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Double Closed-loop Integral Terminal Sliding Mode for a Class of Under-
actuated Systems Based on Sliding Mode Observer
Wei Liu, Si-yi Chen*, and Hui-xian Huang

Abstract: Aiming to solve the tracking control problem of a class of second-order underactuated mechanical sys-
tems with unknown model parts, external disturbances and noise disturbances, a double closed-loop layered integral
terminal sliding mode control method based on sliding mode observer is proposed. At the outset, the Lagrange
model of the system is transformed into an affine model, and a sliding mode observer is designed according to the
system structure. Neatly, the outer loop controller is designed using the observer’s estimated state, and the output
value of the outer loop controller is filtered with a low pass filter. Then the inner loop controller is designed by using
hierarchical sliding mode control method. On a premise of ensuring tracking performance, the control method can
maximally improve convergence speed and reduce chattering even if there are unknown model parts, external inter-
ference and noise interference phenomena in the system. This simulation results distinctly display the effectiveness
of the control tactics.
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1. INTRODUCTION

In recent years, the public pays more and more attention
to the improvement of underactuated systems. It usually
appears in mechanical systems where the actuator is less
than the control degree of freedom. It is widely applied
in space robots [1, 2], underwater robots [3, 4], structural
flexible robots [5], bridge cranes [6] and other practical
systems, and many papers on underactuated system con-
trol have been published [7–9]. In a nutshell, controller
design and stability analysis of nonlinear underactuated
dynamic systems have always been an important research
field.

Sliding mode control is a special kind of nonlinear dis-
continuous control [10–13]. Because the sliding mode can
be designed and is independent of the object parameters
and disturbances, the sliding mode control has the advan-
tages of fast response, insensitive to the corresponding
parameter changes and disturbances, no on-line identifi-
cation of the system and simple physical realization. It
provides an effective way for robust design of time-delay
systems [14–16], uncertain systems [17, 18] and under-
actuated systems [19, 20]. In recent years, the simplic-
ity of sliding mode control for second-order systems in
laboratory has attracted extensive attention of researchers.
An adaptive hyper-torsional decoupling terminal sliding
mode control technique is proposed for a class of fourth-

order systems in reference [21]. An adaptive global ter-
minal sliding mode control scheme for tracking control
of uncertain nonlinear systems is proposed in reference
[22]. a generalized terminal sliding surface is proposed for
second-order systems in reference [23]. The second-order
dynamic sliding mode control for non-minimum phase un-
deractuated hypersonic vehicle is proposed in [24]. How-
ever, some state knowledge of complex underactuated sys-
tems is actually difficult to satisfy, because these state
variables are not always physically meaningful, and some-
times their measurements are complex or even technically
impossible. In addition, in order to reduce the cost and
maintenance, it is usually necessary to design state ob-
servers to provide real-time estimation of state vectors to
reduce the use of sensors. Such as, a hierarchical sliding
mode control method for a class of second order under-
actuated systems based on sliding mode observer is pro-
posed in [25]. However, the designed sliding mode ob-
server has chattering phenomena [26], and the anti-noise
ability of the system is not analyzed.

In this paper, a double closed-loop integral terminal
sliding mode control strategy based on observer is pro-
posed for second-order underactuated systems. The con-
tributions of this paper are as follows:

1) An improved sliding mode observer is proposed for
a class of second order underactuated systems, and its sta-
bility is proved by Lyapunov stability theorem.

Manuscript received March 18, 2019; revised July 13, 2019; accepted July 18, 2019. Recommended by Associate Editor Niket Kaisare under
the direction of Editor Jessie (Ju H.) Park.

