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Two-stage Gradient-based Iterative Estimation Methods for Controlled
Autoregressive Systems Using the Measurement Data

Feng Ding*

, Lei Lv, Jian Pan, Xiangkui Wan, and Xue-Bo Jin

Abstract: This paper considers the parameter identification problems of controlled autoregressive systems using
observation information. According to the hierarchical identification principle, we decompose the controlled au-
toregressive system into two subsystems by introducing two fictitious output variables. Then a two-stage gradient-
based iterative algorithm is proposed by means of the iterative technique. In order to improve the performance of
the tracking the time-varying parameters, we derive a two-stage multi-innovation gradient-based iterative algorithm
based on the multi-innovation identification theory. Finally, an example is provided to illustrate the effectiveness of

the proposed algorithms.
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1. INTRODUCTION

Mathematical models are useful for system analysis and
control [1,2] and can be applied in many areas such as net-
work model fitting [3,4]. Basically, there are two ways of
constructing mathematical models [5—8]. The first one is
the analytic approach, which uses basic laws from physics
to describe the dynamical behavior of a process. Due to
the difficult of the first way, system identification, which
is an experimental way, becomes the common choice to
establish mathematical models [9]. Some identification
methods have been used for signal modeling [10—12] and
time-series modeling [13].

The identification methods can be divided into two
main types, one of which is the on-line methods and the
other is off-line methods [14—17]. The on-line methods,
which are also called the recursive methods, compute the
parameter estimates in real-time. The off-line methods,
i.e., the iterative methods, update the parameter estimates
by using batch data [18, 19]. By eliminating the state vari-
ables, Li and Liu gave the input-output representation for
a class of bilinear systems and proposed a filtering based
least squares iterative algorithm by means of the hierar-
chical principle [20] and the data filtering technique [21].

The multi-innovation identification is an important
branch of system identification [22,23]. The innovation

refers to the useful information that can improve the pa-
rameter estimation accuracy. The main idea is to expand
the dimension of the innovation and to make full use of the
system information. In this literature, for the sine com-
bination signals and periodic signals, a multi-innovation
stochastic gradient algorithm was derived by expanding
the scalar innovation into the innovation vector [24]. In
this paper, we expand the multi-innovation theory into the
iterative identification algorithm. In particular, we update
the parameter estimates by using the data in a moving data
window which moves forward with time increasing.

In this paper, the parameter estimation problems of
controlled autoregressive systems are investigated using
the gradient search [25] and the hierarchical identification
principle [26]. On the basis of the gradient-based iterative
parameter estimation algorithms for dynamical systems
[27, 28], this work is to divide the linear autoregressive
identification model into two sub-identification models,
and to identify the parameter vectors of these two mod-
els, respectively. The main contributions of this paper are
as follows:

e A two-stage identification model is deduced for con-
trolled autoregressive systems by adopting the hierar-
chical identification principle.

e Based on the gradient search, a two-stage gradient-
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based iterative algorithm is presented for identifying
the parameters of the controlled autoregressive sys-
tems.

e A two-stage multi-innovation gradient-based iterative
algorithm is derived by means of the multi-innovation
identification theory.

The rest of this paper is organized as follows: Section
2 offers some notations and derives the two-stage iden-
tification model of controlled autoregressive systems. A
two-stage gradient-based iterative algorithm is presented
in Section 3. By employing the multi-innovation iden-
tification theory, Section 4 deduces a two-stage multi-
innovation gradient-based iterative algorithm. Section 5
gives the gradient-based iterative algorithm for compari-
son. Section 6 offers an example to illustrate the effective-
ness of the proposed algorithms. Finally, Section 7 gives
some concluding remarks.

2. SYSTEM DESCRIPTION AND
IDENTIFICATION MODELS

Let us start with the necessary notations. “A =: X or
“X := A” stands for “A is defined as X”’; the superscript
T stands for the vector/matrix transpose; The symbol 7,
denotes an identity matrix of size n X n; 1, stands for an
n-dimensional column vector whose elements are 1; the
norm of a matrix (or a column vector) X is defined by
[1X]|? := tr[XX"]. Amax[X] is the largest eigenvalue of the
symmetric matrix X.

