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Adaptive Dynamic Programming for Minimal Energy Control with Guar-
anteed Convergence Rate of Linear Systems
Kai Zhang, Suoliang Ge* ■ , and Yuling Ge

Abstract: The traditional linear quadratic optimal control can be summarized as finding the state feedback con-
troller, so that the closed-loop system is stable and the performance index is minimum. And it is well known that
the solution of the linear quadratic optimal control problem can be obtained by algebraic Riccati equation (ARE)
with the standard assumptions. However, results developed for the traditional linear quadratic optimal control prob-
lem cannot be directly applied to solve the problem of minimal energy control with guaranteed convergence rate
(MECGCR), because the standard assumptions cannot be satisfied in the MECGCR problem. In this paper, we
mainly consider the problem of MECGCR and prove that ARE can be applied to solve the MECGCR problem un-
der some conditions. Furthermore, with the assumption that the system dynamics is unknown, we propose a policy
iteration (PI) based adaptive dynamic programming (ADP) algorithm to iteratively solve the ARE using the online
information of state and input, without requiring the a priori knowledge of the system matrices. Finally, a numerical
example is worked out to show the effectiveness of the proposed approach.

Keywords: Adaptive dynamic programming, guaranteed convergence rate, minimal energy control, policy iteration.

1. INTRODUCTION

The linear quadratic regulator (LQR) has been widely
used in various industrial applications [1–4] due to its high
practicability, high efficiency and simple structure. Such
a controller design method can be described as follows.
Consider a continuous-time linear system described by

ẋ = Ax+Bu, (1)

where x ∈Rn is the system state vector; u ∈Rm is the con-
trol input; A ∈ Rn×n and B ∈ Rn×m are constant matrices.
Finding a state feedback controller in the form of

u =−Kx, (2)

which minimizes the following performance index

J(x0,u) =
∫ ∞

0
(xT Qx+uT Ru)dt, (3)

where x0 is the initial state vector of system; Q = QT ≥ 0,
R = RT > 0. The solution of the LQR can be obtained by
the following ARE [5]

AT P+PA+Q−PBR−1BT P = 0. (4)

Equation (4) has a unique symmetric positive definite so-
lution P∗

LQR, if the following standard assumptions are
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satisfied: 1) The pair (A,B) is stabilizable; 2) The pair
(A,Q1/2) has no unobservable modes on the imaginary
axis. Then the optimal feedback gain matrix in (2) can
thus be determined by

K∗
LQR = R−1BT P∗

LQR. (5)

Since (4) is nonlinear in P, it is usually difficult to di-
rectly solve it, especially for high-order systems. Never-
theless, many efficient algorithms have been proposed to
numerically approximate the solution to (4). One of such
algorithms is the famous Kleinman algorithm [6]. Accord-
ing to the Kleinman algorithm, the solution of the ARE
can be numerically approximated by iteratively solving
the Lyapunov equation. However, the information of the
system is needed in the Kleinman algorithm. When the in-
formation of the system is unknown, the general approach
to design an adaptive optimal control law can be pursued
by first identifying the system parameters, and then solv-
ing the related ARE [7, 8]. However, this algorithm re-
sponds slowly to parameter variations of the system.

Inspired by the learning behavior from biological sys-
tems, reinforcement learning (RL) theories have been
broadly applied for solving optimal control problems for
unknown systems in recent years [9–13]. With the help
of RL, an adaptive optimal control scheme for linear sys-
tems with unknown internal system dynamics was studied
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in [14–16]. However, this method is based on the case
that partial knowledge of the system dynamics is ex-
actly known. In order to remove the assumption on par-
tial knowledge of the system dynamics, a computational
model-free ADP methodology was proposed in [17]. This
approach can serve as a computational tool to study ADP
related problems for linear systems, such as multiagent
systems [18,19], adaptive optimal output regulation prob-
lem [20], markov jump linear systems [21] and zero-sum
games [22, 23] and so on.

These ADP algorithms mentioned above can be em-
ployed to online numerically approximate the solution of
the optimal control problems in the case that the standard
assumptions are satisfied. However, the purpose of the
minimal energy control (MEC) is to find the state feedback
controller, so that the closed-loop system is stable and the
following performance index is minimum [24–26].