Wei Liu, Si-yi Chen, and Hui-xian Huang are with School of information engineering, Xiangtan University, Xiangtan 411105, P. R. China
(e-mails: 601312957@qq.com, c.siyi@xtu.edu.cn, 1062396679@qq.com).
* Corresponding author.

c⃝ICROS, KIEE and Springer 2020

http://www.springer.com/12555


340 Wei Liu, Si-yi Chen, and Hui-xian Huang

2) An integral terminal sliding mode control strategy
with inner and outer loops is designed for the state esti-
mation signal of the observer. The low-pass filter is used
to filter the output signal of the outer loop. The stability
of the system and the controller is proved by Lyapunov
stability principle and Barbalat theory.

3) The simulation results of inverted pendulum verify
the robustness and effectiveness of the proposed method.

The rest of this paper is organized as follows: A class
of underactuated systems is formulated in Section 2. De-
sign of an improved sliding mode observer for second
order underactuated systems is shown in Section 3. A
double closed-loop integral terminal sliding mode con-
troller based on observer estimation state is designed and
its stability is proved in Section 4. The inverted pendulum
model is simulated in Section 5. Finally, some conclusions
are given in Section 6.

2. PROBLEM DESCRIPTION

Considering a 2-DOF underactuated system, according
to Lagrange equation, the system can be expressed as:

MMM(qqq)q̈qq+CCC(qqq,q̇qq)q̇qq+GGG(q̇qq) = TTT , (1)

where qqq = [q1, q2]
T, MMM(qqq) =

[
m11(qqq) m12(qqq)
m21(qqq) m22(qqq)

]
, CCC(qqq,q̇qq) =[

c11(qqq,q̇qq) c12(qqq,q̇qq)
c21(qqq,q̇qq) c22(qqq,q̇qq)

]
, GGG(qqq) =

[
q1(qqq)
g2(qqq)

]
. If TTT = [0, u]T, it

is a type I system. If TTT = [u, 0]T, it is type II system [27].
In order to design the controller conveniently, equation

(1) is transformed into affine form. Let x1 = q1, x2 = q̇1,
x3 = q2, x4 = q̇2, the dynamic model becomes:


ẋ1(t) = x2(t),

ẋ2(t) = f1(x, t)+b1(x, t)u(t)+d1(x, t),

ẋ3(t) = x4(t),

ẋ4(t) = f2(x, t)+b2(x, t)u(t)+d2(x, t),

(2)

where xxx = [x1, x2, x3, x4]
′ is the system state variable.

f1(xxx, t), b(xxx, t), f2(xxx, t) and b2(xxx, t) are nonlinear function.
u(t) is the control input signal. d1(xxx, t) and d2(xxx, t) denote
the system parameter uncertainty and external interference
respectively.

Assumption 1: f1(xxx, t), b1(xxx, t), f2(xxx, t) and b2(xxx, t) are
nominal bounded nonlinear functions.

Assumption 2: The system in (2) is bounded input
bounded output and is stable for t ∈ [0,T ].

Assumption 3: The uncertain terms are bounded by:
|d1(xxx, t)| ≤ δ1 and d2(xxx, t)≤ δ2, where δ1 and δ2 are known
positive constants.

3. DESIGN OF THE OBSERVER

According to [25] and system (2), the following im-
proved sliding mode observer is designed.

˙̂x1(t) = x̂2(t)+(µ1 + |x1 − x̂1|)sign(x1 − x̂1),

˙̂x2(t) = f̂1(x̄, t)+ b̂1(x̄, t)u(t)

+(µ2 + |x̄2 − x̂2|)sign(x̄2 − x̂2),

˙̂x3(t) = x4(t)+(µ3 + |x3 − x̂3|)sign(x3 − x̂3),

˙̂x4(t) = f̂2(x̄, t)+ b̂2(x̄, t)u(t)

+(µ4 + |x̄4 − x̂4|)sign(x̄4 − x̂4),

(3)

where function estimation of f̂1(x̄xx, t), b̂1(x̄xx, t), f̂2(x̄xx, t) and
b̂2(x̄xx, t) for f1(xxx, t), b1(xxx, t), f2(xxx, t) and b2(xxx, t), respec-
tively. x̄xx = [x̄1, x̄2, x̄3, x̄4] is a new state estimation variable
in the following form:

x̄1 = x1,

x̄2 = x̂2 +(µ1 + |x1 − x̂1|) tanh
(π

2
(x̄1 − x̂1)

)
,

x̄3 = x3,

x̄4 = x̂4 +(µ3 + |x3 − x̂3|) tanh
(π

2
(x̄3 − x̂3)

)
.

