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An Observer and Post Filter Based Scheme for Fault Estimation of Non-
linear Systems
Hai Liu, Maiying Zhong* � , Yang Liu, and Zuqiang Yang

Abstract: The problem of actuator fault estimation for a kind of nonlinear discrete time varying (NDTV) systems is
investigated. Norm bounded disturbance is considered and the nonlinear function is assumed to fulfill a Lipschitz-
like condition. Fault estimation is accomplished by a novel nonlinear state observer and a dynamic post filter. First,
the nonlinear state observer is designed with the help of the small gain theorem and the H∞ filtering approach. Then
for the error dynamic of the observer, the dynamic post filter is constructed to estimate the fault. In this scheme, no
approximation of the nonlinear function is taken, and the problem of infeasibility resulting from multiple synthesis
conditions is considerably improved. Simulation studies are carried out with a nonlinear unmanned aerial vehicle
(UAV) model. The turbulent condition is considered and the feed back control loop is employed. Simulation results
show that the proposed method can accomplish the estimation work, while the residual evaluation based approach
fails to detect the fault.
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1. INTRODUCTION

Because of the nonlinear nature of various physical sys-
tems, fault diagnosis of nonlinear systems has attracted
considerable attention in recent years, see [1–6] and refer-
ences therein. During the design of the diagnosis observer
for nonlinear systems, the nonlinearity must be carefully
handled to make the observer stable, and in the meantime,
the diagnosis performance is desired. Therefore, fault di-
agnosis of nonlinear systems is not an easy task. In [7–11],
linear parameter varying systems or T-S fuzzy systems are
applied to approximate nonlinear systems, then diagnosis
observers are designed accordingly. However, modelling
errors are inevitable and this may result in degradation
of the diagnosis performance. In [12–15], the high order
terms in Taylor expansions of the nonlinear functions are
neglected, then the error dynamic system of the observer is
obtained as a linear system. Thus, the observer gain can be
selected in a familiar manner to achieve the desired diag-
nosis performance. However, when nonlinearities are se-
vere, the neglected terms may lead to stability problems.

Observer or diagnosis observer design for Lipschitz
nonlinear systems is widely investigated, because a vari-
ety of nonlinearities can be included and the adopted Lip-

schitz condition makes it easy to deal with the stability
problem, see [2, 3, 6, 16–20]. Synthesis of the diagnosis
observer is usually accomplished by solving linear matrix
inequalities (LMIs). However, as is declared in [21], a gen-
eral limitation of these approaches is that LMIs are often
infeasible because of large Lipschitz constants and multi-
ple synthesis conditions.

In this paper, the problem of actuator fault estimation
for a kind of nonlinear discrete time varying (NDTV) sys-
tems is considered. The motivation is to take care of the
high order terms in Taylor expansions so that the stabil-
ity problems can be solved. To avoid multiple synthesis
conditions, fault estimation is accomplished by a nonlin-
ear state observer and a dynamic post filter. Inspired from
the works in [22–24], a Lipschitz-like condition is intro-
duced to characterize the high order terms. Following a
similar idea presented in [18, 25, 26], the Lipschitz-like
condition is artfully used in nonlinear state observer de-
sign with the help of the small gain theorem and the H∞

filtering approach. It is noted that this observer design ap-
proach is applicable for more general systems, while in
[18, 25, 26], observer gains are obtained by solving LMIs.
After the nonlinear state observer is established, the dy-
namic post filter can be easily designed for the error dy-
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namic of the observer. The H∞ filtering approach is used
again to achieve robust fault estimation. In this fault esti-
mation scheme, the problem of infeasibility resulting from
multiple synthesis conditions is considerably improved.
The individual design of the state observer and the post
filter are much easier, and a suboptimal fault estimation
performance can be reserved.

The rest of the paper is organized as follows: Problem
formulation and the basic idea of the propose method are
presented in Section 2. Section 3 is dedicated to nonlin-
ear state observer and its post filter design. To illustrate
the application of the proposed method, simulation studies
are carried out with a nonlinear unmanned aerial vehicle
(UAV) model in Section 4. Finally, conclusion is made in
Section 5.

