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Control of Nonlinear Markovian Jump System with Time Varying De-
lay via Robust H∞ Fuzzy State Feedback Plus State-derivative Feedback
Controller
Santi Ruangsang and Wudhichai Assawinchaichote* ■

Abstract: This paper investigates the problem of designing a robust H∞ state feedback plus state-derivative feed-
back control mechanism for a class of uncertain nonlinear markovian jump systems with time varying delay de-
scribed by a Takagi-Sugeno (T-S) fuzzy model. The linear matrix inequalities (LMIs) approach is applied to derive
a robust controller for such a system. The proposed controller satisfies design requirements that ensure that the
closed-loop system is asymptotically stable and meets pre-prescribed H∞ performance index values. Finally, to
illustrate the effectiveness of the design developed in this paper, a numerical example is also provided.

Keywords: Linear matrix inequalities (LMIs), Markovian jump systems, robust H∞ control, state-derivative feed-
back, Takagi-Sugeno (T-S) fuzzy model, time-varying delay systems.

1. INTRODUCTION

During the past two decades, the Markovian jump sys-
tem has been extensively studied by many researchers
[1–3]. The Markovian jump system changes abruptly from
one mode to another mode caused by some phenomenon
such as environmental disturbances [4], changing subsys-
tem interconnections and fast variations in the operating
point of the system plant. The switching between modes is
governed by a Markov process with the discrete and finite
state space. In other words, Markovian jump systems are
referred to as hybrid systems, that is, the state space of the
systems contains both continuous (differential equation)
and discrete states (Markov process). Due to the growing
use of computers in the control of physical plants, manu-
facturing systems and communication systems, the design
of control for Markovian jump nonlinear systems remains
an open area [5].

Over the past two decades, H∞ theories for nonlin-
ear problems have been extensively studied and devel-
oped [6–8]. The aim of H∞ methods is to achieve sta-
bilization with the prescribed performance index. Re-
cently, the controller design for the consensus of heteroge-
neous linear multiagent systems with aperiodic sampled-
data have been examined by using the output-feedback
procedures [9, 10]. Furthermore, the problem of sensor-
network-based distributed control for the large-scale net-
worked control systems and the event-based control for
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a class of networked markov jump systems with missing
measurements have been investigated by using H∞ con-
trol theories [11,12]. However, the higher-order nonlinear
estimation of real-life dynamical system is an important
issue in both the analysis and the design of nonlinear con-
trol systems. With highly nonlinear issue, the T-S fuzzy
model has been attracted by most researchers due to the
fact that the T-S fuzzy model is appropriated for simpli-
fying the dynamics of complex nonlinear systems and has
been widely used in many different areas [13–15]. A few
years ago, the T-S fuzzy model was employed for reduc-
ing the conservatism whilst alleviating the computational
burden [16] and also being applied to the discrete-time
systems for the relaxed real-time scheduling stabilization
[17].

The global behavior of a nonlinear system can be ex-
plained by the T-S fuzzy model construction procedures.
The T-S fuzzy control design is derived by utilizing the
concept of parallel distributed compensation (PDC); i.e.,
a fuzzy system is represented by each plant rule model
[18, 19]. In addition, the T-S fuzzy model based on the
LMIs techniques can be used to solve the stability analy-
sis and the control design problems [20, 21]. LMIs based
T-S fuzzy model techniques ensure not only stabilization
but also important issue of control performance, namely,
robustness in fuzzy control system designs. Thus, unques-
tionably, in recent decades, various robust H∞ fuzzy de-
sign approaches based on LMIs techniques for uncertain
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nonlinear systems have been developed in several works
[22, 23]. In practicality, the controlled method for many
applications cannot easily meet the expected performance
index in uncertain nonlinear systems with time varying
delay. Together with the high nonlinearities and exter-
nal disturbance noises, time varying delays are considered
as a source of poor control performances and instabilities
[24, 25]. Recently, uncertain systems with time-varying
delay control designs using the H∞ fuzzy approaches have
been discussed [26, 27].

In addition, some issues have occurred in practical me-
chanical control systems, where the obtained measurable
signals are the state feedback and the state-derivative feed-
back signals. For instance, the accelerometers serve as
principal sensors of vibration in the control of suppression
systems, where [28]. According to several research works
[29, 30], it has been found that the state has greatly lim-
ited by the need for accurate information about parame-
ters which may be difficult to estimate with high precision
while the state derivative is easily obtained. Therefore,
for the actual accelerations, it is possible to reconstruct
velocities with reasonable accuracy but not displacements
[31]. Recently, [32] acquired novel results by designing
H∞ fuzzy state-derivative feedback control applied using
the LMIs technique. Unfortunately, those approach has
not been applied to a nonlinear Markovian jump system
that includes uncertainties with time-varying delay. As re-
ported in several studies, these designed approaches have
not yet been adequately researched, and these design prob-
lems are still challenging.

In term of computation viewpoints, the design of ro-
bust H∞ fuzzy state feedback plus state-derivative feed-
back controllers for uncertain nonlinear Markovian jump
systems with time-varying delay has been aggregated to
examine a set of LMIs in conjunction with the T-S fuzzy
model approach. The convex optimization algorithm is
employed to quickly solve the LMIs problem. The pro-
posed approach can significantly mitigate the computa-
tional difficulties; therefore, it reduces the design costs
associated with the practical use of theoretical outcomes
due to the fact that the T-S fuzzy controller gains are eas-
ily acquired and are able to directly apply to the controller
for such a system. Therefore, the research on robust H∞
fuzzy state feedback plus state-derivative feedback control
design for a class of uncertain nonlinear Markovian jump
systems with time-varying delay can be conducted on both
the theoretical and practical point of view.

In according with the above motivations, the main con-
tributions and novelty of this paper are threefold. First,
the definitions of the H∞ control problem and asymptotic
stability are introduced for the system. Second, the T-S
fuzzy model is applied to approximate uncertain nonlinear
Markovian jump systems with time-varying delay. Third,
the LMIs approach is used to develop a means of design-
ing a robust H∞ fuzzy state feedback plus state-derivative

feedback controller that adheres to performance and ro-
bustness specifications.

This paper is organized as follows. In Section 2, Prelim-
inaries are presented. In Section 3, based on an LMIs ap-
proach we develop a technique for designing a robust H∞
fuzzy state feedback plus state-derivative feedback con-
troller such that the L2[0,∞) gain derived from mapping
from exogenous input noise to the regulated output is less
than a prescribed value for the uncertain nonlinear Mako-
vian jump system with time-varying delay as described in
Section 2. The validity of this approach is demonstrated
by an example from the literature in Section 4. Finally, the
conclusion is given in Section 5.

2. PRELIMINARIES

The uncertain nonlinear Markovian jump T-S fuzzy
model with time-varying delay is explained by IF-THEN
rules that can be used to approximate the nonlinear system
by combining the linear models via nonlinear membership
functions. An uncertain nonlinear Markovian jump T-S
fuzzy model with time-varying delay is examined by the
i-th rule as follows:

Plant rule i:
IF υ1(t) is Mi1(t) and...and υϑ (t) is Miϑ (t) THEN

ẋ(t) = [Ai
(
η(t)

)
+∆Ai

(
η(t)

)
]x(t)

+ [B1i

(
η(t)

)
+∆B1i

(
η(t)

)
]w(t)

+Ad i

(
η(t)x

(
t − τ(t)

))
+[B2i

(
η(t)

)
+∆B2i

(
η(t)

)
]u(t),

z(t) = [Ci
(
η(t)

)
+∆Ci

(
η(t)

)
]x(t),

x(t) = ψ(t), t ∈ [−τ,0], τ(t)≤ τ, τ̇(t)≤ τd , (1)

where i = 1, 2, ..., r, Mi j ( j = 1, 2, ..., ϑ ) are fuzzy sets
j for rule i, r is the number of IF-THEN rules, υ(t) is the
premise variables, x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm

is the input, w(t) ∈ ℜp is the input disturbance belonging
to L2[0,∞), z(t) ∈ ℜs is the controlled output, matrices
Ai
(
η(t)

