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A PD-type Iterative Learning Control Algorithm for One-dimension Lin-
ear Wave Equation
Meryem Hamidaoui, Cheng Shao* � , and Samia Haouassi

Abstract: Many applications can be described by the wave equation, as a kind of important second order partial
differential equations. This paper suggests applying PD-type iterative learning control (ILC) scheme with initial
state learning (ISL) to a class of linear one-dimensional wave equation. A sufficient condition is given to insure the
convergence of the tracking errors. Finally, a numerical simulation is presented to illustrate the efficiency of the
proposed method.
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1. INTRODUCTION

Partial Differential Equations (PDE) are found in many
engineering applications [1]. As one of the most important
second order PDE, the wave equation has been used in dif-
ferent domain, such as physics, biology and engineering
[1–5], where it is commonly used to define waves, i.e., the
transmission of electric signals in a cable, the vibrations of
a string, water waves, the propagation of electromagnetic
and sound waves [6]. Many efforts had been made to-
ward to control of wave equations [7–9]. However, due to
uncertainties causing from engineering applications, e.g.
measuring errors and/or unknown disturbances, it is dif-
ficult to find a precise mathematical model of the plant.
Therefore, some control methods with weakly dependent-
model or model free are presented in the literature. The It-
erative Learning Control (ILC) is becoming an alternative
method to solve this problem because of its weak model-
dependence. A better control system performance can be
obtained by repeating the action and learning trail by trail.
The ILC was proposed for the first time by Arimoto in
1984 [10]. In recent years, the ILC has become a hot area
and has attracted broad attention. This control method was
proved to be a more efficient method to get the optimal
control problem based on differential equations [11–22].
However, a few contributions on the ILC for partial dif-
ferential equation can be found in [23–27]. By using the
semi-group theory, the P-type and D-type ILC were con-
sidered for the parabolic PDEs [23–25]. In [23], a D-type
anticipatory iterative learning control scheme is proposed

to solve the problem of the boundary control of inhomo-
geneous heat equations, in which the PDE system is trans-
formed into its integral form and thus the direct input-
output relationship is utilized for convergence analysis. A
P-type ILC is applied to a class of discrete parabolic dis-
tributed parameter systems described by partial differen-
tial equations in [24]. A discrete D-type ILC algorithm
was proposed for a system governed by a parabolic par-
tial differential equation in [25] where the systems have
no direct channel between the input and the output. The
ILC was also considered for the hyperbolic PDEs. In [26],
the authors study the application of the iterative learn-
ing control for a class of mixed hyperbolic-parabolic dis-
tributed parameter systems. Further, the application of
the P-type iterative learning control to the wave equation
in case of boundary control was presented in [27]. The
PD controller, a particular kind of common PID controller
with an open-loop feedback mechanism broadly used in
industrial control systems and a variety of other applica-
tions requiring continuously a modulated control to de-
sign iterative learning controller. As a combination be-
tween the D-type and the P-type, so his learning func-
tions consist of a proportional and derivative gain on the
error, also, the PD-type controller has the advantage of
both types. The PD-type learning function and its var-
ious variations are arguably the widest design techniques
and commonly used in the practical system and non-linear
systems, see [28] and [29]. These learning functions rely
on tuning law, not requiring an accurate model for im-
plementation. There are a few contributions to apply the
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PD-type iterative learning control to the partial differen-
tial equations. In [30], a combined ILC and a proportional
control algorithm are proposed to suppress the unknown
periodic speed variation of a stretched string system. Sim-
ilarly, a PD-controller is provided with an ILC algorithm
in [31] to handle the periodic uncertainties of an axially
moving material system. In [32], the PD-type ILC algo-
rithm was proven to be feasible and effective when it is
imposed on the linear switched systems with arbitrarily
switching rules. In [33], the PD-type iterative learning
control scheme is applied to a class of affine non-linear
time-delay systems with external disturbances. In [34],
the PD-type iterative learning control scheme was used to
study the state tracking for a class of discrete singular sys-
tems. The mutual assumption in the ILC is that the initial
states in every repetition must be equal or the same as the
desired output, this assumption is essential for the stabil-
ity analysis, some efforts have been made to change this
assumption and to eliminate the effect of the initialization
errors, one of the methods proposed is using the initial
state learning to overcome this problem. Motivated by the
above assertion, in this paper, a PD-type open-loop itera-
tive learning scheme with initial state learning is proposed
for the one-dimension wave equation, and the proof of the
method converges in L2 space in sense of λ -norm is also
given. The main contributions of this work are:

• The system considered in this paper is a system gov-
erned by a one-dimensional wave equation.
• The control method proposed in this work is a PD-

type ILC, the convergence theorem of the error in the
iteration domain is given.
• Instead of considering the boundary control as in [27],

in this paper we consider the distributed control of a
system described by a one-dimensional wave equa-
tion.
• In this paper, rather than to consider that the initial

value conditions are fixed as in [26], the initial state
will change according to an iterative learning updat-
ing law based on the error.
• To prove the convergence of the method, some basic

mathematical tools are used instead of the form of the
exact solution.

The remaining parts of this work are organized as below:
Section 2 we give a description of our problem. In Sec-
tion 3 we give the theorem of convergence of the method
in L2 space in sense of λ -norm, the proof of this theorem
is also presented in this section. In Section 4, we give
a numerical simulation that illustrate the efficacy of the
method. Finally, in Section 5, we will present the con-
clusion of this work. Throughout this paper, for a func-
tion y(x, t) : (a,b)× (0,1)→ R, a,b ∈ R+, take the norm

||y(·, t)||L2 =
√∫ b

a y(x, t)2dx, and the λ -norm of the func-

tion is given by ‖y‖λ = max
t∈(0,1)

(e−λ t‖y(·, t)‖2
L2).

2. PROBLEM STATEMENT

Firstly, we give a small description of the linear inho-
mogeneous wave equation with Neumann boundary con-
ditions and inhomogeneous initial conditions.

∂ 2y
∂ t2 (x; t)−

n

∑
0

∂ 2y
∂x2

i
(x; t) = h(x, t),

x = (x1; ...;xn) ∈Ω; t ∈ [0;1]

∂y
∂~n

(x; t) = 0; x ∈ ∂Ω; t ∈ [0;1],

y(x;0) = f (x);
∂y
∂ t

(x;0) = g(x); x ∈Ω.

(1)

Ω⊂Rn,~n is the normal vector to Ω, ∂Ω is the boundary of
Ω. h : Ω× (0,1)→R, f , g : Ω→R,h, f and g are smooth
functions.

Remark 1: Many non-linear problems can be lin-
earised, so in this work, we choose to study the application
of the iterative learning control to the linear wave equa-
tion. Some problems cannot be linearised, we will focus
on this in our next work.

Remark 2: The controllability, the existence and the
uniqueness of the solution of the problem (1) are given in
[35].

Remark 3: In this paper, we will apply the iterative
learning control PD-type to the linear wave PDE governed
by (1). For convenience we take n = 1. When n > 1,
the PD-type ILC design would be different, and will be
discussed in our future work.

Now the plant (1) is excited by input u(x, t), instead of
h(x, t) with an output measurement z(x, t), which is de-
scribed by the following:



∂ 2y
∂ t2 (x, t)−

∂ 2y
∂x2 (x, t) = u(x, t),

x ∈ [a,b], t ∈ [0,1],

z(x, t) = Ay(x, t)+B
∫ t

0
u(x,s)ds,

x ∈ [a,b], t ∈ [0,1], A, B > 0,

∂y
∂x

(x,0) = r(t);
∂y
∂x

(b, t) = v(t); t ∈ [0,1],

y(x,0) = f (x);
∂y
∂ t

(x,0) = g(x); x ∈ [a,b].