Consider the following controlled autoregressive
(CAR) system:

A(2)y(t) = B(z)u(t) +v(t), )

where u(t) is the input of the system and y(¢) is the out-
put of the system, v(z) is a white noise with zero mean,
A(z) and B(z) are polynomials in the unit backward shift
operator [z~ 'y(t) = y(t — 1), zy(t) = y(t +1)], and defined
as

AR)=14aiz " +az >+ +agz ™,
B(z):=biz "4+ byz 2+ +Dby,z ™.
Assume that n, and n,, are known, and y(t) =0, u(t) =0

and v(z) =0 fort < 0.
Define the parameter vectors:

ai= [a17a27'“ 7ana]T € Rﬂa,
b:= [b17b2a"' 7bnb}T S Rnh?

and the corresponding information vectors:

(PU(I) = [_y(t_ 1)7_y(t_2)7' o 7_y(t_na)]T € Rnaa
@, (1) :=[u(t—1),u(t —2), - ,u(t —np)|" € R™.

Through the above definitions, the system in (1) can be
rewritten as

() =[1=A@@)]ly() + B(2)u(r) +v(r)
=@ (1)a+ @, (1)b+v(1). @

For the identification model in (2), the commonly used

method is to combine the information vectors @, (¢) and
u(1) }

@y(1) |’

and to define a corresponding parameter vector. Then
equation (2) can be transformed to the linear autoregres-
sive identification model. Here, we provide another idea
to dispose the identification model in (2) by adopting the
hierarchical identification principle. Hierarchical identifi-
cation is the decomposition based identification. The key
idea is to decompose the identification model into several
subsystems, such that the scale of the optimization prob-
lem can be decreased and the computational efficiency of
the identification algorithm can be improved.
Define two fictitious output variables:

yi(t) :==y(t) — @y(1)b € R,
y2 (1) :=y(t) — @L(t)a € R.

Then the identification model in (2) can be decomposed
into two sub-identification models:

(1) = @g(t)a+v(1), ©)
¥2(t) = @, (1)b+v(1). ©)

Equations (3)-(4) can also be called the two-stage iden-
tification model for the system in (1). Equation (3) con-
tains the parameter vector a and the information vector
¢,(t), and (4) includes the parameter vector b and the in-
formation vector ¢,(¢). Here, we can find that there are
two coupled variables a and b between these two sub-
identification models. The objective of this paper is to
use the gradient search principle and the multi-innovation
identification theory to propose two-stage algorithms, co-
ordinating the associate items between sub-identification
models based on the hierarchical identification principle.

¢, (t) into a large information vector ¢(z) := [

3. THE TWO-STAGE GRADIENT-BASED
ITERATIVE ALGORITHM

The iterative algorithm uses batch data to update the
parameter estimates. In this section, we define two cost
functions to present a two-stage gradient-based iterative
algorithm by using the gradient search principle. In addi-
tion, we give a brief discussion about how to choose the
iterative step-sizes in the algorithm.

Let L be the data length. According to the two-stage
identification model in (3)-(4), define two gradient crite-
rion functions as

1 () — @a(f)al’,

N =
AM[\

J](a) =
1

J
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D(b) =2 Y 2(j) — 0} (j)b].

| —
-Ml“

1

J

Define the stacked output vector Y (L), the stacked ficti-
tious output vectors Y (L) and Y, (L), and the stacked in-
formation matrices ®,(L) and @, (L) as

c RLXIL, ,

c Ranb

Then the cost functions J;(a) and J»(b) can be equiva-
lently expressed as

J3(a) = S[Y1(L) —®,(L)al?,
1
Ji(b) 1= 3 I72(L) ~ @y 1)
Let k = 1,2,3,--- be an iterative variable, a; € R" and

I;k € R™ be the iterative estimates of a and b at iteration
k, and u; > 0 and y, > 0 be the step-sizes, which are also
known as the convergence factors. Using the negative gra-
dient search to minimize the criterion function J3(a) and
Jy(b) results in the following gradient-based iterative rela-
tions,

ay =g — Migrad[J3 (a1 )]

=1 + P, (L)[Y1(L) — Py (L) 1]

=ay—1 + P, (L)
X [Y (L) — ®p(L)b — Po(L)ar-1] ©)
[n(, ﬂlq)T(L)q)a( )] -1
+ DL (L)[Y (L) — Py (L)b], (6)

by =by 1 — wpgrad[Jy(by )]

