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Error Improvement in Visual Odometry Using Super-resolution
Wonyeong Jeong* ■ , Jiyoun Moon, and Beomhee Lee

Abstract: Visual odometry (VO), a method that estimates odometry using visual sensors, is hard to operate suc-
cessfully with the low-resolution and noisy image sequences. To address this problem, a super-resolution technique
is applied to input data before performing VO. Since most conventional super-resolution literature mainly deals
with the resolution increment, we present a novel deep neural super-resolution network, which can remove noises
as well. The execution time is also taken into account by adjusting the number of CNN layers for a real-time VO.
By applying the proposed super-resolution approach, the resolution increases and noises disappear with a suitable
speed, hence VO can be performed successfully. Experimental results show that the proposed method improves the
VO performance compared with the conventional VO which uses low-resolution and noisy image sequences.
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1. INTRODUCTION

In robotics, robust odometry estimation is essential for
the robot autonomy. To find the odometry of a robot, vari-
ous algorithms were introduced by combining one or sev-
eral sensor information. Among various sensors, visual
ones are being actively used because they can provide rich
information about the environment at the low-cost. The
technique for estimating odometry using only RGB cam-
eras is called visual odometry (VO); it is called monocular
VO if only one camera is used. VO has been studied ac-
tively in robotics and computer vision fields, and it has
begun to be utilized to various application, such as un-
manned aerial vehicle control, 3D modeling, augmented
reality, and autonomous driving cars.

Since VO utilizes only cameras, the performance of the
camera and the quality of images greatly affect the re-
sult. Although plenty of image sequence datasets for VO
research exist online, most of them are acquired by ex-
pensive high-resolution (HR) and low-noise cameras. In
order to adopt VO in various applications, it is neces-
sary to maintain their performance even if low-resolution
(LR) and noisy cameras, which are often equipped in mo-
bile platforms, are used. However, when using an LR and
noisy image sequence, the performance of VO is remark-
ably reduced as displayed in Fig. 1. In VO result of using
LR and noisy images, tracking procedure is lost while a
camera moves, which leads to a catastrophic failure.

In this paper, we exploit a super-resolution (SR) tech-

Fig. 1. Comparison of results of VO using LR and noisy
with HR and noise-free image sequences. Red
lines in right images denote paths of cameras.

nique to convert an LR and noisy image into an HR and
low-noise image for achieving a successful VO. Among
various SR approaches, the deep learning-based one,
which has recently shown better performance, is adopted.
Conventional SR structures are challenging to apply this
paper because of two main problems. The first problem
is the excessive execution time due to the too deep net-
work. The second problem arises from the poor noise re-
moval performance that is owing to their network struc-
ture. Therefore, we propose a new deep neural SR archi-
tecture that can achieve the low-error and real-time VO.
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Experimental results show that the performance of VO us-
ing SR image sequences is better than that of the conven-
tional methods using LR and noisy image sequences.

The rest of this paper is organized as follows: Section 2
looks at related work of VO and SR. Section 3 describes
the process of finding a resolution suitable for VO through
experiments and the proposed network structure of SR.
Section 4 summarizes the experimental results and their
analysis. Finally, Section 5 concludes this paper and dis-
cusses the future work.

2. RELATED WORK

2.1. Visual odometry
Estimating odometry using a visual sensor had been

studied previously, but the word visual odometry was only
coined by Nister et al. [1] in 2004. VO can be divided into
the feature-based method and the direct method. Feature-
based methods utilize the feature extraction and the fea-
ture matching, which were the main stream in the early
VO research. Initially, feature locations and camera poses
of all frames were estimated by filters [2–4]. These ap-
proaches caused too much computation while little new
information was obtained, since consecutive frames were
frequently captured in the immediate vicinity. To allevi-
ate this problem, PTAM [5] estimated poses of the chosen
frames, namely keyframes. Moreover, it dealt with track-
ing and mapping in parallel threads, and enabled real-time
VO successfully in small environments. Today, the most
representative feature-based literature is probably ORB-
SLAM [6, 7]. The feature used in [7] was ORB, which
is based on FAST, and it can be extracted and matched
faster than those of using SIFT or SURF. [7] exploited the
same feature in all SLAM tasks of its framework - track-
ing, mapping, relocalization and loop-closing, which re-
sulted in more efficient, simple, and reliable system than
the conventional methods.