)
, B1i

(
η(t)

)
, B2i

(
η(t)

)
, Ad i

(
η(t)

)
and Ci

(
η(t)

)
are suitable matrices of the system, 0 ≤ τ(t) ≤ τ is the
bounded time-varying delay of the state, and ψ(t) is a
vector-valued initial continuous function defined based on
the interval [−τ,0], with τ a real positive constant and the
assumption that τ̇(t) ≤ τd < 1, i.e., the derivative of the
time-varying delay function is continuous and bounded to
form a natural supplementary condition. In this paper, it
is assumed that υ(t) is the vector containing all individual
elements υ1(t), ...,υϑ (t). {η(t)}, t ≥ 0 is a continuous-
time discrete-state homogeneous Markov process taking
values on a finite set S = {1, 2, ..., s} with transition prob-
ability matrix Pr := {Pık(t)} given by

Pık(t) = Pr
(
η(t +∆) = k | η(t) = ı

)
,
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=

{
λık∆+O(∆) ifı ̸= k,

1+λıı∆+O(∆) ifı = k,
(2)

and ∑s
k=1 Pık(t) = 1 where ∆ > 0; lim∆→0

O(∆)
∆ = 0; λık ≥

0, ı ̸= k is the transition rate from mode ı to mode k; λıı =
−∑s

k=1, k ̸=ı λık, ı, k ∈ S gives the infinitesimal generator
of the Markov process {η(t), t ≥ 0}. The matrices
∆Ai
(
η(t)

)
, ∆B1i

(
η(t)

)
, ∆B2i

(
η(t)

)
, and ∆Ci

(
η(t)

)
rep-

resent the uncertainties in the system and satisfy the fol-
lowing assumption.

Assumption 1:

∆Ai = F
(
x(t), η(t), t

)
H1i

(
η(t)

)
,

∆B1i = F
(
x(t), η(t), t

)
H2i

(
η(t)

)
,

∆B2i = F
(
x(t), η(t), t

)
H3i

(
η(t)

)
,

and ∆Ci = F
(
x(t), η(t), t

)
H4i

(
η(t)

)
,

where H ji
(
η(t)

)
, j = 1,2, ...,4 are known matrix func-

tions that characterize the structure of uncertainties. Fur-
thermore, the following inequality holds:

∥F
(
x(t),

(
η(t)

)
, t
)
∥ ≤ ρ

(
η(t)

)
(3)

for any known positive constant ρ
(
η(t)

)
. For any speci-

fied state vector and control input, the T-S fuzzy model is
inferred as follows:
Let

ϖi
(
υ(t)

)
=

ϑ

∏
j=1

Mi j
(
υ j(t)

)
,

and

µi
(
υ(t)

)
=

ϖi
(
υ(t)

)
r

∑
i=1

ϖi
(
υ(t)

) ,
where Mi j

(
υ j(t)

)
is the grade of membership of υ j(t) in

Mi j. It is assumed in this paper that

ϖi
(
υ(t)

)
≥ 0,

r

∑
i=1

ϖi
(
υ(t)

)
> 0, i = 1,2, ..., r, (4)

where r is the number of local plant rules, for all t. There-
fore,

µi
(
υ(t)

)
≥ 0,

r

∑
i=1

µi
(
υ(t)

)
= 1, i = 1,2, ..., r, (5)

for all t. To keep our notations simple, we use ϖi =
ϖi
(
υ(t)

)
, µi = µi

(
υ(t)

)
, η = η(t) and any matrix N

(
µ ,

η(t) = ı
)
= N(µ , ı).Thus, we can generalize that the T-S

fuzzy models represent the weighted average of the fol-
lowing forms:

ẋ(t) = [A(µ, ı)+∆A(µ, ı)]x(t)+ [B1(µ, ı)

+∆B1(µ, ı)]w(t)+Ad(µ, ı)x
(
t − τ(t)

)

+[B2(µ, ı)+∆B2(µ, ı)]u(t),

z(t) = [C(µ, ı)+∆C(µ, ı)]x(t), (6)

where

A(µ, ı) =
r

∑
i=1

µiAi(ı), C(µ, ı) =
r

∑
i=1

µiCi(ı),

B1(µ, ı) =
r

∑
i=1

µiB1i(ı), B2(µ, ı) =
r

∑
i=1

µiB2i(ı),

∆A(µ, ı) =
r

∑
i=1

µi∆Ai(ı) := F(x(t), ı, t)H1(µ, ı),

∆B1(µ, ı) =
r

∑
i=1

µi∆B1i(ı) := F(x(t), ı, t)H2(µ, ı),

∆B2(µ, ı) =
r

∑
i=1

µi∆B2i(ı) := F(x(t), ı, t)H3(µ, ı),

∆C(µ, ı) =
r

∑
i=1

µi∆Ci(ı) := F(x(t), ı, t)H4(µ, ı),

Ad(µ, ı) =
r

∑
i=1

µiAdi(ı)

with

H1(µ, ı) =
r

∑
i=1

µiH1i(ı), H2(µ, ı) =
r

∑
i=1

µiH2i(ı),

H3(µ, ı) =
r

∑
i=1

µiH3i(ı) and H4(µ, ı) =
r

∑
i=1

µiH4i(ı).

Next, let us recall the following definitions.
Definition 1: Suppose γ is a given positive real number.

A system of form (6) is said to have an L2[0,Tf ] gain less
than or equal to γ if

E
[∫ Tf

0
{zT (t)z(t)− γ2wT (t)w(t)}dt

]
< 0, (7)

where E
[
·
]

denotes the expectation operator.
Definition 2 (Asymptotic stability): Let xe = 0 be an

equilibrium for ẋ= f (x). Let V : Rn →R be a continuously
differentiable function such that
• V (0) = 0 and V (x)> 0 for all x ̸= 0.
• V̇ (x)< 0 for all x ̸= 0, V̇ (0) = 0.

Then, xe is asymptotically stable and is the unique equi-
librium point.

Note that for the symmetric block matrices, we use (*)
as an ellipsis for terms induced by symmetry. Thus, the
following results address systems (6).

3. MAIN RESULTS

This section opens by considering the problem of de-
signing an H∞ state feedback plus state-derivative feed-
back controller that guarantees L2 gains from exogenous
input noise to a regulated output of less than or equal to
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a prescribed value. An LMIs approach is used to derive a
fuzzy controller that stabilizes the system (6). Before pre-
senting the next results, the following lemma is recalled.

Lemma 1 [5]: Consider system (6). Given a prescribed
H∞ performance γ > 0, the inequality (7) holds if for
ı = 1,2, ...,s, there exist positive definite symmetric ma-
trices P(ı), W (ı) and positive constants δ (ı) such that the
following condition hold:

Ωii(ı)< 0, i = 1,2, ...,r, (8)

Ωi j(ı)+Ω ji(ı)< 0, i < j ≤ r, (9)

where

Ωi j(ı)

=



Ψi j(ı) (∗)T (∗)T (∗)T (∗)T (∗)T

R(ı)B̃T
1i
(ı)−γR(ı) (∗)T (∗)T (∗)T (∗)T

W (ı)Adi(ı) 0 −W (ı) (∗)T (∗)T (∗)T

P(ı) 0 0 −W (ı) (∗)T (∗)T

ϒi j(ı) 0 0 0 −γR(ı) (∗)T

ZT(ı) 0 0 0 0 −P(ı)


,

(10)

Ψi j(ı) = Ai(ı)P(ı)+P(ı)AT
i (ı)+B2i(ı)Yj(ı)

+Y T
j (ı)B

T
2i
(ı)+λııP(ı), (11)

ϒi j(ı) = C̃1i(ı)P(ı)+ D̃12i(ı)Y
T
j (ı), (12)

R(ı) = diag{δ (ı)I, I, δ (ı)I, I}, (13)

Z(ı) =
(√

λı1P(ı), ...,
√

λı(ı−1)P(ı),√
λı(ı+1)P(ı), ...,

√
λısP(ı)

)
, (14)

P(ı) = diag{P(1), ...,P(ı−1), P(ı+1), ...,P(s)},
(15)

with

B̃1i(ı) = [I I I B1i(ı)], (16)

C̃i(ı) =
[
γρ(ı)HT

1i
(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı) 0

√
2ℵ(ı)CT

1i
(ı)
]T

, (17)

D̃i(ı) =
[
0
√

2ℵ(ı)ρ(ı)HT
5i
(ı) γρ(ı)HT

3i

√
2ℵ(ı)DT

12i
(ı)
]T

, (18)

ℵ(ı) =
(

1+ρ2(ı)
r

∑
i=1

r

∑
j=1

(
∥ HT

2i
(ı)H2 j(ı) ∥

))1/2
.