J(x0,u) =
∫ ∞

0
uT Rudt. (6)

Compared with (3), the performance index (6) shows that
the special case where Q = 0 . That implies the standard
assumptions cannot be satisfied in the MEC problem and
these ADP algorithms cannot be directly applied to find
the numerical approximate solution of the MEC. On the
other hand, a common feature of the above ADP-based re-
sults is that the convergence rate is not pre-specified. This
may result in the phenomena of slow convergence. From
the engineering point of view, we hope that the eigenval-
ues of the optimal control system are located in a certain
region of the s-plane (i.e., the asymptotically stable opti-
mal control systems have a given dynamic performance).
However, there are a few studies related to optimal con-
trol with guaranteed convergence rate and these studies
are based on the system models, such as linear-quadratic
optimal observers with guaranteed convergence rate [27]
and so on.

It can be seen from the above mentioned that the appli-
cation of ADP algorithm in both minimum energy control
and optimal control with guaranteed convergence rate is
still an open question. In order to solve this question, in
this paper, we first consider the problem of MECGCR and
prove that ARE can be applied to this problem under some
conditions. Futhermore, a PI based ADP algorithm is pro-
posed for finding the approximate solution of the problem
of MECGCR without using the system information. Our
technical contributions from this paper can be briefly sum-
marized as follows:

1) To the best of our knowledge, this note is the first at-
tempt to apply the PI based ADP algorithm for the the
problem of MECGCR. By using the online informa-
tion of state and input, the PI based ADP algorithm can
find the approximate solution of the MECGCR without
using the system information A or B, or both.

2) The stability and convergence of the proposed PI based
ADP algorithm are analyzed, and the conditions that
ensure the stability of closed-loop system have been
formulated.

3) The approach proposed in this paper can serve as
a computational tool to study the MECGCR related
problems, such as multiagent systems, tracking control
and zero-sum games and so on.

The rest of this paper is organized as follows: In Sec-
tion 2, we first give some useful lemmas, and then con-
sider the problem of MECGCR. In Section 3, a computa-
tional adaptive optimal control method is developed and
its convergence is proved. In Section 4, simulation study
on a three-order linear system is provided. In Section 5,
concluding remarks as well as potential future work are
contained.

Notations: Throughout this paper, ⊗ is used to in-
dicate the Kronecker product, and vec(A) is defined
to be the mn-vector formed by stacking the columns
of A ∈ Rn×mon top of one another, i.e., vec(A) =[

aT
1 aT

2 . . . aT
m

]T , where ai ∈ Rn are the
columns of A. Re(λ (A)) denotes the set of the real parts
of the eigenvalues of A. If A and B are positive semidefi-
nite, A > B (A ≥ B) is used to denote the matric (A−B)
is positive (semi-positive) definite.

2. PRELIMINARIES AND PROBLEM
STATEMENT

2.1. Some useful lemmas
Lemma 1 [28]: If the n-dimensional pair (A,B) is con-

trollable and all eigenvalues of A have negative real parts,
then the unique solution Wc of

AWc +WcAT =−BBT (7)

is positive definite. The solution is called the controllabil-
ity Gramian and can be expressed as

Wc =
∫ ∞

0
eAτ BBT eAT τ dτ. (8)

Lemma 2 [30]: With the standard assumptions, the
state feedback controller u = −R−1BT P∗x , where P∗ is
the unique symmetric positive definite solution of the fol-
lowing ARE

(A+aI)T P+P(A+aI)+Q−PBR−1BT P = 0 (9)

can minimize the following performance index

J(x0,u) =
∫ ∞

0
e2at(xT Qx+uT Ru)dt, (10)

where a ≥ 0, Q = QT ≥ 0, R = RT > 0; and let the system
(1) be globally exponentially stable with lim

t→∞
x(t)eat = 0.
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Remark 1: The problem in Lemma 2 can be summa-
rized as the problem of linear quadratic optimal control
with guaranteed convergence rate. It can be converted to
the problem of traditional linear quadratic optimal con-
trol by linear transformation and the relevant proof can be
found in [29, 30]

2.2. Problem statement
In this note, we are interested in using a model-free

method to iteratively solve the ARE of the problem of
MECGCR. In what follows, we will introduce the prob-
lem of MECGCR and prove that ARE can be applied to
this problem under some conditions.