2. PROBLEM FORMULATION AND BASIC IDEA

Consider a class of NDTV systems with actuator faults
as follows:

x(k+1) =A(x(k))+B(k)(u(k)+ f (k))

+Bw(k)w(k),

y(k) =C(k)x(k)+ v(k),

(1)

where x(k)∈Rn is the state, u(k)∈Rp is the control input
and f (k) ∈ Rp is the actuator fault, y(k) ∈ Rq is the mea-
surement output, w(k) ∈ Rm represents disturbances, and
v(k) ∈ Rq indicates measurement noises. Without loss of
generality, f (k), w(k) and v(k) are assumed to be l2[0,N]-
norm bounded. A(·) is a nonlinear function satisfying
some Lipschitz-like condition that will be given latter.

As is presented in [27], when loss of control effective-
ness of actuators are considered, the additive fault f (k)
can be modeled as unknown parameter θ(k) ∈ Rp in a
multiplicative manner for easier estimation, specifically,

B(k)(u(k)+ f (k))

= B(k) ·diag
(

1−θ1(k) · · · 1−θp(k)
)
·u(k),

where θi(k) ∈ [0,1], i = 1, · · · , p and diag(·) stands for
a block diagonal matrix. Then fault diagnosis work is ac-
complished by estimation of θ(k). On the other hand, the
work in [21] shows that the detailed description of the
nonlinear system is helpful to achieve a less conservative
design. Based on the above statement, the nonlinear sys-
tem (1) is rewritten as follows:

x(k+1) =U(k)x(k)+Γφ(Πx(k))+B(k)u(k)

+B f (k)θ(k)+Bw(k)w(k),

y(k) =C(k)x(k)+ v(k),

(2)

where U(k) is used to describe the linear part of the orig-
inal system, φ(·) is the nonlinear function, Γ is the dis-
tribution matrix of φ(·) and Π depends on states that are

used in φ(·). θ(k), B f (k) are specified as follows:

θ(k) =
(

θ1(k) · · · θp(k)
)T

,

B f (k) = B(k) ·diag
(

u1(k) · · · up(k)
)
,

where ui(k) represents the ith item of u(k).
Usually, it is assumed that φ(·) satisfies the following

Lipschitz condition:∥∥φ(Πx(k))−φ(Πx̂(k))
∥∥≤ κ

∥∥Πx̃(k)
∥∥ , (3)

where κ > 0 is the Lipschitz constant, x̂(k) is the state
estimate, and x̃(k) = x(k)− x̂(k). Though matrices Γ and
Π are employed for detailed presentation of the nonlin-
ear system, conservativeness may result from a large Lip-
schitz constant κ . Therefore, in [22–24], a Lipshcitz-like
condition is adopted in observer design. In this paper, a
similar Lipshcitz-like condition is introduced in the fol-
lowing assumption.

Assumption 1: φ(·) is a smooth function with respect
to x(k), its Taylor expansion is demonstrated as follows:

φ(Πx(k)) = φ(Πx̂(k))+Λ(k)x̃(k)+ φ̃(k), (4)

where

Λ(k) =
∂

∂x
(φ(Πx(k)))

∣∣∣∣
x̂(k)

, (5)

and φ̃(k) is the sum of high order terms which satisfies∥∥φ̃(k)
∥∥≤ κ1

∥∥Πx̃(k)
∥∥+κ2, (6)

where κ1 > 0 and κ2 > 0 are Lipschitz constants.

When compared with the Lipschitz condition defined in
(3), it is observed that the first order term Λ(k)x̃(k) is re-
moved from the left part of (6). This Λ(k)x̃(k) will be used
to characterise the propagation of the error dynamic sys-
tem latter. Moreover, the additional constant κ2 is included
to account for bounded uncertainties, see [22–24]. Then,
the problem of fault estimation can be formulated as: con-
sider a class of NDTV systems presented in (2), design
a diagnosis observer to get fault estimate θ̂(k), such that
the observer is stable and the following fault estimation
performance is fulfilled under Assumption 1.

sup
x̃0,w,v

∑
k
i=0 θ̃ T (i)θ̃(i)

x̃T
0 x̃0 +∑

k
i=0(wT (i)w(i)+ vT (i)v(i))

≤ γ
2
1 , (7)

where θ̃(k)= θ(k)− θ̂(k), x̃0 is the initial error, and γ1 > 0
is a given constant.