(2)

a, b ∈ R, y(x, t) represents the state, u(x, t) represents the
control input and z(x, t) represents the measured output.

Remark 4: The form of the output is frequently used
in case of D-type ILC, refer to [36]. In this research, A
and B are positive constant.

The system (1) is repeatable over t ∈ [0,1]. Then the
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system (2) can be rewritten at iterations as
∂ 2yk

∂ t2 (x, t)− ∂ 2yk

∂x2 (x, t) = uk(x, t),

zk(x, t) = Ayk(x, t)+B
∫ t

0
uk(x,s)ds,

x ∈ [a,b], t ∈ [0,1], A, B > 0.

(3)

The PD-type iterative learning control scheme in this pa-
per is considered as follows:uk+1(x, t) = uk(x, t)+L1ek(x, t)+L2

∂ek

∂ t
(x, t),

yk+1(x,0) = yk(x,0)+L3ek(x,0).
(4)

k = 1,2, ... represent the iteration numbers. L1,L20. L1 is
the the proportional gains and L2 differential gains. L1,L2

and L3 are the designed parameters and will be given in the
sequel. Now the PD-type iterative learning control scheme
(4) will be applied to the plant (3), where the controller
doesn’t depend precise model of (1).
ek(x, t) is the tracking error and it is defined as follows:
ek(x, t) = zd(x, t)− zk(x, t), where zd(x, t) is the desired
output, zk(x, t) is the system output at the kth the itera-
tion, respectively. The subsequent analysis of this paper is
based on the following assumptions.

Assumption 1: The plant (2) is referred to realizable,
i.e., for the desired output zd (x,t)there exist yd(x, t) and
ud(x, t) such that

∂ 2yd

∂ t2 (x, t)− ∂ 2yd

∂x2 (x, t) = ud(x, t),

zd(x, t) = Ayd(x, t)+B
∫ t

0
ud(x,s)ds.

Assumption 2: The following boundary conditions
hold for all iterations k = 0,1,2, . . . i.e.,

∂yk

∂x
(a, t) = r(t),

∂yk

∂x
(b, t) = v(t), t ∈ [0,1].

Remark 5: Assumption 1 means that for the desired
output there exist realizable a pair of input and state out-
put such that the plant (2) can reach to the desired system
output. Assumption 2 means that every iteration will be
kept on boundary.

The main contribution is to construct an iterative learn-
ing control law of PD (4) for the one-dimensional linear
wave equation (2) or an iterative form (3), and it is proven
theoretically that for the desired target zd the tracking er-
ror ek(x, t) = zd(x, t)−zk(x, t) will tend to zero and uk will
tend to the desired input ud as k increases by trails. Such
a convergence analysis will be made in the sequel.
A preliminary lemma is given as follows.

Lemma 1: suppose that ak and bk are non-negative real
sequence satisfying, a(k+1)≤ ρak +bk. If 0≤ ρ < 1 and
bk→ 0 when k→ ∞, then ak→ 0 when k→ ∞.

The proof is easy to complete.

3. CONVERGENCE ANALYSIS

Theorem 1: Suppose that Assumptions 1 and 2 are sat-
isfied. If

(1−BL2)
2 +(AL2)

2 <
1
3
,

and

|1−AL3|< 1,

then the iterative process of the system (3) is convergent,
under the effect of the control law, i.e.,

||ek||λ → 0 when k→ ∞

to prove this theorem, we need the following lemma.

Lemma 2: If

|1−AL3|< 1,

then for all and arbitrary initial input u0(x, t), the open-
loop PD-type ILC updating law (4) guarantees that

lim
k→∞

||ek||L2 = 0.

Proof: ek+1(x,0) = zd(x,0) − zk+1(x,0) = ek(x,0) +
A(yk(x,0)−yk+1(x,0))= (1−AL3)ek(x,0), ||ek+1(·,0)||L2 ≤
|1− AL3|2||ek(·,0)||L2 , According to (5) and Lemma 1
with bk = 0,

lim
k→∞

||ek||L2 = 0.