(4)

Tanh is a commonly used hyperbolic tangent function with
smooth and continuous characteristics, and can be used as
a continuous approximation of sign function.

The estimated error of the observer is as follows:

e1e=x1−x̂1, e2e=x2−x̂2, e3e=x3−x̂3, e4e=x4−x̂4.

Theorem 1: Assuming that 1, 2, 3 and any initial con-
ditions exist, it is assumed that the system (2) constructs
an observer (3). By choosing the appropriate parameter
µi (i = 1, 2, 3, 4) to estimate the system state variables,
the estimated system state variables will converge to the
actual system state variables in finite time.

Proof: Firstly, we choose positive definite Lyapunov
function V1.

V1 =
1
2

e2
1e +

1
2

e2
3e. (5)

On both sides of (5), the derivative of time t is obtained.

V̇1 =e1eė1e + e3eė3e = e1e(ẋ1 −˙̂x1)+ e3e(ẋ3 −˙̂x3)

=e1e (e2e − (µ1 + |x1 − x̂1|)sign(x1 − x̂1))

+ e3e (e4e − (µ3 + |x3 − x̂3|)sign(x3 − x̂3)) . (6)

We choose
µ1 + |x1 − x̂1|> max |e2e| → e1e

⇒ µ1 > max |e2e|− |e1e| → e1e,

µ3 + |x3 − x̂3|> max |e4e| → e3e

⇒ µ3 > max |e4e|− |e3e| → e3e

(7)
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tends toward zero in finite time, and consequently ė1e = 0,
ė3e = 0, which implies that:{

e2e = (µ1 + |x1 − x̂1|)sign(x1 − x̂1),

e4e = (µ3 + |x3 − x̂3|)sign(x3 − x̂3).
(8)

So, we can get: x̄2 = x̂2|e2e = x2, x̄4 = x̂4 + e4e = x4.
Then, we choose the positive definite Lyapunov function
V2.

V2 =
1
2

e2
1e +

1
2

e2
2e +

1
2

e2
3e +

1
2

e2
4e. (9)

On both sides of (9), the derivative of time t is obtained.

V̇2 = e1eė1e + e2eė2e + e3eė3e + e4eė4e. (10)

And because:
ė1e = 0,

ė2e =−(µ2 + |x̄2 − x̂2|)sign(x̄2 − x̂2)+d1(xxx, t),

ė3e = 0,

ė4e =−(µ4 + |x̄4 − x̂4|)sign(x̄4 − x̂4)+d2(xxx, t).
(11)

In combination (10) and (11), we can get:

V̇2 =e2eė2e + e4eė4e

=e2e (−(µ2 + |x̄2 − x̂2|)sign(x̄2 − x̂2)+d1(xxx, t))

+ e4e (−(µ4 + |x̄4 − x̂4|)sign(x̄4 − x̂4)+d2(xxx, t))

≤− (µ2 + |x̄2 − x̂2|) |e2e|+δ1 |e2e|
− (µ4 + |x̄4 − x̂4|) |e4e|+δ2 |e4e| . (12)

Therefore, in order to ensure V̇2 < 0, we can only choose
µ2 > δ1 −|x̄2 − x̂2| and µ2 > δ2 −|x̄4 − x̂4|. □

Remark 1: Compared with the observer in [25], under
the premise of ensuring convergence speed, the improved
observer has a larger attraction area even if there is dis-
turbance in the system. A smaller parameter µi (i = 1, 2,
3, 4) can be selected to estimate the state variables of the
system to reduce chattering.