(19)

Furthermore, a suitable choice of fuzzy controller is

u(t) =
r

∑
j=1

µ jK j(ı)x(t), (20)

where K j(ı) = Yj(ı)
(
P(ı)

)−1
.

Clearly, in real control problems, there have been found
that the state has greatly limited by the necessity for ac-
curate information about parameters that may be difficult
to estimate with high precision, while the state deriva-
tive is easily obtained. Thus two approachs will be stud-
ied in this section. Subsection 3.1 considers the fuzzy
state-derivative feedback controller, while in Subsection
3.2, the fuzzy state feedback plus state-derivative feedback
controller is studied. Before presenting the main results,
we describe the problem under our study as follows.

Problem Formulation: Given a prescribed H∞ perfor-
mance γ > 0, design an H∞ fuzzy controller of the form of
both approaches such that the inequality (7) is guaranteed.

3.1. H∞ fuzzy state-derivative feedback controller
In this Subsection, we consider the following H∞ fuzzy

state-derivative feedback, which is inferred as Fig. 1, the
weighted average of the local models of the form:

u(t) =−Kd(µ, ı)ẋ(t), (21)

where Kd(µ, ı) = ∑r
j=1 µ jKd j(ı). The system (6) with the

controller (21) shown in Fig. 2 can be rewritten as

ẋ(t) =A(µ, ı)x(t)+B2(µ, ı)u(t)
+Ad(µ, ı)x

(
t − τ(t)

)
+B1(µ, ı)w(t). (22)

After rearranging (22), we have[
I+B2(µ, ı)Kd(µ, ı)

]
ẋ(t)

= A(µ, ı)x(t)+Ad(µ, ı)x
(
t − τ(t)

)
+B1(µ, ı)w(t).

(23)

Fig. 1. The weighted average of fuzzy controller model.

Fig. 2. The closed-loop fuzzy system.
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The goal is to obtain state-feedback gains K(µ, ı), such
that the following conditions hold:

1) Matrices
(
I+B2i(ı)Kd j(ı)

)
, ∀ i, j = 1, 2, 3, ..., r have

full rank.
2) The system (6) with the fuzzy controller (21) is

asymptotically stable and the H∞ performance is satisfied
for all admissible values based on the sufficient condition
for a prescribed scalary > 0.

Remark 1: To establish the proposed results and with-
out sacrificing generality, we apply the following as-
sumption: rank [I | Bi] = n exists. Thus, it is easy to
conclude that if rank [I | Bi] = n holds, then Kd exists
such that rank [I + B2i(ı)Kd j(ı)] = n (i.e., matrices

(
I +

B2i(ı)Kd j(ı)
)
, ∀i, j = 1, 2, 3, ...,r have full rank). From the

above conditions and assumptions, we define

Ei j(ı) =
(
I +B2i(ı)Kd j(ı)

)−1
. (24)

According to Remark 1, (23) can be written as
ẋ(t) =Ei j(µ, ı)A(µ, ı)x(t)

+Ei j(µ, ı)Ad(µ, ı)x
(
t − τ(t)

)
+Ei j(µ, ı)B̃1(µ, ı)w̃(t), (25)

where
B̃1(µ, ı) = [I I I B1(µ, ı)], (26)

and the disturbance is

w̃(t) =R−1(ı)

×


F
(
x(t), ı, t

)
H1(µ, ı)Ei j(µ, ı)x(t)

F
(
x(t), ı, t

)
H2(µ, ı)w(t)

F
(
x(t), ı, t

)
H3(µ, ı)Ei j(µ, ı)x(t)

w(t)

 . (27)

An LMIs approach is applied to derive a fuzzy controller
that stabilizes the system (25) and that guarantees the dis-
turbance rejection of level γ > 0 immediately. First, to
design the state-drivative feedback controller, the follow-
ing design objectives must be satisfied:

(a) The closed loop system is asymptotically stable
when w(t) = 0.

(b) Under zero initial conditions, the system (25) satis-
fies ∥z∥2 ≤ γ∥w∥2 for any non-zero w(t) ∈ L2 [0,+∞) ,
where γ > 0 is a prescribed constant.

The following theorem provides sufficient conditions
for the existence of a robust H∞ fuzzy state-derivative
feedback. These sufficient conditions can be derived by
the Lyapunov approach.

Theorem 1: Consider system (6). Given a prescribed
H∞ performance γ > 0 and 0 ≤ τd < 1, the inequality
(7) holds if for ı = 1,2, ...,s, there exist positive definite
symmetric matrices P(ı), W (ı) and positive constants δ (ı)
such that the following condition hold:

Ξii(ı)< 0, i = 1,2, ...,r, (28)

Ξi j(ı)+Ξ ji(ı)< 0, i < j ≤ r, (29)

where

Ξi j(ı)

=



Φi j(ı) (∗)T (∗)T (∗)T (∗)T (∗)T

R(ı)B̃T
1i
(ı)−γR(ı) (∗)T (∗)T (∗)T (∗)T

W (ı)Adi(ı) 0 −W (ı) (∗)T (∗)T (∗)T

P(ı)+Θi j(ı) 0 0 −W (ı) (∗)T (∗)T

ϒi j(ı) 0 0 0 −γR(ı) (∗)T

ZT(ı)+Θi j(ı) 0 0 0 0 −P(ı)


,

(30)

Φi j(ı) = P(ı)AT
i (ı)+B2i(ı)Yd j(ı)A

T
i (ı)

+Ai(ı)P(ı)+Ai(ı)Y T
d j
(ı)BT

2i
(ı)+λııP(ı), (31)

ϒi j(ı) = C̃i(ı)P(ı)+C̃i(ı)Y T
d j
(ı)BT

2i
(ı), (32)

Θi j(ı) = Y T
d j
(ı)BT

2i
(ı), (33)

R(ı) = diag{δ (ı)I, I, δ (ı)I, I}, (34)

Z(ı) =
(√

λı1P(ı), ...,
√

λı(ı−1)P(ı),√
λı(ı+1)P(ı), ...,

√
λısP(ı)

)
, (35)

P(ı) = diag{P(1), ...,P(ı−1), P(ı+1), ...,P(s)}
(36)

with

B̃1i(ı) = [I I I B1i(ı)], (37)

C̃i(ı) =
[
γρ(ı)HT

1i
(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı) 0

√
2ℵ(ı)CT

i (ı)
]T

, (38)

ℵ(ı) =
(

1+ρ2(ı)
r

∑
i=1

r

∑
j=1

(
∥ HT

2i
(ı)H2 j(ı) ∥

))1/2
,

(39)

for any delay τ(t) satisfying (1), then the inequality (7)
holds. Furthermore, a suitable fuzzy controller is deter-
mined as

u(t) =
r

∑
j=1

µ j
(
−Kd j(ı)ẋ(t)

)
, (40)

where

Kd j(ı) = Yd j(ı)
(
P(ı)

)−1
. (41)

Proof: Refer to Appendix A for the proof. □

It is necessary to note that in Theorem 1, the inequal-
ities in (28) and (29) are not only linear with respect to
matrix variables, but are also linear with respect to the
performance index gamma, which implies that the H∞
performance γmin can be optimized by solving a convex
optimization algorithm with LMIs solver toolbox.
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3.2. H∞ fuzzy state plus state-derivative feedback
controller