This ends the proof of Lemma 2. �

Proof of Theorem 1: To prove Theorem 1, we need to
prove that

lim
k→∞

||ek||λ = 0.

Let ∆uk(x, t) = u(k + 1)(x, t) − uk(x, t),wk(x, t) =
yk+1(x, t)− yk(x, t),

d
dt
||ek||2L2 =

d
dt

∫ b

a
ek(x, t)2dx

=
∫ b

a

∂ek

∂ t
(x, t)ek(x, t)dx

≤||∂ek

∂ t
(·, t)||2L2 + ||ek(·, t)||2L2 . (5)

Appling the Gronwall lemma, we get

d
dt
||ek||2L2 ≤ ||

∂ek

∂ t
(·, t)||2L2+

∫ t

0
||∂ek

∂ t
(·,µ)||2L2 et−µ dµ,

(6)

||ek(·, t)||2L2 +
∫ t

0

∫ s

0
||∂ek

∂ t
(.,µ)||2L2 es−µ dµds
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≤
∫ t

0
||∂ek

∂ t
(.,µ)||2L2 dµ + ||ek(·,0)||2L2

≤ ||∂ek

∂ t
||λ
∫ t

0
eλ µ dµ

+ ||∂ek

∂ t
||λ
∫ t

0

∫ s

0
eλ µ es−µ dµds

+ ||ek(·,0)||2L2 ≤ ||
∂ek

∂ t
||λ (

eλ t −1
λ

− et −1
λ −1

− eλ t −1
λ (λ −1)

)+ ||ek(·,0)||2L2 , (7)

e−λ t ||ek(·, t)||2L2 ≤ ||
∂ek

∂ t
||λ
(1− e−λ t

λ

− et−λ t − e−λ t

λ −1
+

1− e−λ t

λ (λ −1)

)
+ e−λ t ||ek(·,0)||2L2 , (8)

||ek||λ ≤ ||
∂ek

∂ t
||λ max

t∈(0,1)
(

1− e−λ t

λ
− et−λ t − e−λ t

λ −1

+
1− e−λ t

λ (λ −1)
)+ ||ek(·,0)||2L2 , (9)

||ek||λ ≤ ||
∂ek

∂ t
||λ (

1− e−λ

λ
+

1− e−λ

λ (λ −1)
)

+ ||ek(·,0)||2L2 . (10)

To prove that the method converge we must proof that
|| ∂ek

∂ t ||λ , when k→ ∞.

ek+1(x, t) = zd(x, t)− zk+1(x, t)ek(x, t)

+A(yk(x, t)− yk+1(x, t)

+B
∫ t

0
(uk(x,s)−uk+1(x,s))ds

= ek(x, t)−Awk(x, t)

−B(L2ek(x, t)−L1

∫ t

0
ek(x,s)ds)

+BL2ek(x,0), (11)

∂ek+1

∂ t
(x, t) = (1−BL2)

∂ek

∂ t
(x, t)

−A
∂wk

∂ t
(x, t)−BL1ek(x, t). (12)

Appling the Young inequality and using the L2-norm pro-
priety we get

||∂ek+1

∂ t
(·, t)||2L2 ≤ 3(1−BL2)

2||∂ek

∂ t
(·, t)||2L2

+3A2||∂wk

∂ t
(·, t)||2L2

+3(BL1)
2||ek(·, t)||2L2 , (13)

||∂ek+1

∂ t
||λ ≤ 3(1−BL2)

2||∂ek

∂ t
||λ +3A2||∂wk

∂ t
||λ

+3(BL1)
2||ek||λ +3(AL1)

2||∂ek

∂ t
||λ ,

(14)

replacing (10) in (14) we get

||∂ek+1

∂ t
||λ ≤3((1−BL2)

2 +(AL1)
2)||∂ek

∂ t
||λ

+3A2||∂wk

∂ t
||λ +3(BL1)