4. CONTROL DESIGN

The design of the controller and the observer are inde-
pendent of each other. The control objective of the sys-
tem is to design a controller, which enables the system
to achieve accurate and fast tracking control even if there
are unknown models, external disturbances and noise dis-
turbances. In order to achieve the goal, a double closed-
loop hierarchical integration terminal sliding mode control
scheme based on sliding mode observer is designed. The
controller structure is shown in Fig. 1.

Step 1: According to the output of the observer and the
given signal, the sliding surface s1 and s2 of the outer loop
integration terminal are designed.

s1 = e1 +
∫

(α1e1 +β1 |e1|r1 sign(e1))dt,

s2 = e2 +
∫

(α2e2 +β2 |e2|r2 sign(e2))dt,
(13)

where α1, β1, α2, β2, r1 and r2 are positive constants. e1 =
xd1 − x̂1, ė1 = ẋd1 − x̂2, e2 = xd2 − x̂3 and ė2 = ẋd4 − x̂4 are
dynamic errors. XXXd = (xd1, ẋd1, xd2, ẋd2) are given signals.

The derivation of (13) yields:


ṡ1 = ė1 +α1e1 +β1 |e1|r1 sign(e1)

= ẋd1 − x̂2 +α1e1 +β1 |e1|r1 sign(e1),

ṡ2 = ė2 +α2e2 +β2 |e2|r2 sign(e2)

= ẋd2 − x̂4 +α2e2 +β2 |e2|r2 sign(e2).

(14)

The output w1 and w2 of the outer loop controller are
designed as follows:{

w1 = x̂2 = ẋd1 +α1e1 +β1 |e1|r1 sign(e1),

w2 = x̂4 = ẋd2 +α2e2 +β2 |e2|r2 sign(e2).
(15)

Step 2: It should be noted that in the design of inner
loop controller, differential explosion will occur when ẇ1

and ẇ2 are calculated. This disadvantage can be overcome
by using low-pass filter. σ1 and σ2 are the output values of
w1 and w2 through low-pass filter 1/τ1s+1 and 1/τ2s+1,

Fig. 1. The controller structure.
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respectively, and satisfy the following requirements:
τ1σ̇1 +σ1 = w1,

σ1(0) = w1(0),

τ2σ̇2 +σ2 = w2,

σ2(0) = w2(0).

(16)

Further inference from (16) shows that:
σ̇1 =

w1 −σ1

τ1
,

σ̇2 =
w2 −σ2

τ2
.

(17)

Therefore, filtering errors y1 and y2 can be expressed as:{
y1 = σ1 −w1,

y2 = σ2 −w2.
(18)

Lemma 1 [28]: V ∈ R while V ≥ 0, the solution to the
inequality V̇ ≤−αV + f (∀t ≥ t0 ≥ 0) is:

V (t)≤ e−α(t−t0)V (t0)+
∫ t

t0
e−α(t−τ) f (τ)dτ, (19)

where α is any constant.
A positive definite Lyapunov function V3 is defined as

follows:

V3 =
1
2

e2
1 +

1
2

e2
2 +

1
2

y2
1 +

1
2

y2
2. (20)

Theorem 2: Assuming that conditions 1, 2, 3 and any
initial conditions exist, assuming that the output of the
outer loop controller are w1 and w2, and the output of the
low pass filter are σ1 and σ2, and selecting V3(0)≤ p and
p > 0, all signals of the outer loop controller and the low
pass filter are bounded and convergent.

Proof: We define K1 and K2 as the following equations:

K1 =−ẇ1 =−ẍd1 −α1ė1 −β1r1 |e1|r1−1 ė1sign(e1)

=−α1(ẋd1−σ1+y1)−ẍd1−β1r1|e1|r1−1ė1sign(e1),

K2 =−ẇ2 =−ẍd2 −α2ė2 −β2r2 |e2|r2−1 ė2sign(e2)

=−α2(ẋd2−σ2+y2)−ẍd2−β2r2 |e2|r2−1 ė2sign(e2).
(21)

When V3 =
1
2 e2

1+
1
2 e2

2+
1
2 y2

1+
1
2 y2

2 = p, then K1 and K2 are
bounded, denoted as N1 ≤ |K1|, N2 ≤ |K2|.

