Remark 4: Theorem 3 and Corollary 2 propose two
methods for the SOF H2 controller design. However, by
considering the less value of performance index γ , one of
two methods should be selected by the designer.

The following theorem shows that the suggested H2

techniques in Theorem 3 and Corollary 2 can guarantee
less or at least the same conservative result as Lemma 5
without constraints on the output matrix.

Theorem 4: If the conditions of Lemma 5 are held, then
the proposed conditions of Theorem 3 and Corollary 2 are
held, too.

Proof: Similar to the proof of Theorem 2, the depen-
dency of system matrices on parameter θ is removed for
simplicity. If the inequalities (12) are satisfied, then there
exists a sufficiently small scalar β > 0 such that the fol-
lowing LMIs are feasible.(

He(AW +BRC2) ∗
ET −λ I

)
+β

(
(RC2CT

2 )
T BT 0

)T

× (MC2CT
2 +C2CT

2 MT )−1 ((RC2CT
2 )

T BT 0
)

=

(
He(AW+BRC2) ∗

ET −λ I

)
+
(

β (RC2CT
2 )

T BT 0
)T

× 1
β
(MC2CT

2 +C2CT
2 MT )−1

β
(
(RC2CT

2 )
T BT 0

)
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< 0,

−
(

W ∗
C1W +DRC2 Z

)
+β

(
0
(
RC2CT

2

)T DT
)T

×
(
MC2CT

2 +C2CT
2 MT )−1

(
0
(
RC2CT

2

)T DT
)

=−
(

W ∗
C1W +DRC2 Z

)
+
(

0 β
(
RC2CT

2

)T DT
)T

× 1
β
(MC2CT

2 +C2CT
2 MT )−1 (0 β (RC2CT

2 )
T DT

)
< 0. (54)

In addition, the following equality can be obtained from
the change variable (12c).

β
(
RC2CT

2

)T
BT = β

(
RC2CT

2

)T
BT +C2W −MC2.

(55)

Furthermore, by using (55), the inequality (54) can be
rewritten as follows:(

He(AW +BRC2) ∗
ET −λ I

)
+
(

β
(
RC2CT

2

)T BT +C2W −MC2 0
)T

× 1
β

(
MC2CT

2 +C2CT
2 MT )−1

×
(

β
(
RC2CT

2

)T BT +C2W −MC2 0
)

< 0, (56a)

−
(

W ∗
C1W +DRC2 Z

)
+
(
−C2W +MC2 β

(
RC2CT

2

)T DT
)T

× 1
β

(
MC2CT

2 +C2CT
2 MT )−1

×
(
−C2W +MC2 β

(
RC2CT

2

)T DT
)

< 0, (56b)

or (
He
(

AW +BRC2CT
2

(
C2CT

2

)−1 C2

)
∗

ET −λ I

)
+
(
β (RC2CT

2 )
TBT+C2W−MC2CT

2(C2CT
2 )
−1C2 0

)T

× 1
β

(
MC2CT

2 +C2CT
2 MT )−1

×
(
β (RC2CT

2 )
TBT+C2W−MC2CT

2 (C2CT
2 )
−1C2 0

)
< 0, (57a)

−
(

W ∗
C1W +DRC2CT

2

(
C2CT

2

)−1 C2 Z

)
+
(
−C2W+MC2CT

2(C2CT
2 )
−1C2 β(RC2CT

2 )
T DT

)T

× 1
β

(
MC2CT

2 +C2CT
2 MT )−1

×
(
−C2W+MC2CT

2(C2CT
2 )
−1C2 β(RC2CT

2 )
T DT

)
< 0. (57b)

By defining the change variables V = R C2CT
2 , U =

MC2CT
2 , Q = W , and Fpn = (C2CT

2 )
−1C2, the inequalities

(57) will be(
He(AQ+BV Fpn) ∗

ET −λ I

)
+
(

βV T BT +C2Q−UFpn 0
)T

× 1
β

(
U +UT )−1 (

βV T BT +C2Q−UFpn 0
)

< 0, (58a)

−
(

Q ∗
C1Q+DV Fpn Z

)
+
(
−C2Q+UFpn βV T DT

)T

× 1
β

(
U +UT )−1 ( −C2Q+UFpn βV T DT

)
< 0. (58b)