~

=bi1 + W@ (L)[V2(L) — Pp(L)bs 1]

=bi 1+ 1P (L)
X [Y (L) — Pa(L)a — Pp(L)bs 1] (7
=1, — ta®} (L) Dy (L)) b1
+ 1P, (L)Y (L) — Pu(L)al. ®)

Equations (6) and (8) can be seen as the discrete-time
systems of the state variables d; and i)k. In order to
make sure of the convergence of the parameter estima-
tion vectors a; and 3/« all the eigenvalues of matrices
Iy, — P (L)D,(L)] and [1,, — P}, (L)P,(L)] must be
in the unit circle. In other words, t; and u, should satisfy

.uch)T( )q)a(L) Sln,n
— 1Py (L)Dy(L)] < I,

_In,, = n“

_In;, S [ np

Therefore, one conservative choice is

2
H S )Lmax[q)Z(L)q)a(L)] _2)’de[ ( )cba(L)]v (9)

2
< =20 [P} (L)D,(L)]. (10)
My < Afmax[q)h( )q)b( )] max[ ( ) b( )]
Because of the complexity of the eigenvalue computation,
the convergence factors can also be simply and conserva-
tively taken as

2

< W = 2”(1)11(14)“72, (1)
2

mgﬁaﬂpzm%@w? (12)

Remark 1: Compared with that of (9) and (10), the
computation of the convergence factors (; and u, in (11)
and (12) does not involve the complicated eigenvalues of
square matrices. Instead, we use the traces of the matri-
ces ®@,(L) and (L), such that the computational cost of
finding the convergence factors can be reduced.

However, equations (6), (8) and (9)-(12) still cannot
generate the estimates a; and Ek. Because there are un-
known variables b and a on the right-hand side of (6) and
(8). To cope with this problem, we use the hierarchical
identification principle to coordinate the associated terms.
That is, use the estimates IA)k,l and dy_ at iteration k — 1
to replace the unknown variables b and a in (6) and (8).
Combining (9)-(12), we can derive a two-stage gradient-
based iterative (2S-GI) algorithm to estimate the parame-
ter vectors a and b for the CAR system:

Gy = ag—1 + WPy (L)

X [V (L) — @y (L)1 — ®p(L)by_1], (13)
Wi = A [P (L) D (L)], (14)
by = b + 1Py (L)

X [Y (L) — @y (L)éy_ — Dp(L)bi_1], (15)



Two-stage Gradient-based lterative Estimation Methods for Controlled Autoregressive Systems Using the ... 889

o = A [P (L) Dy (L)], (16)
Y(L) = [y(1),y(2), -y, (17)
Do (L) =[9,(1),0,(2),++, @, (L)], (18)
Dy (L) = [9,(1),9,(2),--, @, (L)], (19)
@, (1) =[—y(t—1),—y(t=2),-,—y(t —na)|", (20)
@p(t) = [u(t —1),u(t =2),- u(t —n)|", 21)
g = (A1 x, Qo+ 5 Angi]", (22)
b= [b1x,bog,++ bui]"- (23)

The steps of computing & and b involved in the 2S-GI
algorithm in (13)-(23) are summarized in the following:

1) For < 0, all the variables are set to be zero. Letk =1,
give the data length L (L > n, + n;) and set the initial
values: a9 =1,,/po, by = 1,,/po, po = 10°, and the
parameter estimation accuracy €.

2) Collect the input and output data u(r) and y(z), t = 1,
2, -+-, L. Form the information vectors @, (¢) and ¢,(¢)
using (20)-(21).

3) Construct the stacked output vector Y (L) by (17) and
the stacked information matrices ®,(L) and ®,(L) by
(18)-(19), compute the step-sizes t; and U, according
to (14) and (16).

4) Update the parameter estimation vectors & and by by
using (13) and (15). Read out the estimates d;x (i =
1,2,---,n,) and bj; (j = 1,2,---,m) from (22) and
(23).

5) If ||ax — 1| + ||bx — by_1]| > €, increase k by 1 and
go to Step 4; otherwise, obtain the iteration k and the
parameter estimation vectors d; and Bk, terminate this
computational procedure.