The derivative of V3 can be obtained as follows:

V̇3 =e1 (ẋd1 − ẋd1 −α1e1 −β1 |e1|r1 sign(e1))

+ e2 (ẋd2 − ẋd2 −α2e2 −β2 |e2|r2 sign(e2))

+ y1(
−y1

τ1
+K1)+ y2(

−y2

τ2
+K2)

=−α1e2
1 −β1 |e1|r1+1 −α2e2

2 −β2 |e2|r2+1 − 1
τ1

y2
1

− 1
τ2

y2
2 + y1K1 + y2K2

≤−α1e2
1 −β1 |e1|r1+1 −α2e2

2 −β2 |e2|r2+1 − 1
τ1

y2
1

− 1
τ2

y2
2 + |y1| |K1|+ |y2| |K2|

≤−α1e2
1 −β1 |e1|r1+1 −α2e2

2 −β2 |e2|r2+1 − 1
τ1

y2
1

− 1
τ2

y2
2+

1
2

(
(|y1| |K1|)2+1

)
+

1
2

(
(|y2| |K2|)2+1

)
=−α1e2

1 −α2e2
2 +

(
1
2

K2
1 −

1
τ1

)
y2

1

+

(
1
2

K2
2 −

1
τ2

)
y2

2 −β1 |e1|r1+1 −β2 |e2|r2+1 +1.

(22)

If we choose α1 ≥ r, α2 ≥ r, 1/τ1 ≥ 0.5N2
1 + r, 1/τ2 ≥

0.5N2
2 + r and r > 0, and because N1 ≤ |K1|, N2 ≤ |K2|,

β1 > 0 and β2 > 0. Then there are:

V̇3 ≤− re2
1 − re2

2 +

(
1
2

K2
1 −

1
2

N2
1 − r

)
y2

1

+

(
1
2

K2
2−

1
2

N2
2−r

)
y2

2−β1 |e1|r1+1−β2 |e2|r2+1

+1

=−2rV3 +
1
2
(
K2

1 −N2
1

)
y2

1 +
1
2
(
K2

2 −N2
2

)
y2

2

−β1 |e1|r1+1 −β2 |e2|r2+1 +1

≤−2rV3 +1. (23)

Since V3 = p, (23) can be written as V̇3 ≤−2rp+1. To
ensure V̇3 ≤ 0, we can select −2rp+1 ≤ 0, or r ≥ 1/2p.

At the same time, (1) shows that when r ≥ 1/2p, V̇3 ≤ 0,
that is, if V3(0)≤ p, V3 is also in the compact set, and for
any time t satisfies V3(t) ≤ p, that is, all signals of outer
loop controller and low pass filter are bounded.

In addition, the following convergence analysis can be
carried out through the above reasoning.

According to Lemma 1, the solution of inequality equa-
tion V̇3 ≤−2rV3 +1 is

V3(t)≤e−2r(t−t0)V (t0)+
∫ t

t0
e−2r(t−τ)dτ

=e−2r(t−t0)V (t0)+
1
2r

(1− e−2r(t−t0)). (24)

According to (1), we can get lim
t→∞

V3(t) ≤ 1/2r. There-

fore, V3(t) asymptotically converges, and the convergence
accuracy depends on r.

Thus, Theorem 2 has been proved. □

Step 3: According to the estimated value of the ob-
server and the output value of the filter, the first level in-
tegral terminal sliding surface s3 and s4 of the inner loop
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controller are designed.
s3 = e3 +

∫
(α3e3 +β3 |e3|r3 sign(e3))dt,

s4 = e4 +
∫

(α4e4 +β4 |e4|r4 sign(e4))dt,
(25)

where α3, β3, α4, β4, r3 and r4 are positive constants. e3 =
σ1 − x̂2, ė3 = σ̇1 − ˙̂x2, e4 = σ2 − x̂4 and ė4 = σ̇2 − ˙̂x4 are
dynamic errors.

