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A Further Result on Global Stabilization of a Class of Nonlinear Systems
by Output Feedback with Unknown Measurement Sensitivity
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Abstract: In this paper, we provide a further result on the output feedback control problem of nonlinear systems
with unknown measurement sensitivity studied in [2]. We provide a gain-scaling output feedback controller and
a process of determining the allowed measurement sensitivity. As a result, we show that more nonlinearity and
measurement sensitivity can be treated by our method. Various examples are presented to illustrate the improved
features of our control method.
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1. INTRODUCTION

Output feedback control problems have received much
attention and still remain as active research topics as of
now [1–11]. For example, in [1], the problem of out-
put feedback stabilization of a class of nonlinear sys-
tems which may have unstable zero dynamics was stud-
ied. In [3], under a lower triangular linear growth condi-
tion, sample-data output feedback controller with an ap-
propriate sampling period guaranteed global asymptotical
stabilization. In [5], an adaptive output feedback control
scheme was proposed for triangular or feedforward non-
linear systems with unknown linear growth rate. In [8], the
problem of global robust stabilization by output feedback
was investigated for uncertain systems with polynomial
nonlinearity. In [11], the problem of global asymptotic
stabilization by sampled-data output feedback was investi-
gated for a class of nonminimum-phase nonlinear systems
under Lipschitz condition.

One common feature of all aforementioned results is
that they all assumed ‘clean’ feedback channel, i.e., none
considered a case in which there may be some measure-
ment sensitivity, noise, or disturbance in feedback chan-
nel. In these regards, there have been several control re-
sults considering various uncertainties in feedback. In
[12–14], fuzzy controls for nonlinear systems under un-
reliable communication links and the restricted transmis-
sion capacity of communication network were studied. In
[12], network-based fuzzy control method for nonlinear
Markov jump systems under unreliable communication
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links was proposed. In [13], the problem of quantized
feedback control of a class of nonlinear Markov jump
systems was addressed. In [14], the sliding-mode con-
trol problem of Takagi-Sugeno fuzzy multiagent systems
is studied. However, they did not consider the measure-
ment sensitivity issue and these results are about full state
feedback controls. Also, some other results with noise in
feedback are reported in [15,16]. In [16], their control pur-
pose was to robustly minimize the upper bound of the esti-
mated error. In [15], they considered a measurement feed-
back problem for feedforward nonlinear systems. How-
ever, their considered cases are about uncertain measure-
ment vector and sensor noise entering the feedback chan-
nel in an additive form.

Recently, a new output feedback control result which
related to measurement sensitivity appeared in [2]. In [2],
they considered a form of y = θ(t)x1, that is ‘normal’
state is fluctuated by the uncertain measurement sensitiv-
ity function. One limitation of [2] is that the allowed mea-
surement sensitivity is rather conservative due to the use
of norm-bound condition in the analysis. We find that this
limitation can be much relaxed by utilizing a matrix in-
equality structure and we will introduce a matrix inequal-
ity approach which allows more measurement sensitivity.

In this paper, we significantly extend the result of [2] in
mainly two ways: (i) Using a new analysis with a matrix
inequality approach, we show that much more uncertain
measurement sensitivity can be allowed; (ii) The nonlin-
earity in consideration is also further extended in an output
feedback control scheme. Careful comparisons in terms of
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both analysis and examples are provided in order to illus-
trate the clear advantage of our control method.

2. PROBLEM STATEMENT

Their considered nonlinear system with measurement
sensitivity is expressed as follows.

ẋ = Ax+Bu+ϕ(t,x,u),

y =Cθ(t)x, (1)

where x = [x1, · · · ,xn]
T ∈ Rn is the system state, u ∈ R

is the control input, and y ∈ R is the measurement
output. The perturbed nonlinearity is ϕ(t,x,u) =
[ϕ1(t,x,u), · · · ,ϕn(t,x,u)]T : R × Rn × R → Rn where
each ϕi(t,x,u), i = 1, · · · ,n is continuous, (A,B) is the
Brunovsky canonical pair and Cθ(t) = [θ(t),0, · · · ,0]. The
measurement sensitivity θ(t) is a bounded and unknown
continuous function of time. Notably, θ(t) does not
need to be differentiable. Moreover, the nominal value
is θ(t) = 1. So, θ(t) can be written as θ(t) = 1+δθ(t).