2
(1− e−λ

λ

+
1− e−λ

λ (λ −1)

)
||∂ek

∂ t
||λ

+3(BL1)
2||ek(·,0)||2L2 . (15)

Let αλ = 1−e−λ

λ
+ 1−e−λ

λ (λ−1) =
1−e−λ

λ−1 , then we will have

||∂ek+1

∂ t
||λ ≤3((1−BL2)

2 +(AL1)
2

+αλ (BL1)
2)||∂ek

∂ t
||λ +3A2||∂wk

∂ t
||λ

+3(BL1)
2||ek(·,0)||2L2 , (16)

we also have

∂ 2wk

∂ t2 (x, t)− ∂ 2wk

∂x2 (x, t) = ∆uk(x, t).

Multiplying both side by ∂wk
∂ t (x, t) and integrating with re-

spect to x from a to b, we get∫ b

a

∂wk

∂ t
(x, t)

∂ 2wk

∂ t2 (x, t)dx

−
∫ b

a

∂wk

∂ t
(x, t)

∂ 2wk

∂x2 (x, t)dx

=
∫ b

a

∂wk

∂ t
(x, t)∆uk(x, t)dx, (17)

while∫ b

a

∂wk

∂ t
(x, t)

∂ 2wk

∂ t2 (x, t)dx =
1
2

d
dt
||∂wk

∂ t
(·, t)||2L2 ,

(18)∫ b

a

∂wk

∂ t
(x, t)∆uk(x, t)dx

≤ 1
2
||∂wk

∂ t
(·, t)||2L2 +

1
2
||∆uk(·, t)dx||2L2 , (19)∫ b

a

∂wk

∂ t
(x, t)

∂ 2wk

∂x2 (x, t)dx

=−1
2

d
dt

∫ b

a

(
∂wk

∂x
(x, t)

)2
dx. (20)

From the above formula we can get

d
dt
||∂wk

∂ t
(·, t)||2L2 +

d
dt

∫ b

a
(

∂wk

∂x
(x, t))2dx

≤ ||∂wk

∂ t
(·, t)||2L2 + ||∆uk(·, t)dx||2L2 , (21)

we have
∫ b

a (
∂wk
∂x (x, t))

2dx ≥ 0, adding
∫ b

a (
∂wk
∂x (x, t))

2dx to
the second term of (21) we can get

d
dt
(||∂wk

∂ t
(·, t)||2L2 +

∫ b

a
(

∂wk

∂x
(x, t))2dx)
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≤ ∂wk

∂ t
(·, t)||2L2 +

∫ b

a
(

∂wk

∂x
(x, t))2 + ||∆uk(·, t)dx||2L2 .

(22)

Appling the Gronwall Lemma, we get

d
dt
(||∂wk

∂ t
(·, t)||2L2 +

∫ b

a
(

∂wk

∂x
(x, t))2dx)

≤ ||∆uk(·, t)dx||2L2+
∫ t

0
||∆uk(.,µ)dx||2L2 et−µ dµ. (23)

From another side we have

||∂wk

∂ t
(·, t)||2L2 ≤||

∂wk

∂ t
(·, t)||2L2

+
∫ b

a
(

∂wk

∂x
(x, t))2dx. (24)

So, we can get

||∂wk

∂ t
||λ ≤ (

1− e−λ

λ
+

1− e−λ

λ (λ −1)
)||∆uk||λ

= αλ ||∆uk||λ , (25)

we also have

||∆uk||λ = ||uk+1−uk||λ = ||L1ek−L2
∂ek

∂ t
||λ

≤ L2
1||ek||λ +L2

2||
∂ek

∂ t
||λ , (26)

from (10), (25) and (26), we get

||∂wk

∂ t
||λ ≤αλ (L2

1(αλ ||
∂ek

∂ t
||λ + ||ek(·,0)||2L2)

+L2
2||

∂ek

∂ t
||λ ). (27)