In this Subsection, we consider the following H∞ fuzzy
state feedback plus state-derivative feedback, which is in-
ferred as Fig. 3, the weighted average of the local models
of the form:

u(t) = Ks(µ, ı)x(t)−Kd(µ, ı)ẋ(t), (42)

where Ks(µ, ı)=∑r
j=1 µ jKs j(ı) and Kd(µ, ı)=∑r

j=1 µ jKd j(ı).
The system (6) with the controller shown in Fig. 4 can be
rewritten as

ẋ(t) =A(µ, ı)x(t)+B2(µ, ı)u(t)
+Ad(µ, ı)x

(
t − τ(t)

)
+B1(µ, ı)w(t). (43)

By substituting the controller shown in (42), we have

ẋ(t) =A(µ, ı)x(t)+B2(µ, ı)Ks(µ, ı)x(t)
−B2(µ, ı)Kd(µ, ı)ẋ(t)
+Ad(µ, ı)x

(
t − τ(t)

)
+B1(µ, ı)w(t). (44)

After rearranging (44), yeilds[
I +B2(µ, ı)Kd(µ, ı)

]
ẋ(t)

= A(µ, ı)x(t)+B2(µ, ı)Ks(µ, ı)x(t)
+Ad(µ, ı)x

(
t − τ(t)

)
+B1(µ, ı)w(t). (45)

The goal is to obtain state-feedback gains and state
derivative-feedback gains Ks(µ, ı) and Kd(µ, ı), respec-
tively, such that the following conditions hold:

Fig. 3. The weighted average of fuzzy controller model.

Fig. 4. The closed-loop fuzzy system.

1) Matrices
(
I+B2i(ı)Kd j(ı)

)
, ∀ i, j = 1, 2, 3, ..., r have

full rank.
2) The system (6) with the fuzzy controller (42) is

asymptotically stable and the H∞ performance is satisfied
for all admissible values based on the sufficient condition
for a prescribed scalary > 0.
From Remark 1, we define

Ei j(ı)=
(
I +B2i(ı)Kd j(ı)

)−1
, (46)

and thus, (45) can be written as

ẋ(t) =Ei j(µ, ı)
(
A(µ, ı)+B2(µ, ı)Ks(µ, ı)

)
x(t)

+Ei j(µ, ı)Ad (µ, ı)x
(
t − τ(t)

)
+Ei j(µ, ı)B̃1(µ, ı)w̃(t), (47)

where

B̃1(µ, ı) = [I I I B1(µ, ı)]. (48)

and the disturbance is

w̃(t)

=R−1(ı)

×


F
(
x(t), ı, t

)
H1(µ, ı)Ei j(µ, ı)x(t)

F
(
x(t), ı, t

)
H2(µ, ı)w(t)

F
(
x(t), ı, t

)
H3(µ, ı)Ei j(µ, ı)Ks(µ, ı)x(t)

w(t)

. (49)

An LMIs approach is applied to derive a fuzzy controller
that stabilizes the system (47) and that guarantees the dis-
turbance rejection of level γ > 0 immediately. First, to de-
sign the state feedback plus state-derivative feedback con-
troller, the following design objectives must be satisfied:

(a) The closed loop system is asymptotically stable
when w(t) = 0.

(b) Under zero initial conditions, the system (47) sat-
isfies ∥z∥2 ≤ γ∥w∥2 for any non-zero w(t) ∈ L2 [0,+∞) ,
where γ > 0 is a prescribed constant.

The following theorem provides sufficient conditions
for the existence of a robust H∞ fuzzy state feedback plus
state-derivative feedback. These sufficient conditions can
be derived by the Lyapunov approach.

Theorem 2: Consider system (6). Given a prescribed
H∞ performance γ > 0 and 0 ≤ τd < 1, the inequality
(7) holds if for ı = 1,2, ...,s, there exist positive definite
symmetric matrices P(ı), W (ı) and positive constants δ (ı)
such that the following condition hold:

Ξii(ı)< 0, i = 1,2, ...,r, (50)

Ξi j(ı)+Ξ ji(ı)< 0, i < j ≤ r, (51)
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where

Ξi j(ı) =



Φi j(ı) (∗)T (∗)T (∗)T

R(ı)B̃T
1i
(ı) −γR(ı) (∗)T (∗)T

W (ı)Adi(ı) 0 −W (ı) (∗)T

P(ı)+Θi j(ı) 0 0 −W (ı)

ϒi j(ı) 0 0 0

Γi j(ı) 0 0 0

ZT (ı)+Θi j(ı) 0 0 0

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

(∗)T (∗)T (∗)T

−γR(ı) (∗)T (∗)T

0 −P(ı) (∗)T

0 0 −P(ı)


, (52)

Φi j(ı) = P(ı)AT
i (ı)+Ai(ı)P(ı)+Y T

s j
(ı)BT

2i
(ı)

+B2i(ı)Ys j(ı)+B2i(ı)Yd j(ı)A
T
i (ı)

+Ai(ı)Y T
d j
(ı)BT

2i
(ı)+λııP(ı), (53)

ϒi j(ı) = C̃i(ı)P(ı)+C̃i(ı)Y T
d j
(ı)BT

2i
(ı), (54)

Θi j(ı) = Y T
d j
(ı)BT

2i
(ı), (55)

Γi j(ı) =
(
Ys j(ı)+Yd j(ı)

)T BT
i (ı), (56)

R(ı) = diag{δ (ı)I, I, δ (ı)I, I}, (57)

Z(ı) =
(√

λı1P(ı), ...,
√

λı(ı−1)P(ı),√
λı(ı+1)P(ı), ...,

√
λısP(ı)

)
, (58)

P(ı) = diag{P(1), ...,P(ı−1), P(ı+1), ...,P(s)},
(59)

with B̃1i(ı) = [I I I B1i(ı)], (60)

C̃i(ı) =
[
γρ(ı)HT

1i
(ı)

√
2ℵ(ı)ρ(ı)HT

4i
(ı) 0

√
2ℵ(ı)CT

i (ı)
]T

, (61)

ℵ(ı) =
(
1+ρ2(ı)

r

∑
i=1

r

∑
j=1

(
∥ HT

2i
(ı)H2 j(ı)∥

))1/2
, (62)

for any delay τ(t) satisfying (1), then the inequality (7)
holds. Furthermore, a suitable fuzzy controller is deter-
mined as

u(t) =
r

∑
j=1

µ j
(
Ks j(ı)x(t)−Kd j(ı)ẋ(t)

)
, (63)

where Ks j(ı) = Ys j(ı)
(
P(ı)

)−1
, (64)

and Kd j(ı) = Yd j(ı)
(
P(ı)

)−1
. (65)

Proof: Refer to Appendix B for the proof. □

It is necessary to note that in Theorem 2, the inequal-
ities in (50) and (51) are not only linear with respect to
matrix variables, but are also linear with respect to the
performance index gamma, which implies that the H∞
performance γmin can be optimized by solving a convex
optimization algorithm with LMIs solver toolbox.

Remark 2: Regarding [5] and Lemma 1, the controller
design using H∞ fuzzy state feedback for an uncertain
nonlinear Markovian jump systems with time-varying de-
lay is developed. Unfortunately, that approach has not
been considered regarding some real control problems.
Especially, there have been found that the state signal has
greatly limited by the necessity for the accurate informa-
tion about parameters which may be difficult to estimate
with high precision, while the state-derivative signal is
easily obtained [30]. This issue is frequently encountered
in most real dynamical systems and is often found within
the complexity of designing the problems. Compared with
[5], the advantage of proposed Theorem 1 and Theorem
2 can solve a problem for a class of uncertain nonlin-
ear Markovian jump systems with time-varying delay to
achieve both the robust performance and the stability in
the presence of bounded modeling errors.