Regarding nonlinearity of the system (1), the following
two conditions are considered in [2].

(A1) Lower triangular condition: For i = 1, · · · ,n, there
exists a constant c ≥ 0 such that

|ϕi(t,x,u)| ≤ c(|x1|+ · · ·+ |xi|). (2)

(A2) Upper triangular condition : For i = 1, · · · ,n− 2,
there exists a constant c ≥ 0 such that

|ϕi(t,x,u)| ≤ c(|xi+2|+ · · ·+ |xn|), (3)

and ϕn−1(t,x,u) = ϕn(t,x,u) = 0.
The main result of [2] is: They showed that (i) the sys-

tem (1) can be globally asymptotically stabilized by an
output feedback under either (A1) or (A2); (ii) some non-
trivial amount of δθ(t) can be treated as well.

Now, here is the formal statement of our control prob-
lem: We consider the output feedback stabilization of the
system (1) and we aim to show that

(i) More nonlinearity over (A1) and (A2) can be allowed.

(ii) Significantly larger magnitude of measurement sensi-
tivity, i.e., δθ(t) can be treated as well.

In order to solve our control problem, our approaches
are: (i) determination process of obtaining a compact set
containing the allowed measurement sensitivity is pro-
vided by utilizing a Lyapunov equation and matrix in-
equalities; (ii) a gain-scaling output feedback controller
is designed and applied to guarantee a global asymptotic
stabilization; (iii) the proposed output feedback control
scheme is applied to two numerical examples and one
practical example with more measurement sensitivity and
nonlinearity for clear illustration.

3. MAIN RESULTS

Note that we consider the system (1) where the same
condition is imposed upon θ(t) = 1 + δθ(t) which be-
longs to a compact set Ωθ . We introduce the following
condition on the perturbed nonlinearities ϕ(t,x,u).

Assumption 1: [4] There exists a function γ(ε) ≥ 0
such that for ε > 0 ,

n

∑
i=1

ε i−1|ϕi(t,x,u)| ≤ γ(ε)
n

∑
i=1

ε i−1|xi|. (4)

Remark 1: In [4], it is already shown that Assump-
tion 1 is more general than either (A1) or (A2). Under
(A1), it could be that γ(ε) = c(1+ ε + · · ·+ εn−1). Under
(A2), it could be that γ(ε) = c(ε−2+ · · ·+ε−(n−1)). More-
over, Assumption 1 includes ‘other type’ of nonlinearity
besides (A1) and (A2). Thus, if the system (1) is shown to
be globally asymptotically stabilized by output feedback
under Assumption 1, our result naturally includes more
nonlinearity over [2].

First, we provide an output feedback controller with a
gain-scaling factor ε given by

u = K(ε)z, (5)

ż = Az+Bu−L(ε)(y−Cz), (6)

where z = [z1, · · · ,zn]
T ∈ Rn, K(ε) = [k1/εn, · · · ,kn/ε],

L(ε) = [l1/ε, · · · , ln/εn]T , ε > 0, and C = [1,0, · · · ,0].
Before stating the main result, we provide some mathe-

matical setups for clear presentation. Define the observer
error e = [e1, · · · ,en]

T , ei = xi − zi, 1 ≤ i ≤ n. By subtract-
ing (6) from (1) and with the controller (5), we have

ė = Ae+L(ε)Ce+L(ε)(Cθ(t)−C)x+ϕ(t,x,u)

= AL(ε)e+L(ε)(Cθ(t)−C)x+ϕ(t,x,u), (7)

where AL(ε) = A+L(ε)C.
From (1) and (5), we obtain

ẋ = Ax+BK(ε)(x− e)+ϕ(t,x,u)
= AK(ε)x−BK(ε)e+ϕ(t,x,u), (8)

where AK(ε) = A+BK(ε).
From (7) and (8), we have an augmented closed-loop

system as[
ė
ẋ

]
=

[
AL(ε) L(ε)(Cθ(t)−C)

−BK(ε) AK(ε)

][
e
x

]
+

[
ϕ(t,x,u)
ϕ(t,x,u)

]
.