Finally, by applying the schur complement of βU +βUT

to (58), the inequalities (45) will be obtained in which the
matrix H and scalar ρ are zero. If the inequality (45) is
held, Theorem 3 using the controller (19) and symmet-

ric matrices Q =
µ

∑
j=1

α jQ j is proved. Therefore, the in-

equalities (33)-(34) are concluded from (47). Further, the
inequalities (35)-(36) can be proved similar to the above
procedure from inequalities (13). Furthermore, by consid-

ering U =
µ

∑
i=1

αiUi, i = 1, 2, ..., µ , Q = QT > 0, and the

controller (26), the proof can be done for Corollary 2. �

5. SOF H2/H∞ CONTROL SYNTHESIS WITH
POLE PLACEMENT CONSTRAINTS

In this section, the gain-scheduled SOF H∞ controller
is proposed for the LPV system (1). In addition, the prob-
lem of H2/H∞ with pole placement constraints will be pro-
posed.

Lemma 8: Consider the system (1) as an LTI system
with polytopic uncertainty. For known scalar parameters ρ

and β , if there exist matrices U , V , and Q j =QT
j > 0, i= 1,

2, . . . , µ such that the following conditions are satisfied

λii < 0, i = 1,2, ...,µ,

λi j +λ ji < 0, i < j = 1,2, ...,µ, (59)

where

λi j =


He
(

AiQ j +BiV F j
pn

)
ET

i +HT
j V T BT

i

C∞1iQ j+ρFT
pq2

V TBT
i +D∞iV F j

pn

βV T BT
i +C2iQ j−UF j

pn

∗
−γI

F∞i+D∞iV H j

Hi−UH j
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∗
∗

−γI +He(ρD∞iV Fpq2)
βV T DT

∞i−ρUFpq2

∗
∗
∗

−β
(
U +UT

)
 ,

Fpq2 =


I, p = q,(

Ip 0p×(q−p)
)
, p < q, q = qz +qe,(

Iq

0(p−q)×q

)
, p > q,

(60)

then the closed-loop system (4) by applying K = VU−1

satisfies the H∞ performance γ as well as the asymptotic
stability.

Proof: The condition (59) has been proved in [26].
However, the proof of this lemma has an important dif-
ference from the proof suggested in Theorem 1 of [26].
The matrix T from Theorem 1 of [26] should be changed
as

T =

 He
(

AiQ j +BiV F j
pn

)
ET

i +HT
j V T BT

i

C∞1i Q j +ρ FT
pq2

V T BT
i +D∞iV F j

pn

∗
−γI

(F∞i +D∞i V H j)

∗
∗

−γI +He(ρ D∞i V Fpq2)

 .

(61)

By applying the above definition, the inequalities (60) will
be linear with respect to γ . �

Theorem 5: Consider system (1) as an LPV system. For
known scalar parameters ρ and β , if there exist matrices
V , Ui, i = 1, 2, ..., µ , and symmetric matrix Q > 0 such
that the following LMIs are guaranteed,

ωii < 0, i = 1,2, ...,µ,

ωi j +ω ji < 0, i < j = 1,2, ...,µ, (62)

where

ωi j =


He
(

AiQ+BiV F j
pn

)
ET

i +HT
j V T BT

i

C∞1iQ+ρFT
pq2

V TBT
i +D∞iV F j

pn

βV T BT
i +C2iQ−UiF

j
pn

∗
−γI

F∞i+D∞iV H j

Hi−UiH j

∗
∗

−γI +He(ρD∞iV Fpq2)
βV T DT

∞i−ρUiFpq2

∗
∗
∗

−β
(
Ui +UT

i

)
 ,

(63)

then by defining the gain-scheduled controller K(θ) =
µ

∑
i=1

V (αiUi)
−1, the closed-loop LPV system (4) is asymp-

totically stable with the H∞ performance γ .

Proof: By considering Q =
µ

∑
j=1

α jQ, U =
µ

∑
i=1

αiUi, i = 1,

2, ..., µ , and the controller (28), the proof of this theorem

will be similar to that of Theorem 4 from [26]. Therefore,
it is omitted. �

In the previous sections, it was shown that the robust H2

or H∞ SOF controller can be designed to locate the closed-
loop poles in the desired region of the complex plane. The
following theorem presents the LMI conditions satisfying
the H2 and H∞ performance with the pole location con-
straints.