So far, in most of the existing studies, the fault esti-
mation problem will be solved by synthesis of a single
fault estimation observer that fulfills both stability and es-
timation performance conditions. Unfortunately, the mul-
tiple synthesis conditions could be infeasible in the gen-
eral case. Therefore, as is illustrated in Fig. 1, a two step
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Fig. 1. Fault estimation via state observer and post filter.

design scheme is proposed in this paper. In the first step,
regardless of the problem of fault estimation, a nonlinear
state observer is designed. Then in the second step, for
the error dynamic system of the nonlinear state observer,
a fault estimation filter that fulfills a predefined estimation
performance is constructed to accomplish the diagnosis
work. In this way, the problem of infeasibility resulting
from multiple synthesis conditions can be solved. More-
over, individual design of the observer and the post filter
can be carried out much easier. In the next section, design
of the nonlinear state observer and the post filter will be
presented in details.

Remark 1: It should be noted that the Lipschitz-like
condition presented in Assumption 1 is different from
the Lipschitz-like condition adopted in [22–24]. In these
studies, Lipschitz-like conditions are adopted with a pre-
defined constant matrix Λ. While in this study, Λ(k) is
obtained from (5). Similar to the well-known Extended
Kalman Filter, Λ(k)x̃(k) is the first order approximation
of φ(Πx(k))− φ(Πx̂(k)), and it is fully used during the
estimation.

3. MAIN RESULTS

3.1. Nonlinear state observer design

Following the idea about how to stabilize the nonlin-
ear observer presented in [18, 25, 26] , in this section, a
nonlinear state observer is proposed for system (2) under
Assumption 1. The observer is presented as follows:


x̂(k) = x̂(k|k−1)+K(k)r(k),

r(k) = y(k)−C(k)x̂(k|k−1),

x̂(k+1|k) =U(k)x̂(k)+Γφ(Πx̂(k))+B(k)u(k),

x̂(0|−1) = x̂0,

(8)

where x̂(k|k− 1) is the state prediction prior to y(k), and
x̂(k) is the state estimation after y(k) is available, x̂0 is the
initial guess, r(k) is the residual, K(k) is the observer gain
to be designed. Subtracting (8) from (2), the following er-

ror dynamic systems is obtained.
x̃(k+1|k) = A(k)(I−K(k)C(k))x̃(k|k−1)

+Γφ̃(k)+B f (k)θ(k)+Bw(k)w(k)

−A(k)K(k)v(k),

r(k) =C(k)x̃(k|k−1)+ v(k),
(9)

where x̃(k|k− 1) = x(k)− x̂(k|k− 1), x̃(k) = x(k)− x̂(k)
and

A(k) =U(k)+ΓΛ(k). (10)

Define e(k) = Πx̃(k) and let Meφ̃ represent the mapping
from φ̃(k) to e(k), which can be obtained from the error
dynamic system (9). Then a sufficient condition for the
error dynamic system (9) being stable is presented in the
following lemma.

Lemma 1: Under Assumption 1, if the observer gain
K(k) is selected so that

‖Meφ̃‖∞ <
1
κ1

, (11)

then the error dynamic system (9) of the nonlinear ob-
server (8) is stable.

Proof: Set ∆(k) = κ1‖Πx̃(k)‖, φ̄(k) = ∆(k)+ κ2. Ac-
cording to (6), there always exists a mapping Mφ̃ φ̄ such
that φ̃ = Mφ̃ φ̄ φ̄ and ‖Mφ̃ φ̄‖∞ ≤ 1. Therefore, the structure
of the error dynamic system (9) can be illustrated in Fig. 2.
It should be noted that, regardless of the presence of an ex-
act expression for φ̃(k), ‖∆(k)‖∞‖Mφ̃ φ̄‖∞ ≤ κ1 is true due
to the Lipschitz-like condition in (6).