(9)

Next, some notations are provided to be used through-
out the paper for convenience.

Notations: For any matrix MT = M, λmin(M) denotes
the minimum eigenvalue of M. ∥x∥ denotes the Euclidean
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norm. Other norms will be denoted by their subscripts.
Define K = K(1), L = L(1), AK = AK(1), AL = AL(1), and
let

Ãθ(t)
K(ε)L(ε) =

[
AL(ε) L(ε)(Cθ(t)−C)

−BK(ε) AK(ε)

]
∈ R2n×2n,

(10)

ÃKL =

[
AL 0

−BK AK

]
∈ R2n×2n. (11)

Now, the following key procedure are introduced with
respect to unknown measurement sensitivity.
Determination process of Ωθ :

(i) Select K and L such that ÃKL is Hurwitz. Let M =
diag[m1, · · · ,m2n]> 0. There exists a positive definite
symmetric matrix P such that (ÃKL)

T P+PÃKL =−M
where P = [pi, j] ∈ R2n×2n, i = 1, · · · ,2n, j = 1, · · · ,2n.

(ii) Compute a symmetric matrix Q(t) such that

(Ãθ(t)
KL )T P+PÃθ(t)

KL =−Q(t). (12)

(iii) Determine the compact set Ωθ which contains all
ranges of θ(t) as long as Q(t)> 0, ∀t ≥ 0. Then, the
allowed measurement sensitivity θ(t) is contained in
Ωθ .

Remark 2: The actual computation of the above pro-
cess can easily be done by computer. Of course, it is im-
portant to demonstrate that the obtained set Ωθ is indeed
significantly larger than the one shown in [2]. So, in Sec-
tion 4, direct comparisons will be made for cases of sys-
tem dimension n = 2,3,4 as done in [2].

Theorem 1: Suppose (i) Assumption 1 holds; (ii) the
determination process of Ωθ is followed. There exists ε >
0 such that the following holds

∆(ε) :=
[

1 −εγ(ε)σ
−εγ(ε)σ 1−2εγ(ε)σ

]
> 0, (13)

where σ > 0 is a finite constant.
Then, the system (1) is globally asymptotically stable

with the controller (5)-(6).

Proof: Define Eε = diag[1,ε, · · · ,εn−1]. Then, the fol-
lowing relations hold for all ε > 0:

E−1
ε ALEε = εAL(ε), (14)

E−1
ε AKEε = εAK(ε), (15)

E−1
ε L(Cθ(t)−C)Eε = εL(ε)(Cθ(t)−C), (16)

E−1
ε BKEε = εBK(ε). (17)

Define Ẽε = diag[Eε ,Eε ]. From (14)-(17), we obtain the
equation

Ẽ−1
ε Ãθ(t)

KL Ẽε = εÃθ(t)
K(ε)L(ε). (18)

By substituting (18) into (12), we can derive a Lyapunov
equation such as

(Ãθ(t)
K(ε)L(ε))

T Pε +Pε Ãθ(t)
K(ε)L(ε) =−ε−1Ẽε Q(t)Ẽε , (19)

where Pε = Ẽε PẼε > 0.
A Lyapunov function is then set as

V (e,x) =
[

e
x

]T

Pε

[
e
x

]
. (20)

Along the trajectory of (9), the time derivative of the Lya-
punov function using (19) is as

V̇ (e,x) =−ε−1
[

e
x

]T

Ẽε Q(t)Ẽε

[
e
x

]
+2

[
e
x

]T

Ẽε PẼε

[
ϕ(t,x,u)
ϕ(t,x,u)

]
=−ε−1

[
Eε e
Eε x

]T

Q(t)
[

Eε e
Eε x

]
+2

[
Eε e
Eε x

]T

P
[

Eε ϕ(t,x,u)
Eε ϕ(t,x,u)

]
. (21)

Note that there is the following relation[
Eε e
Eε x

]T

Q(t)
[

Eε e
Eε x

]
≥ α

[
∥Eε e∥
∥Eε x∥

]T [∥Eε e∥
∥Eε x∥

]
, (22)

where α = inft≥0{λmin[Q(t)]} is a positive real constant
due to QT (t) = Q(t)> 0, ∀t ≥ 0.