Remark 3: According to computing perspectives, the
design of robust H∞ fuzzy state feedback plus state-
derivative feedback controllers for uncertain nonlinear
systems has been aggregated to examine a set of LMIs
in conjunction with the T-S fuzzy model approach. The
LMIs tool is quickly solved by employing the convex op-
timization algorithm. The proposed approach in this paper
can significantly mitigate computational difficulties since
T-S fuzzy controller gains are easily acquired. In The-
orem 1 and Theorem 2, the T-S fuzzy controller gain is
obtained by using LMIs based solution. The matrices Y
and P can be effectively solved by existing numerical soft-
ware. Hence, our main results have less computation com-
plexity than that of [30, 31]. One possible future work is
how to choose the optimal approach to reduce the model
design conservatism.

4. ILLUSTRATIVE EXAMPLES

Consider a modified nonlinear mass-spring-damper
system which is a common control experimental device
frequently used in laboratory. The dynamics of the modi-
fied nonlinear mass-spring-damper system is governed by
the following state equation [5, 33, 34]:

ẋ1(t) =−[0.1125+∆R]x1(t)−βx1
(
t − τ(t)

)
−0.02x2(t)−0.67x3

2(t)−0.1x3
2
(
t − τ(t)

)
−0.005x2

(
t − τ(t)

)
+u(t)+0.1w1(t),

ẋ2(t) = x1(t)+0.1w2(t),

z(t) =
[

x1(t)
x2(t)

]
, (66)
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Table 1. Notation and definition.

Notation Definition
x1(t) State vectors representing velocity
x2(t) State vectors representing distance
u(t) Control input

w1(t), w2(t) Disturbance inputs
z(t) Regulated output
β Delay parameter

∆R Uncertain term
τ(t) Time-varying delay

where the definitions of x1(t), x2(t), u(t), w1(t), w2(t),
z(t), β , ∆R and τ(t) are shown in Table 1. It is as-
sumed that ∆R is bounded in [0 0.1125], τ(t) = 4.5 +
0.5cos(0.9t), x1(t) ∈ [−1.5 1.5] and x2(t) ∈ [−1.5 1.5].

Based on [5], the nonlinear term can be written as

−0.67x3
2(t) = M1 ·0 · x2(t)− (1−M1) ·1.5075x2(t),

−0.1x3
2
(
t − τ(t)

)
= M1 ·0 · x2

(
t − τ(t)

)
− (1−M1) ·0.225x2

(
t − τ(t)

)
.

Upon solving the above equations, M1 is obtained as fol-
lows:

M1
(
x2(t)

)
= 1− x2

2(t)
2.25

and

M2
(
x2(t)

)
= 1−M1

(
x2(t)

)
=

x2
2(t)

2.25
.

Note that M1
(
x2(t)

)
and M2

(
x2(t)

)
can be interpreted as

membership functions of the fuzzy sets shown in Fig. 5.
Suppose that the system could be aggregated into three

modes as shown in Table 2 and the transition probabil-
ity matrix that relates the three operation. The transition
probability matrix that relates the three operation modes
is given as follows:

Pık=

 0.67 0.17 0.16

0.30 0.47 0.23

0.26 0.10 0.64

 .
Using two fuzzy sets, the uncertain nonlinear Marko-

vian jump system with time-varying delays can be repre-
sented by the following T-S fuzzy model:

Plant rule 1: IF x2(t) is M1(x2(t)) THEN

ẋ(t) = [A1(ı)+∆A1(ı)]x(t)+Ad1(ı)x
(
t − τ(t)

)
+B1(ı)w(t)+B2(ı)u(t), x(0) = 0,

z(t) =C1(ı)x(t).

Plant rule 2: IF x2(t) is M2(x2(t)) THEN

ẋ(t) = [A2(ı)+∆A2(ı)]x(t)+Ad2(ı)x
(
t − τ(t)

)
+B1(ı)w(t)+B2(ı)u(t), x(0) = 0,

Fig. 5. Membership functions for the two fuzzy sets.

Table 2. System terminology.

Mode ı β (ı)
1 0.0120
2 0.0125
3 0.0130

z(t) =C1(ı)x(t),

where

A1(ı) =
[

−0.1125 −0.02
1 0

]
,

A2(ı) =
[

−0.1125 −1.5075
1 0

]
,

Ad1(ı) =
[

−β (ı) −0.005
0 0

]
,

Ad2(ı) =
[

−β (ı) −0.225
0 0

]
,

B1(ı) =
[

0.1 0
0 0.1

]
, B2(ı) =

[
1
0

]
,

C1(ı) =
[

1 0
0 1

]
,

∆A1(ı) = F
(
x(t), t

)
H11(ı),

∆A2(ı) = F
(
x(t), t

)
H12(ı),

x(t) =
[

xT
1 (t) xT

2 (t)
]T and

w(t) =
[

wT
1 (t) wT

2 (t)
]T

.

Next, by assuming that ∥F
(
x(t), t

)
∥ ≤ ρ = 1, we have

H11(ı) = H12(ı) =

[
−0.1125 0

0 0

]
from the LMIs optimization algorithm and Theorem 1
with γ = 1 and τd = 0.5, we have

P(1) =
[

0.2435 −0.3616
−0.3616 0.0356

]
,

W (1) =
[

575.6856 −30.5913
−30.5913 15.1043

]
,

Ys1(1) =
[
−0.7781 −0.1071

]
,

Ys2(1) =
[
−1.1794 −0.0838

]
,

Yd1(1) =
[

0.2170 0.4302
]
,
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Yd2(1) =
[

0.2683 0.7858
]
,

Ks1(1) =
[

0.5440 2.5178
]
,

Ks2(1) =
[

0.5919 3.6598
]
,

Kd1(1) =
[
−1.3372 −1.5003

]
,

Kd2(1) =
[
−2.4051 −2.3611

]
,

P(2) =
[

0.2458 −0.3110
−0.3110 0.0582

]
,

W (2) =
[

69.4223 −2.6775
−2.6775 15.2223

]
,

Ys1(2) =
[
−0.7704 −0.1591

]
,

Ys2(2) =
[
−1.1644 −0.1591

]
,

Yd1(2) =
[

0.2030 0.4066
]
,

Yd2(2) =
[

0.3039 0.8164
]
,

Ks1(2) =
[

1.1449 3.3822
]
,

Ks2(2) =
[

1.4232 4.8693
]
,

Kd1(2) =
[
−1.6779 −1.9790

]
,

Kd2(2) =
[
−3.2960 −3.5823

]
,

P(3) =
[

0.2314 −0.3128
−0.3128 0.0571

]
,

W (3) =
[

213.8458 −11.1227
−11.1227 16.7639

]
,

Ys1(3) =
[
−0.7763 −0.1612

]
,

Ys2(3) =
[
−1.1772 −0.1632

]
,

Yd1(3) =
[

0.2225 0.4106
]
,

Yd2(3) =
[

0.3269 0.8219
]
,

Ks1(3) =
[

1.1203 3.3112
]
,

Ks2(3) =
[

1.3985 4.7990
]
,

Kd1(3) =
[
−1.6685 −1.9460

]
,

and

Kd2(3) =
[
−3.2597 −3.4573

]
.

The resulting fuzzy controller is

u(t) =
2

∑
j=1

µ j
(
Ks j(ı)x(t)−Kd j(ı)ẋ(t)

)
, (67)

where µ1 = M1
(
x2(t)

)
and µ2 = M2

(
x2(t)

)
.

Remark 4: The fuzzy controller (67) ensures that the
inequality (7) holds. Table 1 shows the system terminol-
ogy, while Fig. 6 depicts the result of the switching be-
tween modes during the simulation with the initial mode 2.
Fig. 7 presents the state variables, x1(t) and x2(t). The dis-
turbance input signal, w(t), used during the simulation is a
rectangular signal with a magnitude of 0.1 and frequency
of 1 Hz. As is illustrated in Fig. 8, after 1.8 seconds, the
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M
o
d
e

Fig. 6. The result of the switching between modes during
the simulation with the initial mode being mode 2.
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Fig. 7. The histories of the state variables, xl(t) and x2(t).

ratio of the regulated output energy to the disturbance in-
put noise energy approaches a constant value of less than
the prescribed value of 1.