Consider a continuous-time linear system described by
(1). The design objective of MECGCR is to find a state
feedback controller with the form (2), which minimizes
the following performance index

J(x0,u) =
∫ ∞

0
e2atuT Rudt. (11)

With Lemma 2, it can be proved that the following ARE
can be used to solve the problem of MECGCR

(A+aI)T P+P(A+aI)−PBR−1BT P = 0. (12)

Due to the special case where Q= 0, the standard assump-
tions cannot be satisfied. Then the solution of (12) cannot
be guaranteed to be positive definite and the closed-loop
system cannot be guaranteed to be stable. Fortunately,
with the help of Lemma 1, the conditions that ensure the
stability of closed-loop system will be formulated without
using the standard assumptions.

Theorem 1 [31]: Let (A,B) is controllable and let a≥ 0
be such that

a >−min{Re(λ (A))}. (13)

Then

1) ARE (12) has a unique positive definite solution P∗,
where P∗ =W−1 and W is the unique positive definite
solution to the following matrix equation

W (−A−aI)T +(−A−aI)W =−BR−1BT . (14)

2) The closed-loop system ẋ= (A−BR−1BT P∗)x be glob-
ally exponentially stable with lim

t→∞
x(t)eat = 0 (i.e.,

max
{

Re
(
A−BR−1BT P∗)}<−a).

Proof:

1) With P∗ = W−1, (12) can be rewritten as (14). Then,
(A,B) is controllable, hence (−A−aI,BR−1/2) is con-
trollable. Since a satisfies (13), all eigenvalues of
(−A− aI) have negative real parts. Finally, based on
Lemma 1, It can be proved that W is the unique positive
definite solution of (14), i.e., P∗ is the unique positive
definite solution of (12).

2) (12) can be also rewritten as the following form

A−BR−1BT P = P−1(−AT −2aI)P. (15)

Hence, P∗ is also the unique positive definite solution of
(15). That implies that the closed-loop system matric A−
BR−1BT P∗ and AT −2aI are similar to each other. That is

Re(λ (A−BR−1BT P∗)) =−Re((AT ))−2a, (16)

which indicates that the eigenvalues of A−BR−1BT P∗ are
symmetric to those of A with respect to the line s =−a on
the s-plane. Hence, max

{
Re

(
A−BR−1BT P∗)}<−a and

Properties (2) in Theorem 1 can be proved. □
Remark 2: If a = 0, in order to ensure that ARE

(12) has a unique positive definite solutionP∗, all eigen-
values of A must satisfy the following condition:
min{Re(λ (A))} > 0. This implies that most systems
do not meet this requirement. Therefore, the function of
parameter a can be summarized as expanding the scope of
controlled objects. In addition, the parameter a also has
the advantage of specifying the convergence rate of the
closed-loop system.

Remark 3: Theorem 1 developed in [31] can also be
applied to low gain feedback control and some relevant
properties can be found in [31–33].

3. PI BASED ADP ALGORITHM FOR MECGCR

In Section 2, it is proved that if the conditions in The-
orem 1 are satisfied, ARE (12) can be used to solve the
MECGCR problem. However, (12) is nonlinear in P, it
is usually difficult to directly solve it, especially for high-
order systems. In this section, in order to solve this ques-
tion, we first propose an offline PI based ADP algorithm to
obtain the numerical approximate solution, which is diffi-
cult to be solved in ARE (12). Then based on the offline PI
based ADP algorithm, a model-free online PI based ADP
algorithm is developed.

3.1. Offline PI based ADP algorithm for MECGCR
Theorem 2: Let K0 ∈ Rm×n be any stabilizing feed-

back gain matrix with the convergence rate which
is faster than e−at (i.e., A + aI − BK0 is Hurwitz or
max{Re[λ (A−BK0)]} < −a), and repeat the following
steps for k = 0, 1, . . . ,

1) Solve for Pk = PT
k > 0 of the Lyapunov equation

(A+aI −BKk)
T Pk +Pk(A+aI −BKk)

+KT
k RKk = 0. (17)

2) Update Kk by

Kk+1 = R−1BT Pk. (18)

Then, the following properties holds:
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1) A+aI −BKk is Hurwitz (i.e., max{Re[λ (A−BKk)]}<
−a),

2) P∗≤Pk+1≤Pk,
3) lim

k→∞
Kk = K∗, lim

k→∞
Pk = P∗.