For sliding surface s3 and s4, the first derivative of time
t is obtained.{

ṡ3 = ė3 +α3e3 +β3 |e3|r3 sign(e3),

ṡ4 = ė4 +α4e4 +β4 |e4|r4 sign(e4).
(26)

If the first derivatives of sliding surface s3 and s4 are
equal to zero, the equivalent control law of the inner loop
controller can be obtained as follows:

ueq1 =
1

b̂1(x̂, t)

(
− f̂1(x̂, t)+ σ̇1 +α3e3

+β3 |e3|r3 sign(e3)
)
,

ueq2 =
1

b̂2(x̂, t)

(
− f̂2(x̂, t)+ σ̇2 +α4e4

+β4 |e4|r4 sign(e4)
)
.

(27)

Second level sliding surface s is defined as follows:

s = a1s3 +a2s4, (28)

where a1 and a2 are positive constants.
The control law of the inner loop controller is designed

as follows:

u = ueq1 +ueq2 +usw. (29)

Define positive definite Lyapunov function V4.

V4 =
1
2

s2. (30)

To ensure V̇4 ≤ 0, the switching control law is designed
as follows:

usw =
−1

a1b̂1(x̂, t)+a2b̂2(x̂, t)

×

(
a1b̂1(x̂, t)ueq2 +a2b̂2(x̂, t)ueq1

− ks−ηsign(s)

)
, (31)

where k and η are positive constants.
Theorem 3: For the underactuated system given by (2),

the sliding surfaces are given as (25) and (28), with the
control law defined by (31). The sliding surfaces s, s3 and
s4 are asymptotically stable.

Proof: The derivative of Lyapunov function V4 is

V̇4 =sṡ = s(a1ṡ3 +a2ṡ4)

=s
[
a1
(
σ̇1+α3e3+β3|e3|r3 sign(e3)− f̂1−b̂1u−d1

)
+a2

(
σ̇2+α4e4+β4|e4|r4 sign(e4)− f̂2−b̂2u−d2

)]
.

(32)

Combining (31) and (32), we can get

V̇4 =s(a1d1 +a2d2 − ks−ηsign(s))

≤(a1d1 +a2d2) |s|− ks2 −η |s| . (33)

When δ = sup(a1δ1 +a2δ2) is selected and η > δ is sat-
isfied, there are

V̇4 ≤ δ |s|− ks2 −η |s|= (δ −η) |s|− ks2 ≤ 0. (34)

By calculating the integral of (34), we can get∫ t

0
V̇4dτ =

∫ t

0

(
(δ −η) |s|− ks2)dτ. (35)

Through further derivation of the above formula, we can
get that

V4(t)−V4(0) =
∫ t

0
(δ −η) |s|− ks2dτ. (36)

Because V4(t)> 0, (36) can be changed into

V4(0) =
∫ t

0

(
(η −δ ) |s|+ ks2)dτ +V4(t)

≥
∫ t

0

(
(η −δ ) |s|+ ks2)dτ. (37)

Therefore, we can get the following results.

lim
t→∞

∫ t

0

(
(η −δ ) |s|+ ks2)dτ ≤V4(0)< ∞. (38)

So s2 ∈ L∞. Obviously, we can express Barbalat lemma by
lim
t→∞

s = 0, and the second level sliding surface s is asymp-
totically stable.

In addition, we can get∫ ∞

0
s2dτ =

∫ ∞

0
(a1s3 +a2s4)

2dτ

=
∫ ∞

0
(a2

1s2
3
+2a1a2s3s4 +a2

2
s2

4
)dτ < ∞.