Remark 5: According to Theorem 1 used in [5], The-
orem 1 and Theorem 2 used in this paper, Fig. 9 presents
comparative results for the state variable x2(t) at the same
γ = 1 for the allowed delay τ = 4.50 and ∆R= 0.05. Fig. 9
shows that Theorem 2 used in this study generates a re-
sponse faster than Theorem 1 of this paper and Theorem
1 that shown in [5]. This shows that the uncertain nonlin-
ear Markovian jump system with time-varying delays is
effectively controlled using the proposed fuzzy controller.

5. CONCLUSION

This paper has presents a robust H∞ fuzzy state feed-
back plus state-derivative feedback controller design pro-
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Fig. 8. H∞ performance,

(√ ∫ Tf
0 zT (t)z(t)dt∫ Tf

0 wT (t)w(t)dt

)
.
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Fig. 9. Comparison of state variable, x2(t).

cedure for a class of uncertain nonlinear Markovian jump
systems with time-varying delays described by the T-S
fuzzy model. Based on an LMIs approach, we developed
a means of designing a robust H∞ fuzzy state feedback
plus state-derivative controller that guarantees L2 gains
of mapping from exogenous input noise to the regulated
output of less than a prescribed value. In addition, solu-
tions to the designed problem are given in terms of LMIs,
rendering this approach more useful. Finally, the illustra-
tive examples are given to describe the synthesis proce-
dure presented in this paper. The proposed controller for
uncertain nonlinear Markovian jump systems with time-
varying delays is guaranteed to meet design requirements
(e.g., the asymptotical stability and H∞ performance in-
dex of the system). In practice, the failure of components
can be easily found in many real physical control prob-
lems. Many characteristics of dynamical systems are un-

able to meet the desired objectives (e.g., the rise time, the
settling time and transient oscillations due to poor tran-
sient responses). Therefore, motivated by a lack of con-
trol characteristics, the robust H∞ fuzzy state feedback
plus state-derivative feedback controller with D stability
constraints for a nonlinear Markovian jump systems with
time-varying delay can be considered in future work. In
addition, applications of the proposed approach to uncer-
tain physical systems such as wind energy control systems
and photo-voltaic control systems, will be studied in the
future work.

APPENDIX A: PROOF OF THEOREM 1

Proof: Consider the quadratic Lyapunov-Krasovskii
functional candidate as follows:

V (x(t), ı) =γxT (t)Q(ı)x(t) (A.1)

+ γ
∫ t

t−τ(t)
xT (v)G(ı)x(v)dv, ∀ı ∈ S ,

where Q(ı) = P−1(ı) > 0 and G(ı) = W−1(ı) > 0. For
this choice, we have V (0, ı0)=0 and V

(
x(t), ı

)
→ ∞ only

when ∥x(t)∥→ ∞ .
Consider the weak infinitesimal operator ∆̃ of the joint

process {
(
x(t), ı

)
, t ≥ 0} which is the stochastic analog

of the deterministic derivative [35]. {
(
x(t), ı

)
, t ≥ 0} is a

Markov process with infinitesimal operator given by [36],
from (25), we then have

∆̃V
(
x(t), ı

)
= γxT (t)

[
AT (µ, ı)ET

i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)A(µ, ı)+G(ı)
]
x(t)

+ γxT (t − τ(t)
)
AT

d (µ, ı)E
T
i j(µ, ı)Q(ı)x(t)

+ γxT (t)Q(ı)Ei j(µ, ı)Ad(µ, ı)x
(
t − τ(t)

)
− γxT (t − τ(t)

)
G(ı)x

(
t − τ(t)

)
+ γxT (t)

s

∑
k=1

λıkQ(k)x(t)

+ γw̃T (t)R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı)x(t)

+ γxT (t)Q(ı)Ei j(µ, ı)B̃1(µ, ı)R(ı)w̃(t). (A.2)

Using the fact that for any vector x(t) and x
(
t − τ(t)

)
xT (t)Q(ı)Ad(µ, ı)x

(
t − τ(t)

)
+ xT (t − τ(t)

)
AT

d (µ, ı)Q(ı)x(t)

≤ xT (t)Q(ı)Ad(µ, ı)G−1(ı)AT
d (µ, ı)Q(ı)x(t)

+ xT (t − τ(t)
)
G(ı)x

(
t − τ(t)

)
. (A.3)

Equation (A.2) becomes

∆̃V
(
x(t), ı

)
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= γxT(t)
[
AT (µ, ı)ET

i j(µ, ı)Q(ı)+Q(ı)Ei j(µ, ı)A(µ, ı)

+Q(ı)Ei j(µ, ı)Ad(µ, ı)G−1(ı)AT
d(µ, ı)E

T
i j(µ, ı)Q(ı)

+G(ı)+
s

∑
k=1

λıkQ(k)
]
x(t)

+ γw̃T (t)R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı)x(t)

+ γxT (t)Q(ı)Ei j(µ, ı)B̃1(µ, ı)R(ı)w̃(t). (A.4)

Adding and subtracting to and from (A.4) by −ℵ2(ı)zT (t)
z(t)+ γ2w̃T (t)R(ı)w̃(t) , we have

∆̃V (x(t), ı)

=−ℵ2(ı)zT (t)z(t)+ γ2w̃T (t)R(ı)w̃(t)

+ℵ2(ı)zT (t)z(t)+ γ
[

xT (t) w̃T (t)
]

×




AT (µ, ı)ET

i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)A(µ, ı)
+Q(ı)Ei j(µ, ı)Ad(µ, ı)G−1(ı)

×AT
di
(µ, ı)ET

i j(µ, ı)Q(ı)

+G(ı)+∑s
k=1 λıkQ(k)

 (∗)T

R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı) −γR(ı)


×
[

x(t)
w̃(t)

]
. (A.5)

Now, let us consider the following terms:

γ2w̃T (t)R(ı)w̃(t)

= γ2


F
(
x(t), ı, t

)
H1(µ, ı)Ei j(µ, ı)x(t)

F
(
x(t), ı, t

)
H2(µ, ı)w(t)

F
(
x(t), ı, t

)
H3(µ, ı)Ei j(µ, ı)Ks(µ, ı)x(t)

w(t)


T

R(ı)

×


F
(
x(t), ı, t

)
H1(µ, ı)Ei j(µ, ı)x(t)

F
(
x(t), ı, t

)
H2(µ, ı)w(t)

F
(
x(t), ı, t

)
H3(µ, ı)Ei j(µ, ı)Ks(µ, ı)x(t)

w(t)


≤ ρ2(ı)γ2

δ (ı)
xT (t)

[
ET

i j(µ, ı)HT
1 (µ, ı)H1(µ, ı)Ei j(µ, ı)

+KT
s (µ, ı)ET

i j(µ, ı)HT
3 (µ, ı)H3(µ, ı)Ei j(µ, ı)

×Ks(µ, ı)
]
x(t)+ℵ2(ı)γ2wT (t)w(t), (A.6)

and

ℵ2(ı)zT (t)z(t)

= ℵ2(ı)xT (t)
[
C(µ, ı)+F

(
x(t), ı, t

)
H4(µ, ı)

]T

×
[
C(µ, ı)+F

(
x(t), ı, t

)
H4(µ, ı)

]
x(t)

≤ 2ℵ2(ı)xT (t)
[(

CT (µ, ı)C(µ, ı)
)

+
[(

F
(
x(t), ı, t

)
H4(µ, ı)

)T

×
(
F
(
x(t), ı, t

)
H4(µ, ı)

)]]
x(t)

≤ 2ℵ2(ı)xT (t)
[(

CT (µ, ı)C(µ, ı)
)

+ρ2(ı)
[(

HT
4 (µ, ı)

)(
H4(µ, ı)

)]]
x(t), (A.7)

where ℵ(ı)=
(

I +ρ2(ı)∑r
i=1 ∑r

j=1
[
∥ HT

2i
(ı)H2 j(ı) ∥

]) 1
2
.