Proof: The proof is provided in Appendix A. □
Remark 4: By solving the Lyapunov equation (17) iter-

atively, which is linear in Pk, and updating Kk by (18), the
solution to the nonlinear equation (12) is numerically ap-
proximated by using the offline PI based ADP algorithm.
In addition, this algorithm also provides theoretical sup-
port for the model-free online PI based ADP algorithm

3.2. Online PI based ADP algorithm for MECGCR
To begin with, let us consider a virtual system described

by

˙̄x = Āx̄+ B̄ū, (19)

where x = xeat , u = ueat , B=B and A = A+aI with the di-
agonal matrix I ∈Rn×n, and propose the following control
law

ū =−Kkx̄+ ε, (20)

where ε denotes a time-varying artificial noise, known
as the exploration noise, added for the purpose of online
learning. Then, the closed-loop system (19) and (20) can
be written as

˙̄x = Ākx̄+ B̄ε, (21)

where Ak = A − BKk = A + aI − BKk. Taking the time
derivative of xT Pkx along the system (21), it follows that

d
dx

(x̄T Pkx̄) = x̄T (Āk
T Pk +PkĀk)x̄+2εT B̄T Pkx̄. (22)

Finally, we use the term −KT
k RKk in (17) to replace the

term Ak
T

Pk+PkAk in (22) which depends on A and B. Also,
we use the term RKk+1 in (18) to replace the term BT Pk in
(22) which depends on B. Therefore, (22) can be rewritten
as

d
dx

(x̄T Pkx̄) =−x̄T (KT
k RKk)x̄+2εT RKk+1x̄. (23)

By integrating both sides of (23) on any given interval
[t, t+δ t] and rearranging the terms, we have

x̄T (t +δ t)Pkx̄(t +δ t)− x̄T (t)Pkx̄(t)

−2
∫ t+δ t

t
εT RKk+1x̄dτ =−

∫ t+δ t

t
x̄T (KT

k RKk)x̄dτ.

(24)

It can be clearly seen that (24) relies on the knowledge
of state measurements x(t), instead of the system matrices

(a) System consisting of plant (1) and the exponential signals.

(b) A virtual linear system.

Fig. 1. Two equivalent system models.

A and B. If the state information x(t) can be obtained, it
becomes possible to solve for Pk and Kk+1 using the online
measurements x (i.e., xeat ). However, in this paper, we
assume that the system (1) is a black box(i.e., the matrices
A and B are unknown), the virtual system (19) thus cannot
be built directly and the state information x(t) cannot be
measured. Fortunately, it can be proved that the system in
Fig. 1(a), which consists of system (1) and the exponential
signals is similar to the system in Fig. 1(b). With the same
initial conditions and control law, the state measurements
xeat in Fig. 1(a) are similar to the state measurements x(t)
in Fig. 1(b).

Hence Pk and Kk+1 can be solved by the measurements
xeat (i.e., x). For convenience, we still use x below.

In order to iteratively solve Pk and Kk+1 by using
(24), the specific steps are as follows. First, xT Pkx and
εT RKk+1x can be rewritten as the following forms by Kro-
necker product, respectively [34].

x̄T Pkx̄ = x̄T ⊗ x̄T vec(Pk),

εT RKk+1x̄ = {x̄T ⊗ (εT R)}vec(Kk+1). (25)

With (25), (24) can be rewritten as

[
x̄T ⊗ x̄T |t+δ t

t −2
∫ t+δ t

t
{x̄T ⊗ (εT R)}dt

][
vec(Pk)
vec(Kk+1)

]
=−

∫ t+δ t

t
x̄T (KT

k RKk)x̄dt. (26)

By specifying t = tk,1, tk,2, . . . , tk,lk with 0≤ tk,i+δ t ≤ tk,i+1

and tk,i + δ t ≤ tk+1,1 for all k = 0, 1, . . . and i = 1, 2, . . . ,
lk, (26) can be used to generate a series of equations as
follows:

Θk

[
vec(Pk)
vec(Kk+1)

]
= Ξk, (27)



3144 Kai Zhang, Suoliang Ge, and Yuling Ge

where

Θk =


x̄T ⊗ x̄T |tk,1+δ t

tk,1 −2
∫ tk,1+δ t

tk,1 x̄T ⊗ (εT R)dt

x̄T ⊗ x̄T |tk,2+δ t
tk,2 −2

∫ tk,2+δ t
tk,2 x̄T ⊗ (εT R)dt

...
...

x̄T ⊗ x̄T |tk,lk+δ t
tk,lk

−2
∫ tk,lk+δ t

tk,lk
x̄T ⊗ (εT R)dt

 ,

Ξk =


−
∫ tk,1+δ t

tk,1 (x̄T KT
k RKkx̄)dt

−
∫ tk,2+δ t

tk,2 (x̄T KT
k RKkx̄)dt

...