(39)

Since 2a1a2s3s4 ≤ a2
2s2

4 +a2
1s2

3 is established, it can be ob-
tained that∫ ∞

0
4a1a2s3s4dτ <

∫ ∞

0
(a1s3 +a2s4)

2dτ < ∞. (40)

Therefore, according to (39) and (40), we can get∫ ∞

0
s2

3dτ < ∞,
∫ ∞

0
s2

4dτ < ∞. (41)

So s3 ∈ L∞, s2
3 ∈ L∞, s4 ∈ L∞, s2

4 ∈ L∞, obviously, we can
use lim

t→∞
s3 = 0 and lim

t→∞
s4 = 0 to express Barbalat lemma.

Therefore, the sliding surface s3 and s4 are asymptotically
stable.

Thus, Theorem 3 has been proved. □
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5. SIMULATION RESULTS

In order to verify the proposed control method, the cart-
pole system was simulated and the proposed method and
the methods of [25] is compared. The method in this paper
is defined as Case 2, and the method in [25] is defined as
Case 1.

The dynamic equation of the cart-pole system can be
exhibited in the form of (3) with the functions f1(x, t),
b1(x, t), f2(x, t) and b2(x, t) as

f1(x, t) =
mtgsin(x1)−mpLsin(x1)cos(x1)x2

2

L(( 4
3 )mt −mp cos2(x1))

,

b1(x, t) =
cos(x1)

L(( 4
3 )mt −mp cos2(x1))

,

f2(x, t) =
−( 4

3 )mpLx2
2 sin(x1)+mpgsin(x1)cos(x1)

( 4
3 )mt −mp cos2(x1)

,

b2(x, t) =
4

3(( 4
3 )mt −mp cos2(x1))

,

(42)

where mt is the total mass of the cart-pole system which
contains the quality of the pole (mp) and the mass of the
cart (mc), x1 represents the swing angle of the pole, x2 ex-
presses the swing speed of the pole, x3 denotes the position
of the cart, x4 indicates the cart velocity. In these simula-
tions, the parameters are chosen as mc = 1 kg, mp = 0.05
kg, L = 0.5 m and g = 9.8 m/s2.

5.1. Without d1, d2 and noise
The initial conditions are xxx(0) = [−π/12, 0, 0.5, 0]T ,

d1 = 0, d2 = 0 and the desired output vector is y(t) =
(0,0)T . The parameters of controllers are provided in Ta-
ble 1.

Table 1. Controller parameters.

Parameters Case1 Case2
c1 2.5 -
c2 0.9 -

α1 = α3 = α2 = α4 - 1.5
β1 = β3 - 5
β2 = β4 - 1

r1 = r2 = r3 = r4 - 1.2
a1 1.5 1.5
a2 1.5 1.5
k 10 10
η 0.05 0.05

τ1 = τ2 - 0.4
µi (i = 1, 2, 3, 4) 0.5 0.5

Figs. 2-8 represent respectively the trajectories of xxx(t),
their estimators, and their references, the sliding surfaces
s(t), s3(t) and s4(t), the estimation error of sliding mode
observer and the control signal u(t).

It is clear from Figs. 2-5 that the overshoot and adjust-
ment time of Case 2 are less than that of Case 1. As can
be seen clearly from Fig. 6, the convergence speed and
smoothness of sliding surface of Case 2 are better than
that of Case 1. As can be seen from Fig. 7, compared with
[25], the proposed sliding mode observer has faster con-
vergence rate of estimation error and no chattering. As can
be seen from Fig. 8, the chattering of control input signal
of Case 2 is smaller than that of Case 1.

5.2. With d1, d2 and noise

The initial conditions are xxx(t) = [−ß/12, 0, −0.2,
0]T , d1 = 0.01sin(t) + 0.05sin(x1), d2 = 0.01cos(t) +
0.05sin(x3), the measured noise is Gauss white noise with

(a) The pole angle of Case 1. (b) The pole angle of Case 2.

Fig. 2. The angle of the pole, its estimation and the reference.
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(a) The pole velocity of Case 1. (b) The pole velocity of Case 2.

Fig. 3. The velocity of the pole, its estimation and the reference.