The feature-based VO is robust to various problems
caused in the image acquisition process, such as an au-
tomatic exposure change, a non-linear response function,
lens attenuation and even a rolling shutter effect. How-
ever, in low-texture areas, such as simple corridors or
walls, feature extraction is difficult to achieve and this
leads to the failure of estimating odometry.

In direct approaches, pixel intensities are used directly
rather than features. Direct methods warp pixels from one
image to another, and then obtain a transformation be-
tween images that minimizes the sum of intensity dif-
ferences. DTAM [9] and REMODE [10] optimized the
whole pixels to perform VO densely, thus they were hard
to achieve the real-time execution except powerful GPU
devices. To reduce this computational burden, Schops et
al. [11] proposed a semi-dense manner which used pixels
with high intensity gradient. Based on [11], Engel et al.
[12] proposed LSD-SLAM that performed visual SLAM

in real-time using single CPU in a large scale environ-
ment. Furthermore, Engel et al. [13] proposed a direct
sparse odometry (DSO), the state-of-the-art direct VO lit-
erature, using more sparse pixels than LSD-SLAM. DSO
improved the performance of VO by estimating the exact
pixel intensity value considering the exposure time, the
response functions and the lens attenuation of the image.

The direct VO, since intensities of the pixel are di-
rectly used, is performed based on more information than
feature-based methods, hence the algorithm can be per-
formed well in the low-texture region. However, because
it uses low-level information, it is vulnerable to distortions
which easily arise from the image acquisition process.

2.2. Super-resolution

SR is the one of image restoration techniques that gen-
erates an HR image from an LR image. Initially, SR
was done by simple interpolation using sampling theo-
ries [14, 15], however these approaches were difficult to
predict the detailed parts of an image. As an improve-
ment, methods of learning a function that matches a pair of
LR image and HR image were presented. These methods
include neighbor embedding [16, 17] and sparse coding
[18, 19]. Similarly, learning the transformation of patches
using internal similarity [20, 21] were proposed.

Recently, SR research has made great progress in per-
formance by employment of deep learning techniques.
Dong et al. [22, 23] proposed the first work to intro-
duce the idea of applying a convolutional neural network
(CNN) [24] to SR. Their method, named SRCNN, con-
ducted an SR in an end-to-end manner utilizing a CNN
network which consisted of three convolutional layers.
However, the shallow network converged slowly and had
not been able to learn many nonlinearities. VDSR [25,26]
claimed that the deeper network makes the better image
quality and used twenty convolutional layers to improve
the SR performance. Also, VDSR added the input image
to the output of the last layer to train the residual only,
which made the convergence time shortened. Around the
same time, He et al. [27] proposed ResNet that performed
well in the classification and the detection, which are other
computer vision fields, by learning the residual in the mid-
dle of the network. Using ResNet structure and a gener-
ative adversarial network, Ledig et al. [28] proposed SR-
ResNet. However, ResNet was not an optimal structure
for SR since it was designed for different purposes. There-
fore, EDSR [29] removed unnecessary modules in ResNet
structure, which led to advancement in performance.

Although SR algorithms mainly focus on increasing the
resolution, removing noise is also considered in the pro-
posed SR network. Furthermore, the time elapsed for pass-
ing deep network is taken into account since we intend to
combine SR with VO.
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3. SR-VO

In this paper, we have improved the direct VO, whose
performance is more sensitive to the image quality than
that of the feature-based VO. All VO used in experiments
for this paper is DSO, the state-of-the-art algorithm among
direct algorithms.