Similar to the proof of Theorem 4 in [26], a straight-
forward dissipativity argument can then be used to show
that Meφ̃ and ∆(k)Mφ̃ φ̄ are dissipative with the sup-
ply rates ω1 = −eT e + ‖Meφ̃‖2

∞φ̃ T φ̃ and ω2 = −φ̃ T φ̃ +

‖∆(k)‖2
∞‖Mφ̃ φ̄‖2

∞eT e, respectively. Denoting S1 and S2 as
their corresponding storage functions, it follows that S1 +
aS2, a > 0 is a Lyapunov function for the system. Then if
‖Meφ̃‖∞‖∆(k)‖∞‖Mφ̃ φ̄‖∞ < 1, which is fulfilled when (11)
holds true, the system is asymptotically stable. �

Fig. 2. Structure of the error dynamic system.
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Now the observer gain K(k) can be selected accord-
ingly. By applying the H∞ filtering approach, solution of
the observer gain K(k) is presented in the following propo-
sition.

Proposition 1: For the nonlinear system (2) and its ob-
server (8), Assumption 1 is adopted. Choose the observer
gain K(k) as

K(k) = P(k)CT (k)(C(k)P(k)CT (k)+ I)−1, (12)

and P(k) is obtained from the following Riccati equation
P(k+1) = A(k)P(k)AT (k)+ΓΓ

T

−A(k)P(k)M(k)P(k)AT (k),

P(0) = I,

(13)

where

M(k) =
[
CT (k) Π

T ]R−1
e (k)

[
C(k)

Π

]
,

Re(k) =
[
C(k)

Π

]
P(k)

[
CT (k) Π

T ]+[ I 0
0 −γ2

2 I

]
.

Then if inequalities

Π(C(k)CT (k)+P−1(k))−1
Π

T − γ
2
2 I < 0, (14)

(C(k)P(k)CT (k)+ I)> 0 (15)

hold true for all k ≥ 0, and κ1 · γ2 < 1, it is concluded that
the nonlinear observer (8) is stable.

Proof: In [28], the H∞ filtering problem is solved by
looking for the minimum of an indefinite quadratic from
in the Krein space. Theorem 1 and the Corollary 1 in [28]
show that the inequalities (14) and (15) are the equivalent
sufficient and necessary condition for the selected K(k) to
fulfill

sup
x̃0,φ̃

∑
k
i=0 x̃T (i)ΠT Πx̃(i)

x̃T
0 x̃0 +∑

k
i=0 φ̃ T (i)φ̃(i)

≤ γ
2
2 .

That is, ‖Meφ̃‖∞ ≤ γ2.
On the other hand, Lemma 1 shows that the sufficient

condition of a stable observer is (11). Together with κ1 ·
γ2 < 1, the proof is completed. �

Remark 2: In existing studies, observer synthesis for
Lipschitz nonlinear systems is usually accomplished by
solving LMIs. These methods will become invalid when
there are time varying terms in systems. While in this pa-
per, observer is designed by combinative application of the
small gain theorem and the H∞ filtering approach. This
new method makes observer design for nonlinear time
varying systems available.

3.2. Post filter design for fault estimation
Now that a stable error dynamic system of the observer

is established, design of the post filter becomes much eas-
ier. That is, consider a stable linear time varying system
presented in (9), design a fault estimation filter so that
some H∞ performance is fulfilled. Since the actuator fault
is modeled as an unknown parameter, a simple way to es-
timate the fault is to augment the unknown parameter as
an additional state, then fault estimate can be obtained by
applying standard H∞ filtering method. In the case that the
unknown parameter is time varying, the proportional mul-
tiple integral (PMI) observer proposed in [29] can be used
and the fault estimation work can be accomplished in a
similar way. For easy presentation, the unknown constant
parameter model is adopted in this section to illustrate the
design of the post filter.