Remark 2: The 2S-GI algorithm in (13)-(23) can
also be called the hierarchical gradient-based iterative
(HGI) algorithm. The difference is that the 2S-GI algo-
rithm is just one kind of the HGI algorithm. The three-
stage gradient-based iterative algorithm and the multi-
stage gradient-based iterative algorithm are all known as
the HGI algorithm.

4. THE TWO-STAGE MULTI-INNOVATION
GRADIENT-BASED ITERATIVE
ALGORITHM

The main idea of the multi-innovation identification
theory is to use the data in a moving data window to up-
date the parameter estimates. In addition, the moving data
window moves forward as time ¢ increases. In this sec-
tion, we adopt the multi-innovation identification theory
to deal with the CAR system in (1) and propose a two-
stage multi-innovation gradient-based iterative algorithm
which has a constant window length.

Consider the newest p data from j =¢r—p+1 to
j =1 (p> n,+np), and define the stacked output vector

Y(p,t), the stacked fictitious output vectors ¥ (p,t) and
Y>(p,t), and the stacked information matrices ®,(p,?)
and @y (p,1):

y(t)
y(t—1)

Y(p,t):= e R?,

y(f—?+1)
yi(t)
]
Yi(pt) = M(t: )
| yi(t—=p+1)
= Y(pat) _q)b(p7t

(1)
yz(t — 1)

= 1

beR?,

Yz(p,t) =

L »2(t=p+1) |
= Y(pat) —dDa(p,t)a € va

@y (1)
@, (t—1)

¢¢l(p’t) = e Rpxn)

L git—p+1)
AG!
Pt —1)

B (p.t) = e RPM,

L op(t—p+1) |

According to the two-stage identification models in (3)-
(4), define two criterion functions:

1 ¢ :

JS(CI) :E Z [yl(-]) (Pa( ) ]

j=t=p+1
1 2
E”Yl(pa ) q)a(pvt)a” )
1 ¢ )
5 Z V' (j)b]
—p+
1
7||Y2(pa ) ¢b(P7t)b||2~
Let 1 (¢) > 0 and ,(¢) > 0 be the step-sizes. Using the

negative gradient search to minimize the criterion func-
tions Js(a) and Js(b) gives the following gradient-based
iterative relations:

ar(t) =ap-1(t) — i (t) grad[Js (a1 (t))]
=1 (t) + pu (1)@, (p,1)
X [Y1(pst) = Pa(p,t)ax—1(7)]
=01 (1) + 1 (1)@, (p;1)
X [Y(p,t) =Dy (p,0)b—Pu(p,t)ar—1(1)] (24)
=[l,, — i ()P, (p,1)Pu(p,t)]ar—1(t)
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(pvt)[Y(p7t)_q)b(pat)b]7 (25)
bi(t) =bi—1() — pa (1) grad[Jo (b1 (¢))]
=bi1 (1) + w2 (1) D (p, 1)
2(p,1) = Dy (p,1)bi1 (1))
=D (1) + 12 ()P (p,1)
% [V (p,1) = @a(p,1)a—Py(p,1)bi-1 ()] (26)
=[ln, — ()P} (p, 1) s (p,1)] b1 (1)
+ (1) Py (p,)[Y (p,1) = Pu(p,t)a]. (27
Similarly to the derivation of the 2S-GI algorithm in
(13)-(23), Equations (25) and (27) can be seen as two
discrete-time systems of the state variables a (¢) and by (¢).
In order to make sure of the convergence of the pa-
rameter estimation vectors d; and l;k, all the eigenval-
ues of matrices [I,, — W (1)@ (p,t)P,(p,t)] and [I,, —

U ()P, (p,1)Pp(p,1)] must be in the unit circle, that is
to say, W (7) and Uy (¢) must satisfy

+m ()2,

<[y

— 1, <L, — ()P (p,1)Pu(pst) < I,
_I"b < I”h —,ug(l‘)CI)Z(pJ)CDb(p,t) < I”h'

Therefore, the step-sizes can be conservatively chosen as

() < :
2 A L (0, 1) Pu(p,1)]
- 2)Lmax [@Z(p,t)(ba(p,t)], (28)
2
H0) = 5 (.00 (1)
_2}Lmax[ ( 7t)q>b(pat)]' (29)

In consideration of the computational complexity, we take
the step-sizes as

2

pi(t) < EXCDIE =2(|Pu(p.1)]| %, (30
2

Ho(t) < DL =2||®y(p,1)|| > (3D

Remark 3: Similar to (11) and (12), we use the traces
of the matrices ®,(p,t) and ®,(p,?) in (30) and (31) to
replace the complicated eigenvalues of square matrices in
computing the convergence factors (1 (¢) and U, (t), so as
to reduce the computational cost of finding the conver-
gence factors.