3.1. DSO performance analysis according to chang-
ing resolution

The performance of VO highly depends on the image reso-
lution. Apparently, the higher the resolution, the better the
VO performance, but the number of addressable frames
per second (fps) also decreases. Therefore, it is necessary
to find the optimal resolution with a smaller error while
guaranteeing an appropriate fps. To find this resolution,
each sequence of the TUM dataset [30] was tested five
times with various resolutions for analyzing time and er-
ror. The error metric utilized is root mean square error
(RMSE). Since the scale and the direction are changed
every time VO is executed, the estimated and the ground
truth poses must be adjusted before calculating RMSE.
Let poses be pi = {xi, yi, zi} for i = 1 · · ·n at timestep i.
Estimated and the ground truth poses are then represented
by estpi and gtpi, respectively. The direction (rotation), the
origin, and the relative scale are factors that have to be
aligned before computing RMSE. First, the rotation ma-
trix is calculated by using singular value decomposition
as follows:

R =UV ′, (1)

where U and V are orthogonal matrices composed of sin-
gular vectors of the cross-covariance of {estpi} and {gtpi}.
Next, to identify the origins, new poses are set as follows:

estp′
i = (estpi −E[estX ])R,

gtp′
i =

gt pi −E[gtX ], (2)

where E[X ] is the expectation of X . The relative scale
s = sgt/sest , the last alignment, is recovered by following
equation:

s =
∑n

i=1 ∥gtpi∥
∑n

i=1 ∥estpi∥
. (3)

Finally, RMSE is calculated as follows:

RMSE =

√
1
n

n

∑
i=1

∥estp′
i · s−gt p′

i∥
2. (4)

Obtained by above manner, RMSEs of various resolutions
and sequences are displayed in Fig. 2.

From the figure, the lower the resolution, the higher
the RMSE value, as expected. Note that RMSE of back
sequences (after 17) are smaller than those of front se-
quences. This is because the configuration of the TUM
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Fig. 2. RMSE of various resolutions of all sequences. One
grid means the average of five repeated experi-
ments.

Fig. 3. RMSE (left) and elapsed time per frame (right)
variation with resolution changes. Red dot denotes
chosen suitable resolution for VO.

dataset. Previous sequences are typically captured in in-
door environments with small scale rooms and corridors,
and sequences after 17 are either large scale indoor (with
high ceilings and lobby) or outdoor environments. Also,
the first part of the sequence is a complex path, while the
second part is a simple path that makes one large loop.
This difference can be attributed to the difference in the
RMSE. The execution time and RMSE changes with the
resolution are shown in Fig. 3. The ratio of the width to
the height of the image is 4:3 and x-axis in Fig. 3 denotes
width of a image. From the left graph in Fig. 3, RMSE
value decreases drastically at low resolution but gradually
converges and eventually makes no big difference after
704× 528. In the case of time, the average time of con-
ducting VO increases as the resolution increases. There-
fore, using 704×528 resolution, we can confirm that VO
can be performed at 23.67fps with low error. Hence, in the
remainder of this paper, we experimented with SR learned
to 704×528.

3.2. Super-resolution network
Among various SR approaches, some algorithms can

increase the input resolution to arbitrary values, but others
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Fig. 4. Comparison of super-resolution networks of
VDSR, SRCNN, and the proposed

can acquire only integer multiples of the input resolution.
The former methods upsample to the desired resolution by
the bicubic interpolation and then pass CNN networks to
get an SR image [22, 25]. In the latter methods, upsam-
pling processes are in the middle of the network hence
they cannot obtain the arbitrary resolution [28, 29]. In
this paper, we need to perform SR with 704×528 resolu-
tion from arbitrary LR image. Therefore, methods which
cannot acquire arbitrary output resolutions like EDSR and
SRResNet are not appropriate for our algorithm, thus SR-
CNN and VDSR are only applied. Network structures of
SRCNN, VDSR and the proposed are depicted in Fig. 4.

As shown in figure, SRCNN and VDSR have three and
twenty convolutional layers, respectively. We first ana-
lyze the noise removing property of two conventional net-
works. SRCNN has too shallow CNN layers to get rid
of noises. In VDSR, the input image is added to the im-

age that passed the last convolutional layer. This enables
the network to learn only high-frequency parts hence im-
proves the performance and accelerates the convergence.
However, since the input image is added at the end, noises
contained in the input are not totally eliminated.