Augment θ(k) as a new state, then system (9) can be
rewritten as{

η(k+1) = Ā(k)η(k)+ B̄w(k)w̄(k),

r(k) = C̄(k)η(k)+ v(k),
(16)

where

η(k) =
(
x̃T (k|k−1) θ

T (k)
)T

,

w̄(k) =
(
φ̃

T (k) wT (k) vT (k)
)T

,

and

Ā(k) =
[

A(k)(I−K(k)C(k)) B f (k)
0 I

]
, (17)

B̄w(k) =
[

Γ Bw(k) −A(k)K(k)
0 0 0

]
, (18)

C̄(k) =
[
C(k) 0

]
. (19)

The post filter is constructed as follows:

η̂(k) = η̂(k|k−1)+L(k)r̃(k),

θ̂(k) =Cθ η̂(k),

r̃(k) = r(k)−C̄(k)η̂(k|k−1),

η̂(k+1|k) = Ā(k)η̂(k),

η̂(0|−1) = 0,

(20)

where η̂(k|k− 1) is the state prediction prior to r(k), and
η̂(k) is the state estimation when r(k) is available, r̃(k)
is the prediction error of r(k), L(k) is the filter gain to be
designed, and

Cθ =
[
0 Ip

]
. (21)

Use the H∞ filtering approach again, the following propo-
sition can be obtained.

Proposition 2: For the augmented system (16) and its
filter (20), the filter gain L(k) is selected as

L(k) = Σ(k)C̄T (k)(C̄(k)Σ(k)C̄T (k)+ I)−1, (22)
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and Σ(k) is obtained from the following Riccati equation
Σ(k+1) = Ā(k)Σ(k)ĀT (k)+ B̄w(k)B̄w(k)T

− Ā(k)Σ(k)M̄(k)Σ(k)ĀT (k),

Σ(0) = I,

(23)

where

M̄(k) =
[
C̄T (k) CT

θ

]
R̄−1

e (k)
[

C̄(k)
Cθ

]
R̄e(k) =

[
C̄(k)
Cθ

]
Σ(k)

[
C̄T (k) CT

θ

]
+

[
I 0
0 −γ2

1 I

]
.

Then if and only if

Cθ (C̄(k)C̄T (k)+Σ
−1(k))−1CT

θ − γ
2
1 I < 0, (24)

(C̄(k)Σ(k)C̄T (k)+ I)> 0 (25)

hold true for all k ≥ 0, the following H∞ performance is
fulfilled.

sup
x̃0,φ̃ ,w,v

∑
k
i=0 θ̃ T (i)θ̃(i)

x̃T
0 x̃0 +∑

k
i=0(w̄T (i)w̄(i)+ vT (i)v(i))

≤ γ
2
1 .

(26)

Proposition 2 follows from Theorem 1 and Corollary 1
presented in [28] directly. It should be noted that there is
a subtle difference between the achieved H∞ performance
specified in (26) and the one presented in (7), because φ̃(k)
is incorporated in w̄(k). Nevertheless, it can be regarded as
a suboptimal solution for the problem of fault estimation.
When θ(k) is time varying, finite time derivatives of the
fault should be augmented as the new states together, then
by suitable modification of Ā(k), B̄w(k), C̄(k) and Cθ , the
filter gain L(k) and the fault estimate θ̂(k) can be obtained
in a similar way.

3.3. Fault estimation algorithm
As is depicted in Fig. 1, the proposed fault estimation

method is divided into two stages. At the first stage, the
nonlinear state observer is applied for state estimation for
the nonlinear control system. The control input u(k) and
system output y(k) are utilized as the input of the observer,
and the residual r(k) is generated. At the second stage,
the post filter designed for the error dynamic system of
the observer is applied to estimate the fault. The residual
r(k) and the control input u(k) are used as the input of
the filter, then fault estimate θ̂(k) is obtained. The fault
estimation algorithm based on the nonlinear state observer
and its post filter is concluded as follows:

Remark 3: The computational complexity of the pro-
posed algorithm is O

(
(n+ p)3

)
where n is the dimen-

sion of the state and p is the dimension of the fault. The

Algorithm 1: Nonlinear state observer and dynamic post
filter based fault estimation
Step 1: Let k = 0, initialize the nonlinear state observer
and the post filter, set x̂(0|−1) = x̂0, η̂(0) = 0, P(0) = I,
Σ(0) = I. Choose a suitable γ1, and a large enough γ2 such
that γ2 ·κ1 < 1

Step 2: Check whether inequalities (14) and (15) are ful-
filled. If yes, goto Step 3, otherwise stop the algorithm.