(a) The cart position of Case 1. (b) The cart position of Case 2.

Fig. 4. The position of the cart, its estimation and the reference.

(a) The pole velocity of Case 1. (b) The pole velocity of Case 2.

Fig. 5. The velocity of the cart, its estimation and the reference.
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(a) The sliding surfaces of Case 1. (b) The sliding surfaces of Case 2.

Fig. 6. The sliding surfaces s(t), s3(t) and s4(t).

(a) Estimination error of pendulum angle. (b) Estimination error of cart position.

Fig. 7. Estimation error of sliding mode observer.

(a) The control signal of Case 1. (b) The control signal of Case 2.

Fig. 8. The control signal u(t).
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(a) The pole angle of Case 1. (b) The pole angle of Case 2.

Fig. 9. The angle of the pole, its estimination and the reference (with d1, d2 and noise).

(a) The cart position of Case 1. (b) The cart position of Case 2.

Fig. 10. The position of the cart, its estimation and the reference (with d1, d2 and noise).

0.01 amplitude and 0.1 standard deviation, given noise is
a random number with an amplitude of 0.001 and the de-
sired output vector is y(t) = (0,0.2)T . Meanwhile, the pa-
rameters of the controller remain unchanged. Measuring
noise is added at 20 seconds of simulation time, and then
given noise is added at 35 seconds.

Figs. 9-11 represent respectively the trajectories of
x1(t), x3(t), their estimators, and their references, and the
control signal u(t).

From the simulation results of Fig. 9 and Fig. 10, we
can clearly see that the pendulum angle and position of
Case 1 have obvious oscillation phenomenon, while Case
2 still maintains a good tracking control effect. The con-
trol signal in Fig. 11 clearly shows that Case 2 has better
noise suppression ability and stronger robustness. Fig. 11. The control signal u(t) (with d1, d2 and noise).
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Fig. 12. The practical cart-pole system.

Fig. 13. The angle of the pole.

5.3. Physical simulaton
In this paper, Matlab real-time simulation tool and

Simulink toolbox are used to test the designed controller
on the actual vehicle system. Fig. 12 shows the lin-
ear motor inverted pendulum system manufactured by
Hopemotion Co., Ltd. The system is based on the TI
TMS320F28335 DSP and MATLAB/Simulink. Simulink
can be used to build models, automatically generate code,
control and save data and modify parameters online. The
initial conditions are xxx(0) = [0.47, 0, 0, 0]T .

Figs. 13-15 are the experimental curves of the pendu-
lum swing angle, trolley position and control input, re-
spectively. It can be clearly seen that the swing angle,
position and control inputs can be maintained at around
zero. The results of physical experiments further validate
the effectiveness of the scheme.

6. CONCLUSION

In this paper, a double closed-loop hierarchical integral
terminal sliding mode control method for a class of un-

Fig. 14. The position of the cart.

Fig. 15. The control signal u(t).

deractuated systems is presented. The sliding mode ob-
server is designed by using the affine model of the system.
The outer loop controller is designed according to the esti-
mated state. At the same time, low-pass filter is used to fil-
ter the output value of the outer loop controller. Then, the
inner loop controller is designed by using the hierarchical
sliding mode control method. Even if there are unknown
model components, external disturbances and noise dis-
turbances in the system, the proposed control method can
maximize the convergence speed and reduce chattering.
The simulation experiments of the cart inverted pendulum
system are carried out without considering the disturbance
and the disturbance. The results show the effectiveness
and robustness of the control method proposed in this pa-
per. Finally, the effectiveness of the proposed method is
further illustrated by the physical simulation experiment
of the cart inverted pendulum.

This maneuver method can be used for control of under-
actuated mechanical systems such as multistage inverted
pendulum, mechanical arm system, TORA system and
Ball-Plate system [29–34]. It is naturally to draw a conclu-
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sion that this application of research to higher-level intel-
ligent control systems is worth keeping to do some further
study.
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