−
∫ tk,lk+δ t

tk,lk
(x̄T KT

k RKkx̄)dt

 .

Assumption 1: For each k = 0, 1, . . . , there exists a suf-
ficiently large integer lk > 0 to ensure the following rank
condition hold.

rank(Θk) =
n(n+1)

2
+mn. (28)

Remark 5: The rank condition (28) is essentially in-
spired from the persistent excitation condition in adaptive
control [35, 36]. To satisfy the rank condition in (28), the
choice of the exploration noise plays an important role.

Lemma 3: Under Assumption 1, there is a unique pair
(Pk,Kk+1) ∈ Rn×n ×Rn×m satisfying (27) with Pk = PT

k ,
i.e., [

vec(Pk)
vec(Kk+1)

]
= (ΘT

k
Θk)

−1ΘT
k Ξk. (29)

The proof of Lemma 3 is similar to the proof of Lemma
2.3.3 in [37], thus omitted.

Theorem 3: If (28) holds, let K0 ∈ Rm×n be any sta-
bilizing feedback gain matrix with the convergence rate
which is faster than e−at (i.e., A + aI − BK0 is Hurwitz
or max{Re[λ (A−BK0)]} < −a), the sequences {Pk}∞

0 ,
{Kk}∞

0 obtained from solving (29) converge to P∗ and K∗,
respectively.

Proof: It can be seen that the pair(Pk,Kk+1) obtained
from (29) must satisfy (17) and (18). In addition, with
Lemma 3, such a pair (Pk,Kk+1) obtained from (29) is
unique. Therefore, the solution to (29) is the same as the
solution to (17) and (18) for all k = 0, 1, . . . . The proof is
thus completed by Theorem 2. □

Finally, we obtain the online PI based ADP algorithm
(Algorithm 1) for MECGCR.

Algorithm 1 (Online PI Based ADP Algorithm for
MECGCR):
1) Initialization: Find K0 such that A+aI −BK0 is

Hurwitz. Let k = 0 and t0,1 = 0.
2) Policy Evaluation and Improvement: Apply

u = Kkx+ ε to the system (1) from t = tk,1 and
construct each row of the data matrices Θk and Ξk. If
the rank condition (28) is satisfied, solve for Pk and
Kk+1 from (29).

3) Stopping criterion: If ∥Pk −Pk−1∥ ≤ η (η is a
prescribed small positive threshold), stop and output
Pk; else, set k = k+1and go to 2).

4. SIMULATIONS

Consider the following linear constant system

ẋ =

 0 1 0
0 0 1
a1 a2 a3

x+

0
0
b

u, (30)

with the initial state vector x0 = [10, −10, −5]T . In the
linear system (30), a1, a2, a3, b are the uncertain parame-
ters. Only for simulation purpose, we set a1 = 1, a2 = 5,
a3 = 7, b = 1. The design objective is to find a linear op-
timal control law to minimize the following performance
index

J(x0,u) =
∫ ∞

0
e2tu2dt. (31)

For comparison purposes, the optimal cost matrix P∗

and the optimal gain matrix K∗, which can be directly ob-
tained by ARE (12), are given below:

P∗ =

364.00 288.00 28.00
288.00 312.00 40.00
28.00 40.00 20.00

 ,

K∗ =
[
28.00 40.00 20.00

]
. (32)

Then, we use the developed online model-free PI based
ADP algorithm to solve this problem. All the relevant pa-
rameters designed in this paper are set as follows: K0 =
[50, 50, 20]; δ t = 0.1; tk+1,1 − tk,lk = tk,i+1 − tk,i = 0.1;
η = 0.5× 10−2; ε = sin(10t). The simulation results are
given as follows:

1) After five iterations, the approximate optimal matrices
P5 and K5 are obtained as follows:

P5 =

364.00 288.00 28.00
288.00 312.00 40.00
28.00 40.00 20.00

 ,

K5 =
[
28.00 40.00 20.00

]
. (33)

2) The states trajectories are plotted in Fig. 2.
3) The convergence of Pk to its optimal values is illus-

trated in Fig. 3.
4) The convergence of Kk to its optimal values is illus-

trated in Fig. 4.

As shown in Fig. 2, lim
t→∞

xet = 0. This implies that the
closed-loop system is exponentially stable with a given
dynamic performance in the learning process. The con-
vergence of the cost function matrix is shown in Fig. 3,
and its final estimate can be found in (33). Parallel to the
cost function matrix, the convergence of the feedback ma-
trix is shown in Fig. 4, and its final estimate can also be
found in (33).