With (22), we have

V̇ (e,x)≤−ε−1α
[
∥Eε e∥
∥Eε x∥

]T [∥Eε e∥
∥Eε x∥

]
+2∥P∥

[
∥Eε e∥
∥Eε x∥

]T [∥Eε ϕ(t,x,u)∥
∥Eε ϕ(t,x,u)∥

]
. (23)

Let us investigate the norm bounds of ∥Eε ϕ(t,x,u)∥. Un-
der Assumption 1, we have

∥Eε ϕ(t,x,u)∥
≤ ∥Eε ϕ(t,x,u)∥1 ≤ γ(ε)∥Eε x∥1 ≤

√
nγ(ε)∥Eε x∥.

(24)

Using (24), we obtain the following inequality

V̇ (e,x)≤−ε−1α
[
∥Eε e∥
∥Eε x∥

]T [∥Eε e∥
∥Eε x∥

]
+2

√
nγ(ε)∥P∥

[
∥Eε e∥
∥Eε x∥

]T [∥Eε x∥
∥Eε x∥

]
≤−ε−1α

[
∥Eε e∥
∥Eε x∥

]T

×
[

1 −εγ(ε)σ
−εγ(ε)σ 1−2εγ(ε)σ

][
∥Eε e∥
∥Eε x∥

]
,

(25)
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where σ =
√

nα−1∥P∥ which is a constant independent of
ε .

Selecting ε as

∆(ε) :=
[

1 −εγ(ε)σ
−εγ(ε)σ 1−2εγ(ε)σ

]
> 0 (26)

assures the global asymptotic stability of the controlled
system. □

Remark 3: Recalling Remark 1, it can be seen that
there always exist finite constants ε1,ε2 > 0 such that
∆(ε) > 0 in (26) is satisfied for 0 < ε < ε1 for (A1) and
ε2 < ε < ∞ for (A2). For nonlinearity other than (A1) or
(A2), we present Example 2 in Section 5. This clarifies
that our result includes more nonlinearity over [2].

4. RELATION BETWEEN ALLOWED
MEASUREMENT SENSITIVITY AND THE

VALUES OF K, L, AND M

In this section, we show the conditions that Q(t) re-
mains positive definite following the selection of K, L, and
M through cases of system dimension n = 2,3,4. Note
that for comparison with [2], the selected K and L are as
similar values to ones in [2] as possible even though the
controller structure is different.

(n = 2n = 2n = 2 case): From (12), Q(t) is obtained as follows.

Q(t) =


m1 0 −ρ1δθ(t) 0
∗ m2 −ρ2δθ(t) 0
∗ ∗ m3 −2ρ3δθ(t) −ρ4δθ(t)
∗ ∗ ∗ m4

 ,

(27)

where ρ1 = l1 p1,1 + l2 p1,2, ρ2 = l1 p1,2 + l2 p2,2, ρ3 =
l1 p1,3 + l2 p2,3, and ρ4 = l1 p1,4 + l2 p2,4.

For Q(t) > 0 in (27), the following conditions must be
satisfied.

• m1m2m3 −m2ρ2
1 δθ(t)2 −m1ρ2

2 δθ(t)2

−2m1m2ρ3δθ(t) =: ⋆1 > 0. (28)

• m4 ⋆1 −m1m2ρ2
4 δθ(t)2 > 0. (29)

In order to obtain the allowed measurement sensitivity
using (28)-(29), the values of K and L are selected as
K = [−0.3,−1.5] and L = [−18,−1.3]T such that ÃKL

is Hurwitz. Then, using (28)-(29), the following Ta-
ble 1 is obtained depending on M. So, when M =
diag[0.1,7,0.4,0.5] is selected from Table 1, the follow-
ing range of θ(t) is obtained such as

0.3992(−60%)< θ(t)(δθ(t)%)< 3.4964(249%).
(30)

Thus, the allowed measurement sensitivity is θ(t) = 1+
δθ(t) ∈ [1−θ ,1+θ ] where θ = 0.6007, θ = 2.4963.