Computation times are concerned with the number of
operations in SR networks. Assuming equal input sizes,
operation numbers of convolutional layers are propor-
tional to fi × k× fo, where fi, fo, k are input and output
feature numbers and the kernel size, respectively. Calcu-
lating the number of operations of SR networks in this
manner, SRCNN and VDSR are operated with about 8.1k
and 660k operations, respectively; these numbers are re-
flected in the runtime of algorithms. Comparing the exe-
cution times of the two algorithms, the SRCNN operates
at 144 fps with an average of 6.92ms per frame and the
VDSR operates at 19.5 fps with an average of 51.4ms per
frame. The execution time of VDSR is slower than that of
DSO, which means that real-time VO with SR is unavail-
able. On the other hand, SRCNN is faster than enough so,
more convolutional layers could be added.

As a result, we design SR using nine convolutional lay-
ers, which operates with about 260k operations. The pro-
posed network adds a convolutional layer at the beginning
and the end to prevent direct propagation of noise from the
input image to the output. We constructed the network us-
ing residual blocks, and constant scaling is applied to each
residual block. The equation presents the residual blocks
as follows:

Res(x) = c(W1σ(W1x)+x), (5)

where x and Res(x) are the input and the output of the
residual block, c is a scaling constant, σ and W1 denote the
ReLU function and a convolutional layer with 3×3 kernel
sizes and 64 filters, respectively. The total equations of the
proposed network are as follows:

y =W2(W1Res3(W1x)+W1x), (6)

where W2 denotes a convolutional layer with 3×3 kernel
size and 1 filter.

4. EXPERIMENTS

4.1. Super-resolution procedure
4.1.1 Training SR

In this paper, we used the monocular visual odometry
dataset [30] provided by Technical University of Munich.
This dataset consists of 50 sequences, including indoor
and outdoor environment and the number of total images
is 190,576. To perform SR, ten sequences (5, 10, ..., 50)
in multiples of 5 were set as the test data, and the re-
maining 40 sequences were used as the training data. The
number of the training images is 154,256 and that of the
test is 36,320. The original resolution of this dataset is
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1280×1024, so 704×528, which is the ground truth res-
olution of SR, is obtained by using bicubic downsampling.
In training data, the resolution of the original image was
downsampled to 320×240 and 192×144. Therefore, the
scale of SR is 2.2 and 3.6563, respectively. Furthermore,
to make noisy images, salt and pepper noises are added on
downsampled images with 0.4% of whole pixels.

Training details are as follows: The image patch used
in the training was a 44×44 grayscale image. The Adam
optimizer the L2 function were used as the optimizer and
the Loss function, respectively. The batch sizes were 32,
4, and 8 for SRCNN, VDSR, and the proposed method,
respectively, depending on the memory capacity of the
graphics card. The initial learning rate was set to 10−4,
and it was divided by 10 after every 10 epochs. All meth-
ods were trained until convergence. The epochs required
for learning were SRCNN of 60, VDSR and the proposed
network of 40. We configured methods as python language
and utilized NVIDIA GTX 1080 Ti GPU.

4.1.2 Testing SR
We tested the proposed networks on the part of the

TUM monocular dataset. We compared our method with
bicubic, SRCNN, and VDSR. For SRCNN and VDSR,
we utilized our own learning outcomes. Table 1 shows a
quantitative result that presents average of peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) and com-
putation time of SR methods.

The proposed method shows the best performance in
both PSNR and SSIM, followed by VDSR, SRCNN, and
bicubic in order. In terms of time, the average elapsed
time of VDSR per image is the longest, 51.36ms, which
is slower than processing speed of DSO. Bicubic and SR-
CNN was maintained at over 100fps, and the proposed
method showed a speed at about 37fps. The bicubic
method is faster than other methods since it simply inter-
polates neighboring pixels to increase the resolution un-
like using a deep neural network. Results of CNN-based
SR methods are shown in accordance with the operation
numbers of networks as analyzed in section 3.2. For qual-
itative comparison, one SR result is shown in Fig. 5. We
zoomed in and compared one car included in images.