To obtain a realizable algorithm, we replace the un-
known parameters b and a in (24) and (26) with their esti-
mates by (¢) and @z (¢). Combining (28) to (31), we can
obtain the two-stage multi-innovation gradient-based iter-
ative (2S-MIGI) algorithm for estimating parameter vec-
tors a and b:

a(t) = a1 () + (1)@ (p, )Y (py1)
—®u(p, 1)1 (1) — Pp(p,)bx1 (1)), (32)

(p,
>||‘2 (33)
bi(t) = b1 (£) + 12 ()@} (1) [Y (pot)

—®,(p, D1 (t) —Dp(p,0)bs_1(1)],  (34)
1o(t) = A [ (p,1) Dy (p,1)]
Ha(1) = [|@(p,1)[| 72, (35)
Y(p,t) =[y(t),y(t—=1), - .yt —p+ D], (36)
@y (p,t) = [@,(1), @, (t—1), -, @, (t—p+1)]", (37)
@y (p,1) = [@,(1), p(t—1),, @p(t—p+1)]", (38)
Q1) =[—y(t=1),+, =yt —na)[", (39)
0,(t) = [u(t — 1), u(t —2),- ut —ny)]", (40)
ar(t) = a1k (t),arp(t), -, dn,k(1)]", 41)
bi(t) = [bra(t),boi(t), -+ by i (1)]" (42)

If we take p =t = L, then the 2S-MIGI algorithm in
(32)-(42) reduces to 2S-GI algorithm in (13)-(23).

The procedure of computing the parameter estimation
vectors (1) and by(t) by the 2S-MIGI algorithm in (32)-
(42) is listed as follows:

1) Fort <0, all the variables are set to to be zero. Let k =
1, give the moving data window length p (p > n,+ny)
and set the initial values: ay = 1,,/po, by = 1.,/ po,
po = 10%, the maximum iteration k., and €.

2) Let k =1, collect the input and output data u(r) and
¥(t), form the information vectors ¢, (¢) and @, () us-
ing (39)-(40).

3) Construct the stacked output vector Y (p,#) by (36) and
the stacked information matrices ®,(p,t) and ®,(p,t)
by using (37)-(38).

4) Compute the step-sizes u;(¢) and u,(r) according to
(33) and (35).

5) Update the parameter estimation vectors dx(r) and
Ek(t) by using (32) and (34). Read out the estimates
Gix (1) and b (1) from (41) and (42).

6) If k < kmax, increase k by 1 and go to Step 5; otherwise,
proceed to the next step.

7) Compare a(r) and by(r) with & 1(¢) and by (r):
If ||ag(t) — g1 ()] + \A|IA9k(t) - l;k,lA(t)H > g, then set
ao(t+1) := ay(t) and bo(r + 1) := bi(t), increase 7 by
1 and go to Step 2; otherwise, obtain the parameter
estimation vectors a (¢) and by (¢), terminate this com-
putational procedure.

Remark 4: The 2S-MIGI algorithm both have the time
variable ¢ and the iterative variable k. At time #, we collect
p data in a moving data window with the fixed length and
compute the parameter estimates a; () and by (r) with k in-
creasing. If there is no significant change in the parameter
estimates with increasing k, we increase ¢ rather than k and
introduce new data into the algorithm.
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Remark 5: Compared with the 2S-GI algorithm in
(13)-(23), the 2S-MIGI algorithm can track time-varying
parameters. Because the 2S-MIGI expands the dimen-
sions of the innovation and makes full use of the system
information. For k=1,2,--- ,kyn.x — 1, we use the newest
p datafrom j =t — p+ 1 to j =1 to estimate the parameter
vectors. For k = kn.x, we move the data window forward
to the next moment, introduce new observation data and
eliminate the oldest data to keep p data in the data win-
dow. Based on the above idea, we repeat the iterative pro-
cess until we obtain the satisfactory parameter estimates.