Table 1. The allowed δθ(t) depending on M under K, L
for system dimension n = 2.

M = diag[1,1,1,1]
−0.3470 < δθ(t)< 0.6180

M = diag[0.1,7,1,1]
−0.5400 < δθ(t)< 1.7007

M = diag[0.1,7,0.4,0.5]
−0.6008 < δθ(t)< 2.4964

M = diag[0.1,7,0.9,0.7]
−0.5433 < δθ(t)< 1.7345

M = diag[1,1,0.9,0.7]
−0.3569 < δθ(t)< 0.6502

(n = 3n = 3n = 3 case): From (12), Q(t) is obtained as follows.

Q(t) =


m1 0 0 −ρ1δθ(t)
∗ m2 0 −ρ2δθ(t)
∗ ∗ m3 −ρ3δθ(t)
∗ ∗ ∗ m4 −2ρ4δθ(t)
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0
0 0
0 0

−ρ5δθ(t) −ρ6δθ(t)
m5 0
∗ m6

 , (31)

where ρ1 = l1 p1,1 + l2 p1,2 + l3 p1,3, ρ2 = l1 p1,2 + l2 p2,2 +
l3 p2,3, ρ3 = l1 p1,3 + l2 p2,3 + l3 p3,3, ρ4 = l1 p1,4 + l2 p2,4 +
l3 p3,4, ρ5 = l1 p1,5 + l2 p2,5 + l3 p3,5, and ρ6 = l1 p1,6 +
l2 p2,6 + l3 p3,6.

For Q(t) > 0 in (31), the following conditions must be
satisfied.

• m1m2m3m4 −m2m3ρ2
1 δθ(t)2 −m1m3ρ2

2 δθ(t)2

−m1m2ρ2
3 δθ(t)2 −2m1m2m3ρ4δθ(t) =: ⋆1 > 0.

(32)

• m5 ⋆1 −m1m2m3ρ2
5 δθ(t)2 =: ⋆2 > 0. (33)

• m6 ⋆2 −m1m2m3m5ρ2
6 δθ(t)2 > 0. (34)

In order to obtain the allowed measurement sensitivity
using (32)-(34), the values of K and L are selected as
K = [−0.04,−1.6,−3] and L = [−14.02,−20,−0.48]T

such that ÃKL is Hurwitz. Then, using (32)-(34), the fol-
lowing Table 2 is obtained depending on M. So, when
M = diag[0.3,0.2,12,0.7,1,0.3] is selected from Table 2,
the following range of θ(t) is obtained such as

0.7125(−28%)< θ(t)(δθ(t)%)< 1.7019(70%).
(35)

Thus, the allowed measurement sensitivity is θ(t) = 1+
δθ(t) ∈ [1−θ ,1+θ ] where θ = 0.2874, θ = 0.7018.
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Table 2. The allowed δθ(t) depending on M under K, L
for system dimension n = 3.

M = diag[1,1,1,1,1,1]
−0.2480 < δθ(t)< 0.5050
M = diag[0.3,0.2,12,1,1,1]
−0.2720 < δθ(t)< 0.6156

M = diag[0.3,0.2,12,0.7,1,0.3]
−0.2875 < δθ(t)< 0.7019

M = diag[0.3,0.2,12,0.8,0.8,0.6]
−0.2788 < δθ(t)< 0.6506

M = diag[1,1,1,0.8,0.8,0.6]
−0.2521 < δθ(t)< 0.5219

(n = 4n = 4n = 4 case): From (12), Q(t) is obtained as follows:

Q(t) =



m1 0 0 0 −ρ1δθ(t)
∗ m2 0 0 −ρ2δθ(t)
∗ ∗ m3 0 −ρ3δθ(t)
∗ ∗ ∗ m4 −ρ4δθ(t)
∗ ∗ ∗ ∗ m5 −2ρ5δθ(t)
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