As seen left images in the table of Fig. 5, results of
learning-based methods show more keen boundary than
that of the bicubic interpolation. In noise removing, the
noises of the bicubic result are not eliminated and rather
the size is expanded, since it is an interpolation method.
Also, noises are not completely removed in the SRCNN
and VDSR results, whereas the proposed method elimi-
nates almost all noises.

In right images in the table of Fig. 5, which are results
of SRs using 192× 144 images. The result of the bicu-
bic shows much larger noises than that of the 320× 240.
Results of learning-based models are seemed sharp car
contours, but noises remain in outcomes of SRCNN and

Table 1. Average PSNR, SSIM and time results of Super-
resolutions.

PSNR SSIM time (ms)
bicubic 30.00 0.856 0.646

320×240 SRCNN 32.62 0.892 5.633
images VDSR 32.94 0.899 51.14

proposed 34.41 0.913 27.18
bicubic 27.95 0.808 0.463

192×144 SRCNN 29.46 0.832 8.208
images VDSR 29.61. 0.844 51.58

proposed 30.93 0.856 26.26

methods

Bicubic

SRCNN

VDSR

proposed

(30.00 / 0.856)

(32.62 / 0.892)

(32.94 / 0.899)

(25.81 / 0.808)

(29.46 / 0.832)

(29.61 / 0.844)

Ground truth
(PSNR / SSIM)

(34.41 / 0.913) (30.93 / 0.856)

Fig. 5. Super-resolution outcomes of bicubic, SRCNN,
VDSR and the proposed; A left top image is the
ground truth image and the rest images are zoomed
parts of the red box.

VDSR.
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Table 2. Results of the RMSE and the fps processed by DSO and SR.

seq. 5 seq. 10 seq. 15 seq. 20 seq. 25 seq. 30 seq. 35 seq. 40 seq. 45 seq. 50 avg.
LR image RMSE 1.214 0.427 1.934 0.343 0.459 0.491 0.392 0.191 0.134 0.199 0.578

(320×240) fps(Hz) 40.16 40.92 27.27 30.08 30.70 27.60 33.70 33.77 30.34 28.51 32.31
bicubic + RMSE 1.209 0.505 1.894 0.347 0.485 0.509 0.494 0.195 0.133 0.196 0.597
320×240 fps(Hz) 34.75 33.10 23.89 26.46 26.02 24.27 30.54 26.77 25.46 23.94 28.61
SRCNN + RMSE 1.200 0.487 1.746 0.341 0.441 0.491 0.413 0.195 0.128 0.198 0.564
320×240 fps(Hz) 37.82 36.12 26.85 29.87 29.52 27.78 33.54 29.00 28.92 26.43 30.59
VDSR + RMSE 1.184 0.224 1.503 0.343 0.388 0.502 0.414 0.192 0.138 0.196 0.509

320×240 fps(Hz) 13.81 13.58 11.88 12.34 12.23 11.90 13.15 12.35 12.18 11.90 13.06
proposed + RMSE 0.803 0.152 1.658 0.118 0.109 0.250 0.129 0.191 0.117 0.136 0.366
320×240 fps(Hz) 21.26 20.63 16.63 17.84 17.64 16.82 19.60 17.98 17.38 16.66 18.24
LR image RMSE 1.105 1.047 1.874 0.343 0.604 0.508 0.456 0.193 0.156 0.185 0.647