Step 3: Calculate K(k) according to (12).

Step 4: Calculate r(k), x̂(k) and x̂(k + 1|k) according to
the nonlinear observer (8).

Step 5: Construct A(k) according to (10) and (5), then up-
date P(k+1) according to (13).

Step 6: Construct C̄(k), Cθ according to (19) and (21), re-
spectively, and check whether inequalities (24) and (25)
are fulfilled. If yes, goto Step 7, otherwise stop the algo-
rithm, choose a larger γ1 and restart the algorithm.

Step 7: Calculate L(k) according to (22).

Step 8: Construct Ā(k), B̄w(k) according to (17) and (18),
respectively, then update Σ(k+1) according to (23).

Step 9: Calculate r̃(k), η̂(k), η̂(k+1|k), and get the fault
estimate θ̂(k) according to the filter (20).

Step 10: Let k = k + 1, goto Step 2 until the end of the
algorithm.

computational load grows as the fault is augmented as the
additional state for fault estimation. Fortunately, the co-
mutational load dose not grow in an exponential way, and
the algrithm is still applicable. Moreover, when the idea
of the PMI observer is used to improve the estimation per-
formance for time varying faults, the growth of the com-
putational load will be significant. A trade-off should be
made between the estimation performance and the com-
putational load.

4. SIMULATION STUDY

4.1. Description of UAV model
To evaluate the performance of the proposed method,

the longitudinal model of a small UAV is employed. In
the model, V , α , q, ψ and H represent the air speed, angle
of attack, pitch rate, pitch angle and altitude of the UAV.
δe and δp are the elevator deflection and throttle setting.
wx, wz are the wind speed in the horizonal and vertical
direction, and gx, gz are the wind gradients. Set

x(k) = [V α q ψ H]T , u(k) = [δe δp]
T ,

w(k) = [wz gx gz]
T , y(k) = [V q ψ H]T ,

a NDTV model in a similar form with (2) is established,
specifically,
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U(k) =


1 0 0 0 0

0.0141Ts 1 1.0201Ts 0 0
0 0 1 0 0
0 0 Ts 1 0
0 0 0 0 1

 ,

Bw(k) = Ts


0 −cos(ψ−α) −sin(ψ−α)

0 − sin(ψ−α)
V

cos(ψ−α)
V

0 0 0
0 0 0
1 0 0

 ,

Γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 , Π =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

C(k) =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B(k) = Ts


0 B3

B1 B4

B2 0
0 0
0 0

 ,
φ(Πx(k)) = Ts [φ1 φ2 φ3 φ4 φ5]

T ,

where B1 =−0.0009V , B2 =−0.0115V 2α2+0.0002V 2α

−0.00005V 2, B3 = 1.4191cosα , B4 = 1.4191 sinα

V ,
and φ1 = (−0.0251α2 − 0.0013α − 0.0014)V 2, φ2 =

−0.1069V α + 9.8 cos(ψ−α)
V , φ3 = −0.0101V 2α −

0.0372V q, φ4 = 0, φ5 = V sin(ψ − α), and Ts is the
sampling time. It should be noted that during the flight,
V (k) 6= 0, and B(k), Bw(k) in the above model are non-
linear functions of the state. To simplify the investigation,
they are treated as know matrices and identified with the
state estimates.

Simulations are carried out under closed-loop control
and the UAV model reaches a steady state. The simulation
time is 100s, and the sampling time Ts = 0.1s. Turbulent
condition is considered and shown in Fig. 3. The measure-
ment noises are simulated as Gaussian signals with zero
means, and their standard deviations are set to be 0.01.
The initial condition is x0 = [24.2 0.1 0.2 0.01 201]T ,
x̂0 = [24 0 0 0 200]T . Moreover, the Lipschitz con-
stants are estimated with simulation data, specifically, we
chose κ1 = 0.5 and κ2 = 0.1. γ1 and γ2 are set to be γ2

1 = 8,
γ2

2 = 3.

4.2. Fault diagnosis results
To compare the fault diagnosis performance, both of

the proposed method and the residual evaluation based
approach are carried out in the simulation study. In the
residual evaluation based approach, r(k) generated from
the state observer (8) is employed together with the fol-
lowing evaluation function.