Replacing (27) in (16)

||∂ek+1

∂ t
||λ

≤ 3((1−BL2)
2 +(AL1)

2 +αλ (BL1)
2)||∂ek

∂ t
||λ

+3A2
αλ (L2

1(αλ ||
∂ek

∂ t
||λ + ||ek(·,0)||2L2)

+L2
2||

∂ek

∂ t
||λ )+3(BL1)

2||ek(·,0)||2L2 ,

||∂ek+1

∂ t
||λ

≤ 3((1−BL2)
2 +(AL1)

2 +αλ ((BL1)
2

+(AL2)
2)+(αλ AL1)

2)||∂ek

∂ t
||λ

+3(αλ (AL1)
2 +(BL1)

2)||ek(·,0)||2L2 . (28)

Let γ = (1− BL2)
2 + (AL1)

2 + αλ ((BL1)
2 + (AL2)

2) +
(αλ AL1)

2, we get,

||∂ek+1

∂ t
||λ ≤3γ||∂ek

∂ t
||λ

+3(αλ (AL1)
2 +(BL1)

2)||ek(·,0)||2L2 .
(29)

It is observed that when λ → ∞, αλ → 0, and from the
theorem we will have 0≤ γ < 1, so according to Lemma 1
and Lemma 2,|| ∂ek+1

∂ t ||λ → 0 when k→ ∞. And form (10)
we can have, ||ek||λ → 0,when k→ ∞.

This end the proof of Theorem 1. �

4. NUMERICAL SIMULATION

In order to illustrate the effectiveness of the ILC men-
tioned in this paper, a specific numerical example is con-
sidered as the following system. Without losing genera-
tion taking: a = 0, b = π , A = B = 1, then we have the
following system:

∂ 2y
∂ t2 (x, t)−

∂ 2y
∂x2 (x, t)=u(x, t); x∈ [0,π], t∈ [0,1],

z(x, t) = Ay(x, t)+B
∫ t

0
u(x,s)ds,

∂y
∂x

(0, t) = t− sin t +1; t ∈ [0,1],

∂y
∂x

(π, t) = t− sin t +1−2π; t ∈ [0,1],

y(x,0) = 0;
∂y
∂ t

(x,0) = 0; x ∈ [a,b].

For the given desired output zd (x, t) = yd (x, t) +∫ t
0 ud (x,τ)dτ ,such that yd (x, t) = xt−xsin(t)+x−x2− t2

and ud (x, t) = xsin(t). According to theorem, we must

take 0 < L1 < 0.57 and −
√

1
3 −L2

1 + 1 < L2 < 1, so that
the convergence of the method will be satisfied, in this ap-
plication, we take L1 = 0.5, L2 = 0.8, L3 = 0.5, and for the
first iteration we take u0 (x, t) = 0, the input and the initial
conditions for the first iteration are equal to zero so the
existence and uniqueness of the solution of the problem is
assured. The simulation results are shown in Figs. 1-6.

Fig. 1 shows the λ -norm of the error-iteration number.
Fig. 2 shows the desired output and the system output at
k = 0 (here for x = π/2). Fig. 3 shows the desired output
and the system output in the 12th iteration (here for x =
π/2). Fig. 4 shows the desired output and the output in
the 17th iteration (here for x = π/2). From Figs. 2 and 3
we can see that the output gets closer to the desired result
with the increase of iteration, what mean the effectiveness
of the control method. Fig. 4 and Fig. 5 show the desired
output and the output at the 17th, respectively.

5. CONCLUSION

In this work, the Iterative Learning Control with ini-
tial state learning for a class of linear inhomogeneous
wave equation was proposed. By choosing the PD-type
scheme the convergence theorem of this control method
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Fig. 1. λ -norm of the tracking error versus number of it-
erations.
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12th iteration.
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in L2 space in the sense of λ -norm was presented and
proven. The simulation result is consistent with the the-
oretical one.
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