Adaptive Dynamic Programming for Minimal Energy Control with Guaranteed Convergence Rate of Linear ... 3145

Fig. 2. The system states trajectories.

Fig. 3. The convergence of the cost matrix Pk.

Fig. 4. The convergence of the feedback matrix Kk.

5. CONCLUSION

In this paper, we have proved that ARE can be applied
to MECGCR under some conditions without using the
standard assumptions. Then, with the help of reinforcing
learning, a policy iteration based adaptive dynamic pro-
gramming algorithm has been developed for MECGCR.
In this algorithm, by iteratively solving the algebraic Ric-
cati equation with system state and input information col-
lected online, the numerically approximate solution of
MECGCR can be obtained without knowing the system
matrices. The methodology developed in this paper may
be employed to study the related questions of MECGCR,
such as tracing control [38], H∞ state feedback control
[39] and so on.

APPENDIX A

A.1. Proof of Theorem 2
The analytical solution of P in ARE(12) can be first

given

P =
∫ ∞

0
e(A+aI−BK)T tKT RKe(A+aI−BK)tdt, (A.1)

i.e.,

P =
∫ ∞

0
e(Ā−BK)T tKT RKe(Ā−BK)tdt.

As we all know that R is positive, P is hence non-
negative. And P is non-negative and finite if and only if
A+ aI −BK is Hurwitz. Then, with (A.1), the proof of
Theorem 2 will be given.

Proof of Properties 1) and 2) in Theorem 2: Let P0 be
the cost function matrix determined by K0. From (17), we
have

ĀT
0 P0 +P0Ā0 +KT

0 RK0 = 0, (A.2)

where A0 = A−BK0. Similarly, we have

ĀT
1 P1 +P1Ā1 +KT

1 RK1 = 0, (A.3)

where

Ā1 = Ā−BK1, (A.4)

K1 = R−1BT P0. (A.5)

Let A0 = A1 −B(K0 −K1), (A.2) can be rewritten as

ĀT
1 P0 − (K0 −K1)

T BT P0 +P0Ā1 −P0B(K0 −K1)

+KT
0 RK0 = 0. (A.6)

By subtracting (A.3) from (A.6), we have

ĀT
1 (P0 −P1)+(P0 −P1)Ā1 − (K0 −K1)

T BT P0
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−P0B(K0 −K1)+KT
0 RK0 −KT

1 RK1 = 0. (A.7)

By adding the following term to both sides of (A.7)

K0 −K1)
T RK1 +KT

1 R(K0 −K1), (A.8)

and rearranging the terms, we have

ĀT
1 (P0 −P1)+(P0 −P1)Ā1 +(K0 −K1)

T R(K0 −K1)

+(K0 −K1)
T (RKs1 −BT P0)

+(KT
1 R−P0B)(K0 −K1) = 0. (A.9)

From (A.5), we know that RK1 = BT P0. Therefore, (A.9)
can be rewritten as the following form:

ĀT
1 (P0 −P1)+(P0 −P1)Ā1 +(K0 −K1)

T R(K0 −K1).
(A.10)

Due to the same form between (12) and (A.10), along with
(A.1), the analytical solution of (P0−P1) can be written as

P0 −P1 =
∫ ∞

0
eĀT

1 t((K0 −K1)
T R(K0 −K1))eĀ1tdt.

(A.11)

Therefore, P0 −P1 ≥ 0 (i.e., P1 ≤ P0). Similarly, we have

P1 −P∗ =
∫ ∞

0
eĀT

1 t((K1 −K∗)T R(K1 −K∗))eĀ1tdt ≥ 0.

(A.12)

So that P∗≤P1≤P0 can be obtained. In addition, since both
P0 and P∗ are finite, P1 must be finite. This implies that
A1 = A+aI −BK1 is Hurwitz. Repeating the above anal-
ysis for k = 1, 2, . . ., Properties (1) and (2) in Theorem 2
can be proved.

Finally, since sequence {Pk} is monotonically decreas-
ing and lower bounded by P∗, limk→∞Pk = P∞ exists. And
by taking the limit of (17) as k→∞, we have

ĀT P∞ +P∞Ā−P∞B̄R−1B̄T P∞ = 0. (A.13)

that satisfies (12). Therefore, P∗ is the unique positive
definite solution of (17) and P∞ = P∗ can be proved.
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