Theorem 6: Consider the open-loop system (1).
a) If the system (1) is to be LTI with polytopic uncer-

tainty: For known scalar parameters ν , ρ , and β , if there
exist matrices U , V , and symmetric matrices Q j > 0, i= 1,
2, . . . , µ such that the inequalities (16), (33)-(34) or (35)-
(36), and (59) are satisfied simultaneously, the SOF con-
troller (19) satisfies the mixed H2/H∞ performance as well
as the pole placement constraints.

b) If the system (1) is to be LPV: For known scalar pa-
rameters ν , ρ , and β , if there exist matrices U , V , and
symmetric matrix Q > 0 such that the inequalities (24),
(50)-(51) or (52)-(53), and (62) are satisfied simultane-
ously, the gain-scheduled SOF controller (26) guarantees
the mixed H2/H∞ performance as well as the pole place-
ment constraints.

Proof: By using the proposed theorems in the previ-
ous sections and Lemma 8, if all of the inequalities for
the pole placement constraints, H2 problem, and H∞ prob-
lem are satisfied, then the conditions of Theorem 6 will be
concluded. �

Remark 5: By using Corollary 1, Corollary 2, and The-
orem 5, the SOF controller will be LPV. However, if the
scheduling parameters αi is not available, the LPV con-
troller as shown in (26), cannot be implemented. There-
fore, it should be designed one fixed controller by assum-
ing Ki = K, i.e., Ui = U , i = 1, 2, ..., µ . Consequently,
the inaccessibility of the scheduling parameters αi is not
a limiting condition for the proposed techniques. Further,
if the inequality (16), (24), (33)-(36), (59), or (62) is sat-
isfied, then matrix U will be nonsingular. Therefore, the
controller can be calculated. Furthermore, the scalar pa-
rameters ν , ρ , and β are the degrees of freedom. The pro-
posed inequalities by considering these parameters will be
nonlinear. Therefore, they should be defined before solv-
ing the inequalities. These parameters can also be found
in the previous SOF controller design methods, e.g. the
method proposed in [26]. In the following remark is pro-
posed an optimal algorithm to obtain the scalar parame-
ters.

Remark 6: In the proposed methods, the scalar pa-
rameters such as ν , ρ , and β are the degrees of free-
dom. However, the matrix inequalities will be nonlinear if
these parameters are unknown. Therefore, before solving
the proposed inequalities, these scalar variables should be
determined using an optimization algorithm such as Ge-
netic Algorithm (GA). In order to reduce conservatism,
the flowchart in Fig. 1 suggests an optimal algorithm to



250 Hadi Behrouz, Iman Mohammadzaman, and Ali Mohammadi

Fig. 1. The proposed algorithm for calculating the scalar
parameters.

define the scalar parameters. In Fig. 1, the cost function
J, the desired cost Jdesire, and the optimization algorithm
should be defined by the designer. For example, the feasi-
bility problem and the H2 performance γ are good choices
for the cost function. As shown in Fig. 1, the proposed
algorithm can determine the scalar parameters such that
the cost function J is minimized. However, some conser-
vatism issues might arise because solving the LMIs and
determining the scalar parameters are not synchronous.

6. SIMULATION RESULTS

In this section, the performance and effectiveness of the
proposed methods are compared with those suggested in
the recent studies based on two examples. In addition, the
scalar parameters ν , ρ , and β obtain by the algorithm pro-
posed in Remark 6. Further, the Sedumi solver of Yalmip
software is used to solve LMIs.

Example 1: This example shows the proposed algo-
rithms in Theorem 1 and Corollary 1 are more general than
the previous works. Consider the system (1) with w(t) = 0
and two vertices as follows:

A1 =

 −0.9896 17.41 96.15
0.2648 −0.8512 −11.39

0 0 −30

 ,

B1 =

 −97.78
0
3

 ,
A2 =

 −1.702 50.72 263.5
0.2201 −1.418 −31.99

0 0 −30

 ,
B2 =

 −85.09
0
3

 ,
C21 =

[
1 0 0
0 1 0

]
, C22 =

[
1 0 0
0 0 0

]
. (64)

The matrices A and B have been given from [26]. Fur-
ther, the output matrix C2 has been chosen such that C22 is
not full rank. It means that the second sensor has failed to
measure data. By considering system (64) as an LTI sys-
tem with polytopic uncertainty and by assuming H = 0,
the robust SOF has been obtained from Theorem 1 as fol-
lows:

K =
[

0.0665 0.629
]
, (65)

where α = 0 and β = 1 have been selected to satisfy
the robust stability. In addition, by using Theorem 8 of
[15], the static controller will be K =

[
0.1126 0.3887

]
in

which the scalar parameter τ has been selected 0.1. Now,
if either the system (64) is LPV or the pole placement con-
straint Real (Acl) < −1 is considered, the SOF controller
can be designed by using Theorem 1 and Corollary 1. Ta-
ble 1 shows the SOF results with β = 0.0075. Further-
more, if the parameters αi are not available in the LPV
model, the gain-scheduled SOF cannot be implemented.
However, by using Remark 3, one SOF controller can be
designed as shown in Table 1. Based on the results ob-
tained in this example, the following points can be con-
cluded:

Applicability: For system (64), the proposed tech-
niques in [12] and [16] are not applicable because C22 is
not invertible. Also, if H 6= 0 or system is LPV, the method
presented in [15] cannot be used.

Performance: The performance is defined as the time-
domain characteristics in this example. In [12, 15, 16],
the robust stability is assumed. However, Theorem 1 and
Corollary 1 can satisfy the pole placement constraints in
addition to the robust stability. Furthermore, in order to

Table 1. The SOF results.

Theorem 1 Corollary 1

K K =
µ

∑
i=1

αiKi K1 = K2 = K3

ᾱ = 0, β̄ = 1 or
Real(Acl)< 0

[0.067 0.63] K1 = [0.05 0.59]
K2 = [0.06 0.60]

[0.06 0.59]

ᾱ = 2, β̄ = 1 or
Real(Acl)<−1

[0.09 0.80] K1 = [0.06 1.00]
K2 = [0.09 1.04]

[0.09 0.82]
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Table 2. The results of robust SOF H2 controller while system (66) is LTI with polytopic uncertainty.

Theorem 3
using (33)-(34)

Theorem 3
using (35)-(36)

Theorem 3 of [27] Theorem 5 of
[16] without Ii j

Theorem 5 of
[16] with Ii j

Scalar
parameters

β = 0.0468,
ρ = 0.4648

β = 0.3721,
ρ = 10−4, ν = 1

β1 = .25, β2 = .05
β3 = 1, ρ = 108

H = 0 γ 13.24 7.11 9.97 14.38 8.03
K −1.88 −3.81 −4.14 −2.75 −2.93

H = .1 γ 12.61 6.04 Infeasible Not applicable Not applicable

Fig. 2. The control input of the closed-loop system.

compare the controller obtained from Theorem 1 consid-
ering constraint Real (Acl) < −1 with the controller ob-
tained from [15], the closed-loop system has been sim-
ulated with initial conditions α1 = 1, α2 = 0, and x(0) =
[2.5 5 3]. The control input u(t) in Fig. 2 shows that apply-
ing the pole placement constraint results in a faster closed-
loop response and improves the time-domain characteris-
tics.

Example 2: In this example, the robust H2 and H∞ con-
troller with pole placement constraints are designed and
compared with recent studies. Consider the following sys-
tem with two vertices [16]:

A1 =

[
1 2
0 −4

]
, A2 =

[
2 −1
0 −5

]
,

B1 =

[
1
0

]
, B2 =

[
1
1

]
, E1 =

[
2
1

]
, E2 =

[
1
1

]
,

D1 = 1, D2 = 2, C11 =
[

1 2
]
, C12 =

[
1 1

]
,

C∞11 =
[

1 2
]
, C∞12 =

[
1 1

]
,

D∞1 = 1, D∞2 = 2, C21 =
[

1 0
]
, C22 =

[
2 1

]
,

(66)

where the other system matrices are zero. By using the
proposed methods in Theorem 3 and Theorem 6, the con-
troller results have been shown in Tables 2-3 for LTI sys-
tems with polytopic uncertainty. Furthermore, the system
matrix H 6= 0 is also considered for more comparison with
recent studies. Based on the results obtained in this exam-
ple, the following points can be concluded:

Performance: The higher performance in this example
is defined as the lower value of γ in H2 and H∞ control
problems. Table 2 shows that the proposed SOF H2 algo-
rithms in Theorem 3 guarantee better performance com-
pared with the methods suggested [27] and [16] since the
value of γ for the proposed methods is lower. Furthermore,
Theorem 6 achieves the performance level γ = 8.25 in the
SOF H2/H∞ controllers while Theorem 3 and Theorem 4
in [27] obtain the performance level γ = 13.57.