JN(k) =
1

N +1

k

∑
j=k−N

rT ( j)r( j),
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Fig. 3. Simulated turbulent condition.

where N = 50 is the length of the sliding window. The
Threshold is set as Jth = supJN,0(k), where JN,0(k) is JN(k)
obtain from fault free cases. Fault alarms are triggered ac-
cording to the following logic:{

JN(k)> Jth =⇒ fault alarm,

JN(k)≤ Jth =⇒ fault free.

Two actuator fault scenarios are considered. In the first
scenario, loss of control effectiveness of the elevator is
modeled as δe, f (t) = 0.7 ·δe,o(t) when t > 40s, where the
subscript f and o indicate the faulty value and the nom-
inal value, respectively. Diagnosis results of the elevator
fault are show in Fig. 4. It is depicted in Fig. 4: (a) that the
fault estimation method proposed in this paper can accom-
plish the estimation work and the elevator fault is success-
fully detected. While in Fig. 4: (b), the residual evaluation
based approach almost fails to detect the fault. Moreover,
the calculation result shows

∑
k
i=0 θ̃ T (i)θ̃(i)

x̃T
0 x̃0+∑

k
i=0(wT (i)w(i)+vT (i)v(i))

= 1.1168≤ γ
2
1 .

Loss of control effectiveness of the throttle is consid-
ered in the second scenario. The throttle fault is modeled
as δp, f (t) = 0.85 ·δp,o(t) when t > 40s. Fault diagnosis re-
sults are show in Fig. 5. Similar to the elevator fault case,
it is depicted in Fig. 5: (a) that the throttle fault is success-
fully detected from the fault estimates. While in Fig. 5:
(b), the detection performance of the residual evaluation
based method is poor. Only a transient alarm is triggered
at about 40s after the fault occurs. Moreover, the calcula-
tion result shows

∑
k
i=0 θ̃ T (i)θ̃(i)

x̃T
0 x̃0+∑

k
i=0(wT (i)w(i)+vT (i)v(i))

= 0.5656≤ γ
2
1 .
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Fig. 4. Diagnosis results of the elevator fault.

The above results show that the fault estimation method
outperforms the residual evaluation based approach. The
reason of the advantage of the fault estimation method is
interesting. In [30], it is stated that closed-loop systems are
naturally robust to small faults. System responses to these
faults are usually covered by controllers, thus small faults
in closed-loop systems are hardly detectable. For a system
reaching steady state under feedback control, the control
input u(k) is usually very small. When loss of control ef-
fectiveness of the actuator occurs, the equivalent additive
fault ∆u(k) (the fault is modeled in the additive manner)
will be even smaller. The residual evaluation based ap-
proach tries to evaluate the change of the residual energy
resulting from the tiny term ∆u(k), thus often fails. Dif-
ferently, in the fault estimation manner, actuator faults are
modeled as unknown parameters to identify the scale of
the ineffective part and the additional knowledge of the
fault distribution matrices is used. Therefore, the fault es-
timation method is preferable for diagnosis of closed-loop
systems.
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Fig. 5. Diagnosis results of the throttle fault.

5. CONCLUSION

The problem of actuator fault estimation for a kind of
nonlinear control systems is investigated. A Lipschitz-like
condition is introduced and the nonlinear state observer is
designed with the help of the small gain theorem and the
H∞ filtering approach. No approximation is needed and
this design approach is applicable for more general sys-
tems. Fault estimation is accomplished by a dynamic post
filter. The problem of infeasibility resulting from multiple
synthesis conditions is considerably improved. Moreover,
the simulation results indicate that for the purpose of actu-
ator fault diagnosis in closed-loop systems, the fault esti-
mation method outperforms the residual evaluation based
approach.

On the other hand, the introduced global Lipschitz-
like condition is restrictive in applications. The local
Lipschitz-like conditions is preferable and works to esti-
mate Lipschitz constants should be done in future studies.
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Furthermore, this work is limited to estimation of the actu-
ator fault. Diagnosis of the sensor fault would be included
in our future work.
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