(192×144) fps(Hz) 44.81 44.37 29.21 33.08 36.45 32.33 43.14 36.97 38.94 39.10 37.84
bicubic + RMSE 1.125 3.885 1.953 0.347 0.598 0.499 0.506 0.197 0.148 0.178 0.943
192×144 fps(Hz) 35.54 33.90 25.42 27.44 27.42 25.20 30.15 27.10 27.37 26.60 27.52
SRCNN + RMSE 1.070 4.005 1.927 0.343 0.607 0.490 0.514 0.193 0.149 0.181 0.948
192×144 fps(Hz) 38.62 36.85 28.13 30.15 30.51 28.46 33.96 30.12 30.99 29.21 31.70
VDSR + RMSE 1.209 0.633 1.976 0.345 0.472 0.515 0.493 0.194 0.146 0.200 0.618

192×144 fps(Hz) 14.32 14.03 12.45 12.86 12.98 12.59 13.29 12.58 12.80 12.61 12.53
proposed + RMSE 1.172 0.604 1.586 0.333 0.550 0.336 0.379 0.187 0.137 0.191 0.548
192×144 fps(Hz) 21.55 20.94 17.36 18.28 18.27 17.26 19.44 18.13 18.25 17.90 18.74

4.2. VO with SR images
Experiments were carried out for two resolutions of

320×240 and 192×144 and for four SR methods - bicu-
bic, SRCNN, VDSR, and the proposed - compared with
VO using LR images. RMSE and the frequency varia-
tions of each method are shown in Table 2. Note that the
bicubic method produces worse result than the LR image.
This is a problem with the interpolation method. The bicu-
bic method interpolates pixel intensities when conducting
upsampling, which results in the effect of smoothing the
image. In DSO, the optimization is performed using pix-
els with high intensity gradient. Hence, when the image
is smoothed, the gradient becomes low and the number of
available pixels is reduced. Therefore, bicubic interpola-
tion can be seen as inappropriate when performing VO.

On the other hand, since learning-based SRs restore
the detailed part of the image, they show better VO per-
formance. Overall, the results of the proposed method
showed lowest RMSE, but other methods were better in
a few sequences. This is because uncertainties happened
in the process of choosing pixels utilized in optimization.
If the number of pixels above the gradient threshold ex-
ceeds the designated maximum number, arbitrary pixels
are chosen thus randomness occur.

In the frequency aspect, the bicubic and SRCNN are
faster than even using HR images directly. This is because
pixels used in DSO is less when using the bicubic and SR-
CNN SR images, resulting in optimization process short-
ened. The proposed method showed about 18fps in both
resolutions which is five fps lower than frequency using

HR images. As a result, the result of the proposed method
is the best performance in RMSE and is suitable for real-
time VO. The qualitative VO result is shown in Fig. 6. Out
of the ten test sequences, the ninth sequence (sequence 45)
is presented.

The sequence 45 was collected from an outside envi-
ronment, whose path consists of turning around a build-
ing, then returning to the starting point. The result of us-
ing HR and noise-free image sequence showed that both
the path and the reconstruction are clean. On the other
hand, using LR and noisy image sequence caused tracking
lost as shown in Fig. 6(b). The result utilizing the bicubic
method suffered from scale problem and eventually lost
tracking. In SRCNN result, the scale was wrongly esti-
mated when going out to the lobby, so that odometry was
totally misjudged. As shown in Fig. 6(e), the result of us-
ing the VDSR showed similar to Fig. 6(a), but a little skew
of the path existed and failed to return to the same loca-
tion. Finally, the result of the proposed method showed
quite similar output with that of using HR and noise-free
images, though reconstruction points spread widely.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to improve the
low-performance of VO when using LR and noisy image
sequences. We designed an SR network that deals with
noises and execution time as well as resolution increment
differently from other SR techniques. The proposed SR
makes the image quality increase, which leads to a suc-
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(a) HR & noise-free image
( )

(b) LR & noisy image
( )

(c) Bicubic + (d) SRCNN + 

(e) VDSR + (f) Proposed method + 

Fig. 6. DSO results of using HR images, LR images, and
SR images which are upsampled by bicubic, SR-
CNN, VDSR, and the proposed method.

cessful VO result. Experimental results show that the per-
formance of the proposed method is better than that of
conventional VO. This work can be utilized to real ap-
plications, such as augmented reality applications and the
autonomous driving since VO performs well even when a
low-cost camera is used.
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