At each iterative estimation, both the 2S-GI and the 2S-
MIGTI algorithms use the data with the fixed length to iden-
tify the unknown parameters, and the iterative computing
continues with increasing iteration variable k. The dif-
ference is that, the iterative computing of the 2S-GI al-
gorithm stops when k = kyax, Where kyax 1S the iterations
for desirable parameter estimation accuracy; for the 2S-
MIGTI algorithm, when k = ky,x, the iterative estimation
will continue with the data window moved forward to the
next moment. This is also the reason why the 2S-MIGI al-
gorithm can track time-varying parameters compared with
the 2S-GI algorithm. The 2S-MIGI algorithm is the exten-
sion of the 2S-GI algorithm, or the 2S-GI algorithm is the
special case of the 2S-MIGI algorithm.

S. THE GRADIENT-BASED ITERATIVE
ALGORITHM

In order to show that the proposed 2S-GI algorithm can
generate highly accurate parameter estimates, the follow-
ing gives the gradient-based iterative (GI) algorithm for

“ } of the CAR

estimating the parameter vector ¥ := { b

system in (1):

Bie = D1+ p@ (L)Y (L) — D(L) Dy 1], (43)

1= [®(L)D(L)], or u=|DL)|7  (44)

Y(L) = [y(1),y(2), -, y»@D)]"s (45)

CI)(L) = [qD(l),(p(Z),~ o 7¢(L)]T7 (46)
_ | 9.(0)

o) =| 20 |. @)
¢, (1) =[— (t—l) Y(t—=2), =yt —ng)|", 48)
©,(t) =[u(t—1),u(t—2), - ,u(t —np)]". (49)

- [ Z" ] (50)

ar = [Q1je, Ao ge,- - 1 Any i) (51

b = [Bl,k,léz,k, coo by ] (52)

The 2S-GI algorithm can generate more accurate pa-
rameter estimates than the GI algorithm. The proposed
2s-Gl algorithm and 2S-MIGI algorithm for controlled au-
toregressive systems can combine other estimation algo-

rithms [29-31] to explore new identification methods of
different systems with colored noises [32—-37] and can be
applied to other fields such as information processing and
communication [38—44].

6. EXAMPLE

Consider the following second-order controlled autore-
gressive system:

A(2)y(t) = B(z)u(t) +v(1),
AR)=14+a1z " +az 2 =14+1.357140.7572,
B(z) = bz bz 2 =1.687""+2.32:72.

The parameter vector to be identified is given by

U= [(ll,az,bl,bz]T = [135,0757 168,232]T

In simulation, the input {u(¢)} is taken as an uncorrelated
stochastic signal sequence with zero mean and unit vari-
ance, {v(¢)} is taken as a white noise sequence with zero
mean and variance 6. We use the example parameters
and the input signal generates the output signal sequence
{y@®)}.

Taking the noise variances 6> = 0.50 and 6> = 1.50,
respectively, the corresponding noise-to-signal ratios are
Ons = 33.78% and &,s = 101.33%. Taking the data length
L = 3000, applying the GI and 2S-GI algorithms and the
input-output data {u(r),y(¢): + =1,2,---,L} to estimate
the parameters of this example system, the GI and 2S-
GI parameter estimates and errors versus k are shown in
Tables 1 to 4, the GI and 2S-GI estimation errors § :=
|3 (t) — || /||| versus k are shown in Figs. 1 and 2 with
02 = 0.50% and 6% = 1.50%, and the GI and 2S-GI es-
timates of the parameters a;, a,, b; and b, versus k are
shown in Figs. 3 and 4 for 6% = 1.50°.

From Tables 1-4 and Figs. 1-4, we draw the following
conclusions:

e As the noise levels decrease, the GI and 2S-GI algo-
rithms can give more accurate parameter estimates -
see and compare the parameter estimation errors in
the last columns in Tables 1 and 2, and in Tables 3
and 4.

e The 2S-GI parameter estimation errors tend to zero
faster than the GI parameter estimation errors - see
the GI and 2S-GI estimation error curves in Figs. 1
and 2.

e Under the same noise levels, the 2S-GI algorithm can
give more accurate parameter estimates than the GI
algorithm - see the parameter estimation errors in the
last columns in Tables 1 and 3 and in Tables 2 and 4,
and compare the parameter estimation error curves in
Figs. 1 and 2.
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Table 1. The GI estimates and their errors with 62 = 0.502.