Applicability: The results in Tables 2-3 show that if the
matrix H is not zero, the methods presented in [27] and
[16] are not applicable while Theorem 6 in the proposed
method can be applied. Besides, if either pole placement
constraint is considered in the design procedure or sys-
tem is LPV, the methods suggested in [27] and [16] can-
not be used while the proposed methods can be applied
in these cases. In the pole placement problem and the
H2/H∞ inequalities, if the scalar parameter β is selected
different, the performance will be better. Therefore, this
parameter has been defined as βtd in the pole placement
constraints as shown in Tables 4-6. In Fig. 3, consider-
ing the initial conditions α1 = 1, α2 = 0, x(0) = [2 −40],
and w(t) = 0.1sin(20πt), the closed-loop system using
the proposed SOF H2/H

∞
controller in Table 4, i.e. K =

−4.41, has been compared with the controller obtained
from [27] in Table 3, i.e., K =−3.13. Fig. 3 shows that the
proposed method yields better time-domain performance
for the closed-loop system when the pole placement con-
straint Real (Acl)< −1 is also considered.

Table 3. The results of robust SOF H2/H∞ controller
where system (66) is LTI with polytopic uncer-
tainty.

Theorem 6:
Using (33)-(34)

in H2 design

Theorem 6:
Using (35)-(36)

in H2 design

Theorems 3-4
of [27]

Scalar
parameters

β = 0.037,
ρ = 0.333

β = 0.345,
ρ = 0.057,

ν = 1

β1 = 0.25,
β2 = 0.0002,

β3 = 1,
ρ = 108

H = 0 γ 13.45 8.25 13.57
K −20.7 −4.05 −3.13

H = .1 γ 12.82 7.19 Infeasible
K −2.09 −4.58
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Fig. 3. The input signal u(t), the output signal y(t) and the
controlled output signal z(t).

Table 4. SOF H2/H
∞

control synthesis with pole location
constraint Real (Acl) < −1 while system (66) is
LTI with polytopic uncertainty.

H2 problem from
(33)-(34)

H2 problem from
(35)-(36)

Scalar parameters
β = 0.0585,
ρ = 0.3426,
βtd = 0.0041

β = 0.3176,
ρ = 0.0001,
βtd = 0.2143

ν = 1

H = 0 γ 16.31 12.47
K −4.0 −4.41

H = 0.1 γ 16.25 9.55
K −4.02 −4.55

Table 5. Gain-scheduled SOF H2/H
∞

control synthesis
with pole location constraint Real (Acl)< −1.

H2 problem from
(50)-(51)

H2 problem from
(52)-(53)

Scalar parameters
β = 0.0760,
ρ = 0.3400,
βtd = 0.0787

β = 0.2597,
ρ = 0.0001,

βtd = 0.1876,
ν = 1

H = 0
γ 16.23 11.64

K1 −4.53 −5.34
K2 −4.01 −4.65

H = 0.1
γ 15.96 9.00

K1 −3.96 −5.10
K2 −4.00 −4.55

Table 6. One Fixed SOF H2/H
∞

control synthesis with
pole location constraint Real (Acl) < −1 while
system (66) is LPV system and Ki = K, ∀i = 1,
. . . , µ .

H2 problem from
(50)-(51)

H2 problem from
(52)-(53)

Scalar parameters
β = 0.0650,
ρ = 0.3632,
βtd = 0.0044

β = 0.2456,
ρ = 0.0001,

βtd = 0.1893,
ν = 1

H = 0 γ 16.35 15.35
K −4.00 −5.58

H = 0.1 γ 16.30 10.34
K −4.02 −5.73

7. CONCLUSION

The SOF H2/H∞ controller design with pole placement
constraints for both linear systems with polytopic uncer-
tainty and LPV systems has been proposed in this paper.
The LMI-based approaches use an optimal line search to
obtain some scalar variables. In addition, the H2 control
problem has been proposed by two different methods. It
has been shown that the gain-scheduled or the fixed SOF
can be designed for an LPV system. However, the gain-
scheduled ones can result in better performance. Further-
more, the proposed methods have been applicable for gen-
eral linear systems with less conservatism without any
constraints on the output matrix. Finally, by two exam-
ples, the performance and the effectiveness of the pro-
posed methods have been compared with recent related
studies.
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