Hence,

γ2w̃T (t)R(ı)w̃(t)+ℵ2(ı)zT (t)z(t)

≤ xT (t)C̃T (µ, ı)R−1(ı)C̃(µ, ı)x(t)

+ℵ2(ı)γ2wT (t)w(t), (A.8)

where

C̃i(µ, ı) =
[
γρ(ı)HT

1i
(µ, ı)

√
2ℵ(ı)ρ(ı)HT

4i
(µ, ı) 0

√
2ℵ(ı)CT

i (µ, ı)
]T
. (A.9)

Substituting (A.8) into (A.5) yields

∆̃V (x(t), ı)

≤−ℵ2(ı)zT (t)z(t)+ γ2ℵ2(ı)wT (t)w(t)

+ γ
[

x(t)
w̃(t)

]T

Ψ(µ, ı)
[

x(t)
w̃(t)

]
, (A.10)

where
Ψ(µ, ı)

=





AT (µ, ı)ET
i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)A(µ, ı)

+ 1
γ
(
C̃T (µ, ı)R−1(ı)C̃(µ, ı)

)
+

Q(ı)Ei j(µ, ı)Ad(µ, ı)G−1(ı)×

AT
d (µ, ı)E

T
i j(µ, ı)Q(ı)

+G(ı)+∑s
k=1 λıkQ(k)


(∗)T

R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı) −γR(ı)


.

(A.11)

Using the fact that

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµnMT
i j(ı)Nmn(ı)

≤ 1
2

r

∑
i=1

r

∑
j=1

µiµ j
[
MT

i j(ı)Mi j(ı)+Ni j(ı)NT
i j (ı)

]
,

(A.12)

we can rewrite (A.10) as follows:

∆̃V (x(t), ı)

≤−ℵ2(ı)zT (t)z(t)+ γ2ℵ2(ı)wT (t)w(t)

+ γ
r

∑
i=1

r

∑
j=1

µiµ j

[
x(t)
w̃(t)

]T

Ψi j(ı)
[

x(t)
w̃(t)

]



Control of Nonlinear Markovian Jump System with Time Varying Delay via Robust H∞ Fuzzy State Feedback ... 2425

=−ℵ2(ı)zT (t)z(t)+ γ2ℵ2(ı)wT (t)w(t)

+ γ
r

∑
i=1

µi
2
[

x(t)
w̃(t)

]T

Ψii(ı)
[

x(t)
w̃(t)

]
+ γ

r

∑
i=1

r

∑
i< j

µiµ j

[
x(t)
w̃(t)

]T (
Ψi j(ı)+Ψ ji(ı)

)[x(t)
w̃(t)

]
,

(A.13)

where

Ψi j(ı)

=





AT
i (ı)E

T
i j(ı)Q(ı)

+Q(ı)Ei j(ı)Ai(ı)

+ 1
γ
(
C̃T

i (ı)R−1(ı)C̃i(ı)
)

+Q(ı)Ei j(ı)Adi(ı)G
−1(ı)

×AT
di
(ı)ET

i j(ı)Q(ı)

+G(ı)+∑s
k=1 λıkQ(k)


(∗)T

R(ı)B̃T
1i
(ı)ET

i j(ı)Q(ı) −γR(ı)


. (A.14)

Pre and post multiplying (A.14) by
(

P(ı) 0
0 I

)
, we obtain

Ψi j(ı)

=





P(ı)AT
i (ı)E

T
i j(ı)+Ei j(ı)Ai(ı)P(ı)

+ 1
γ
(
C̃T

i (ı)P(ı)R−1(ı)C̃i(ı)P(ı)
)

+Ei j(ı)Adi(ı)G
−1(ı)AT

di
(ı)ET

i j(ı)

+P(ı)G(ı)P(ı)

+∑s
k=1 λıkP(ı)P−1(k)P(ı)


(∗)T

R(ı)B̃T
1i
(ı)ET

i j(ı) −γR(ı)


.

(A.15)

Pre and post multiplying
(

E−1
i j (ı) 0
0 I

)
and

(
E−T

i j (ı) 0
0 I

)
, re-

spectively, to (A.15), we have
Ψi j(ı)

=





E−1
i j (ı)P(ı)AT

i (ı)+Ai(ı)P(ı)E−T
i j (ı)

+ 1
γ E−1

i j (ı)
(
C̃T

i (ı)P(ı)

×R−1(ı)C̃i(ı)P(ı)
)
E−T

i j (ı)

+Adi(ı)G
−1(ı)AT

di
(ı)

+E−1
i j (ı)P(ı)G(ı)P(ı)E−T

i j (ı)

+E−1
i j (ı)

(
∑s

k=1 λıkP(ı)P−1(k)P(ı)
)

×E−T
i j (ı)


(∗)T

R(ı)B̃T
1i
(ı) −γR(ı)


.

(A.16)

Using (24) and (41), we obtain

Ψi j(ı)

=





P(ı)AT
i (ı)+Ai(ı))P(ı)

+B2i(ı)Yd j(ı)P
−1(ı)P(ı)AT

i (ı)

+Ai(ı)P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)

+ 1
γ

(
C̃1(ı)P(ı)

+C̃1(ı)P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)T

×R−1(ı)
(

C̃1(ı)P(ı)

+C̃1(ı)P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)

+Adi(ı)G
−1(ı)AT

di
(ı)

+
(

P(ı)+P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)T

×G(ı)
(

P(ı)+P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)

+∑s
k=1 λık

(
P(ı)

+P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)T

×P−1(k)
(

P(ı)

+P(ı)P−1(ı)Y T
d j
(ı)BT

2i
(ı)
)



(∗)T

R(ı)B̃T
1i
(ı) −γR(ı)



.

(A.17)

Rearranging (A.17), we have

Ψi j(ı)

=





P(ı)AT
i (ı)+Ai(ı)P(ı)

+B2i(ı)Yd j(ı)A
T
i (ı)+Ai(ı)Y T

d j
(ı)BT

2i
(ı)

+ 1
γ

(
C̃1(ı)P(ı)+C̃1(ı)Y T

d j
(ı)BT

2i
(ı)
)T

×R−1(ı)

×
(

C̃1(ı)P(ı)+C̃1(ı)Y T
d j
(ı)BT

2i
(ı)
)

+Adi(ı)G
−1(ı)AT

di
(ı)

+
(

P(ı)+Y T
d j
(ı)BT

2i
(ı)
)T

×G(ı)
(

P(ı)+Y T
d j
(ı)BT

2i
(ı)
)

+∑s
k=1 λık

(
P(ı)+Y T

d j
(ı)BT

2i
(ı)
)T

×P−1(k)
(
P(ı)+Y T

d j
(ı)BT

2i
(ı)
)



(∗)T

R(ı)B̃T
1i
(ı) −γR(ı)



.

(A.18)

Note that (A.18) is the Schur complement of Ξi j(ı), de-
fined in (30). Using (28), (29) and (A.18), we learn that

Ψii(ı)< 0, (A.19)

Ψi j(ı)+Ψ ji(ı)< 0. (A.20)

Following from (3), (A.19) and (A.20), we know that

∆̃V (x(t), ı)

<−ℵ2(ı)zT (t)z(t)+ γ2ℵ2(ı)wT (t)w(t). (A.21)
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Applying the operator E[
∫ Tf

0 (·)dt] to both sides of (A.21),
we obtain

E
[∫ Tf

0
∆̃V (x(t), ı)dt

]
<E
[∫ Tf

0

(
−ℵ2(ı)zT (t)z(t)

+ γ2ℵ2(ı)wT (t)w(t)
)
dt
]
.

(A.22)

From the Dynkin’s formula [37], it follows that

E
[∫ Tf

0
∆̃V
(
x(t), ı

)
dt
]

= E
[
V
(
x(Tf ), ı(Tf )

)]
−E
[
V
(
x(0), ı(0)

)]
. (A.23)

Substitution of (A.23) into (A.22) yields

0 <E
[∫ Tf

0

(
−ℵ2(ı)zT (t)z(t)+γ2ℵ2(ı)wT (t)w(t)

)
dt
]

−E
[
V
(
x(Tf ), ı(Tf )

)]
+E
[
V
(
x(0), ı(0)

)]
.