k a a b, b, 8 (%)
1 0.37465 -0.04311 0.07643 0.00366 94.80048022
2 0.50048 0.08091 0.15063 0.03563 90.77808869
5 0.73119 0.30193 0.35429 0.17235 81.03294080
10 0.89670 0.44666 0.63673 0.43991 68.16606805
20 1.03276 0.54489 1.03527 0.91685 48.85155929
50 1.22057 0.66760 1.53018 1.74466 18.86833601
100 1.31967 0.73236 1.67003 2.18910 4.17567060
150 1.34189 0.74693 1.68257 2.28945 0.97914391
200 1.34690 0.75022 1.68366 2.31211 0.28382179
True values 1.35000 0.75000 1.68000 2.32000
Table 2. The GI estimates and their errors with 62 = 1.502.
k a; a b, b, S (%)
1 0.40419 -0.09774 0.03871 0.00127 95.62556223
2 0.52849 0.02605 0.07719 0.01802 92.53172774
5 0.77934 0.27426 0.18776 0.09185 85.51106304
10 0.97476 0.46353 0.35621 0.25142 76.85043759
20 1.09838 0.57410 0.63948 0.58087 62.98815992
50 1.20883 0.65557 1.17798 1.31009 35.04771968
100 1.29146 0.71446 1.53679 1.91203 13.45227896
150 1.32465 0.73817 1.64518 2.15478 5.25923540
200 1.33802 0.74773 1.67770 2.25281 2.09961774
True values 1.35000 0.75000 1.68000 2.32000
Table 3. The 2S-GI estimates and their errors with 62 = 0.502.
k a a b, b, S (%)
1 0.37572 -0.04323 1.61535 0.07731 79.01908360
2 0.51210 0.07990 1.66516 0.66077 60.71998715
5 0.85747 0.34711 1.67069 1.32367 36.32947056
10 1.14245 0.58174 1.67830 1.90179 15.25053891
20 1.31214 0.72137 1.68279 2.24539 2.71856140
50 1.34816 0.75101 1.68374 2.31832 0.14149581
100 1.34836 0.75117 1.68374 2.31872 0.13649796
150 1.34836 0.75117 1.68374 2.31872 0.13649723
200 1.34836 0.75117 1.68374 2.31872 0.13649723
True values 1.35000 0.75000 1.68000 2.32000
Table 4. The 2S-GI estimates and their errors with 6 = 1.507.
k a a by b, S (%)
1 0.40448 -0.09781 1.64023 0.05364 79.84208003
2 0.53307 0.02506 1.69099 0.68996 60.29629113
5 0.84810 0.29961 1.68855 1.30870 37.35311552
10 1.12344 0.55047 1.69009 1.86655 16.74281499
20 1.30215 0.71329 1.69107 2.22842 3.38681701
50 1.34670 0.75388 1.69132 2.31863 0.38362505
100 1.34707 0.75421 1.69132 2.31937 0.38237428
150 1.34707 0.75421 1.69132 2.31937 0.38237419
200 1.34707 0.75421 1.69132 2.31937 0.38237419
True values 1.35000 0.75000 1.68000 2.32000
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Fig. 3. The GI estimates versus k with 6% = 1.50°.

e The 2S-GI parameter estimates approach to their true
values faster the GI parameter estimates - see and
compare the parameter estimates versus k in Figs. 3
and 4.

7. CONCLUSIONS

In this paper, the identification problems of controlled
autoregressive systems have been studied. By adopting
the hierarchical identification principle, we define two fic-
titious output variables and decompose the original system
into two subsystems. Then a two-stage gradient-based it-
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Fig. 4. The 2S-GI estimates versus k with 62 = 1.507.
erative algorithm is proposed based on the gradient search
principle. By means of the multi-innovation identification
theory, we propose a two-stage multi-innovation gradient-
based iterative algorithm. The simulation results indicate
that the proposed algorithms are effective. In addition,
the 2S-MIGI algorithm can track time-varying parame-
ters. The proposed methods proposed in this paper can
combine other tools and strategies [45-54] to study the
parameter estimation problems of time-varying systems,
nonlinear systems and multivariable systems, and can be
applied to other literatures [55—65] such as system identi-
fication [66-69].
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