(A.24)

Using (A.21) and the fact that V
(
x(0) = 0, ı(0)

)
= 0 and

V
(
x(Tf ), ı(Tf )

)
≥ 0, we have

E
[∫ Tf

0
{zT (t)z(t)− γ2wT (t)w(t)}dt

]
< 0. (A.25)

Hence the inequality (7) holds. This is the case when
w(t) = 0, and (A.21) becomes ∆̃V

(
x(t), ı

)
<−zT (t)z(t)≤

0. Therefore, the closed-loop system (25) is asymptoti-
cally stable, and (b) is achieved. This completes the proof
of Theorem 1. □

APPENDIX B: PROOF OF THEOREM 2

Proof: Consider the quadratic Lyapunov-Krasovskii
functional candidate as follows:

V (x(t), ı) =γxT (t)Q(ı)x(t) (B.1)

+ γ
∫ t

t−τ(t)
xT (v)G(ı)x(v)dv, ∀ı ∈ S ,

where Q(ı) = P−1(ı)> 0 and G(ı) =W−1(ı)> 0. For this
choice, we have V (0, ı0)=0 and V

(
x(t), ı

)
→∞ only when

∥x(t)∥→ ∞.
Consider the weak infinitesimal operator ∆̃ of the joint

process {
(
x(t), ı

)
, t ≥ 0} which is the stochastic analog

of the deterministic derivative [35]. {
(
x(t), ı

)
, t ≥ 0} is a

Markov process with infinitesimal operator given by [36],
from (46), we then have

∆̃V
(
x(t), ı

)
= γxT (t)

[(
A(µ, ı)+B2(µ, ı)Ks(µ, ı)

)T
ET

i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)
(

A(µ, ı)+B2(µ, ı)Ks(µ, ı)
)

+G(ı)
]
x(t)+ γxT (t − τ(t)

)
AT

d (µ, ı)E
T
i j(µ, ı)

×Q(ı)x(t)+ γxT (t)Q(ı)Ei j(µ, ı)Ad(µ, ı)

× x
(
t − τ(t)

)
− γxT (t − τ(t)

)
G(ı)x

(
t − τ(t)

)
+ γxT (t)

s

∑
k=1

λıkQ(k)x(t)

+ γw̃T (t)R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı)x(t)

+ γxT (t)Q(ı)Ei j(µ, ı)B̃1(µ, ı)R(ı)w̃(t). (B.2)

Using the fact that for any vector x(t) and x
(
t − τ(t)

)
xT (t)Q(ı)Ad(µ, ı)x

(
t − τ(t)

)
+ xT (t − τ(t)

)
AT

d (µ, ı)Q(ı)x(t)

≤ xT (t)Q(ı)Ad(µ, ı)G−1(ı)AT
d (µ, ı)Q(ı)x(t)

+ xT (t − τ(t)
)
G(ı)x

(
t − τ(t)

)
. (B.3)

Equation (B.2) becomes

∆̃V
(
x(t), ı

)
= γxT (t)

[(
A(µ, ı)+B2(µ, ı)Ks(µ, ı)

)T
ET

i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)
(

A(µ, ı)+B2(µ, ı)Ks(µ, ı)
)

+Q(ı)Ei j(µ, ı)Ad(µ, ı)G−1(ı)AT
d (µ, ı)

×ET
i j(µ, ı)Q(ı)+G(ı)+

s

∑
k=1

λıkQ(k)
]
x(t)

+ γw̃T (t)R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı)x(t)

+ γxT (t)Q(ı)Ei j(µ, ı)B̃1(µ, ı)R(ı)w̃(t). (B.4)

Adding and subtracting to and from (B.4) by −ℵ2(ı)zT (t)
z(t)+ γ2w̃T (t)R(ı)w̃(t) , we have

∆̃V (x(t), ı)

=−ℵ2(ı)zT (t)z(t)+ γ2w̃T (t)R(ı)w̃(t)

+ℵ2(ı)zT (t)z(t)+ γ
[

xT (t) w̃T (t)
]

×





(
A(µ, ı)+B2(µ, ı)Ks(µ, ı)

)T

×ET
i j(µ, ı)Q(ı)

+Q(ı)Ei j(µ, ı)
×
(

A(µ, ı)+B2(µ, ı)Ks(µ, ı)
)

+Q(ı)Ei j(µ, ı)Ad(µ, ı)G−1(ı)

×AT
di
(µ, ı)ET

i j(µ, ı)Q(ı)

+G(ı)+∑s
k=1 λıkQ(k)


(∗)T

R(ı)B̃T
1 (µ, ı)ET

i j(µ, ı)Q(ı) −γR(ı)


×
[

x(t)
w̃(t)

]
. (B.5)

Now, by employing the same technique used in the proof
for Theorem 1, we obtain

Ψi j(ı)
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=





P(ı)AT
i (ı)+Ai(ı)P(ı)

+B2i(ı)Ys j(ı)+Y T
s j
(ı)BT

2i
(ı)

+B2i(ı)Yd j(ı)A
T
i (ı)+Ai(ı)Y T

d j
(ı)BT

2i
(ı)

Bi(ı)(Ys j(ı)+Yd j(ı))P
−1

×(Ys j(ı)+Yd j(ı))
T BT

i (ı)

+ 1
γ

(
C̃1(ı)P(ı)+C̃1(ı)Y T

d j
(ı)BT

2i
(ı)
)T

×R−1(ı)

×
(

C̃1(ı)P(ı)+C̃1(ı)Y T
d j
(ı)BT

2i
(ı)
)

+Adi(ı)G
−1(ı)AT

di
(ı)

+
(

P(ı)+Y T
d j
(ı)BT

2i
(ı)
)T

×G(ı)
(

P(ı)+Y T
d j
(ı)BT

2i
(ı)
)

+∑s
k=1 λık

(
P(ı)+Y T

d j
(ı)BT

2i
(ı)
)T

×P−1(k)
(
P(ı)+Y T

d j
(ı)BT

2i
(ı)
)



(∗)T

R(ı)B̃T
1i
(ı) −γR(ı)



.

(B.6)

Note that (B.6) is the Schur complement of Ξi j(ı), defined
in (51). Using (49), (50) and (B.6), we learn that

Ψii(ı)< 0, (B.7)

Ψi j(ı)+Ψ ji(ı)< 0. (B.8)

Following from (3), (B.7) and (B.8), we know that

∆̃V (x(t), ı)

<−ℵ2(ı)zT (t)z(t)+ γ2ℵ2(ı)wT (t)w(t). (B.9)

Applying the operator E[
∫ Tf

0 (·)dt] to both sides of (B.9),
we obtain

E
[∫ Tf

0
∆̃V (x(t), ı)dt

]
<E
[∫ Tf

0

(
−ℵ2(ı)zT (t)z(t)

+ γ2ℵ2(ı)wT (t)w(t)
)
dt
]
.

(B.10)

From the Dynkin’s formula [37], it follows that

E
[∫ Tf

0
∆̃V
(
x(t), ı

)
dt
]

= E
[
V
(
x(Tf ), ı(Tf )

)]
−E
[
V
(
x(0), ı(0)

)]
. (B.11)

Substitution of (B.11) into (B.10) yields

0 <E
[∫ Tf

0

(
−ℵ2(ı)zT (t)z(t)+γ2ℵ2(ı)wT (t)w(t)

)
dt
]

−E
[
V
(
x(Tf ), ı(Tf )

)]
+E
[
V
(
x(0), ı(0)

)]
.

(B.12)

Using (B.9) and the fact that V
(
x(0) = 0, ı(0)

)
= 0 and

V
(
x(Tf ), ı(Tf )

)
≥ 0, we have

E
[∫ Tf

0
{zT (t)z(t)− γ2wT (t)w(t)}dt

]
< 0. (B.13)

Hence the inequality (7) holds. This is the case when
w(t) = 0, and (B.9) becomes ∆̃V

(
x(t), ı

)
< −zT (t)z(t) ≤

0. Therefore, the closed-loop system (47) is asymptoti-
cally stable, and (b) is achieved. This completes the proof
of Theorem 1. □
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