0 0 0
0 0 0
0 0 0
0 0 0

−ρ6δθ(t) −ρ7δθ(t) −ρ8δθ(t)
m6 0 0
∗ m7 0
∗ ∗ m8


, (36)

where ρ1 = l1 p1,1 + l2 p1,2 + l3 p1,3 + l4 p1,4, ρ2 = l1 p1,2 +
l2 p2,2+ l3 p2,3+ l4 p2,4, ρ3 = l1 p1,3+ l2 p2,3+ l3 p3,3+ l4 p3,4,
ρ4 = l1 p1,4 + l2 p2,4 + l3 p3,4 + l4 p4,4, ρ5 = l1 p1,5 + l2 p2,5 +
l3 p3,5 + l4 p4,5, ρ6 = l1 p1,6 + l2 p2,6 + l3 p3,6 + l4 p4,6, ρ7 =
l1 p1,7 + l2 p2,7 + l3 p3,7 + l4 p4,7, and ρ8 = l1 p1,8 + l2 p2,8 +
l3 p3,8 + l4 p4,8.

For Q(t) > 0 in (36), the following conditions must be
satisfied.

• m1m2m3m4m5 −m2m3m4ρ2
1 δθ(t)2

−m1m3m4ρ2
2 δθ(t)2 −m1m2m4ρ2

3 δθ(t)2

−m1m2m3ρ2
4 δθ(t)2 −2m1m2m3m4ρ5δθ(t)

=: ⋆1 > 0. (37)

• m6 ⋆1 −m1m2m3m4ρ2
6 δθ(t)2 =: ⋆2 > 0. (38)

• m7 ⋆2 −m1m2m3m4m6ρ2
7 δθ(t)2 =: ⋆3 > 0. (39)

• m8 ⋆3 −m1m2m3m4m6m7ρ2
8 δθ(t)2 > 0. (40)

In order to obtain the allowed measurement sensi-
tivity using (37)-(40), the values of K and L are
selected as K = [−0.04,−0.5,−3.2,−2] and L =

Table 3. The allowed δθ(t) depending on M under K, L
for system dimension n = 4.

M = diag[1,1,1,1,1,1,1,1]
−0.0514 < δθ(t)< 0.0580

M = diag[2,2.1,0.6,21,1,1,1,1]
−0.0797 < δθ(t)< 0.0968

M = diag[2,2.1,0.6,21,2.2,0.3,0.2,0.1]
−0.1503 < δθ(t)< 0.2205

M = diag[2,2.1,0.6,21,1.2,0.8,0.3,0.6]
−0.1047 < δθ(t)< 0.1354

M = diag[1,1,1,1,1.2,0.8,0.3,0.6]
−0.0633 < δθ(t)< 0.0733

Table 4. Allowed measurement sensitivity.

System dimension n 2
1+δθ(t) [2] −43.83% ≤ δθ(t)≤ 43.83%

1+δθ(t) (our case) −60% ≤ δθ(t)≤ 249%
System dimension n 3

1+δθ(t) [2] −15.89% ≤ δθ(t)≤ 15.89%
1+δθ(t) (our case) −28% ≤ δθ(t)≤ 70%
System dimension n 4

1+δθ(t) [2] −5.04% ≤ δθ(t)≤ 5.04%
1+δθ(t) (our case) −15% ≤ δθ(t)≤ 22%

[−40,−80,−100,−9.3925]T such that ÃKL is Hur-
witz. Then, using (37)-(40), the following Ta-
ble 3 is obtained depending on M. So, when M =
diag[2,2.1,0.6,21,2.2,0.3,0.2,0.1] is selected from Ta-
ble 3, the following range of θ(t) is obtained such as

0.8497(−15%)< θ(t)(δθ(t)%)< 1.2205(22%).
(41)

Thus, the allowed measurement sensitivity is θ(t) = 1+
δθ(t) ∈ [1−θ ,1+θ ] where θ = 0.1502, θ = 0.2204.

From the previous three cases, the allowed magnitude
of measurement sensitivity with comparison is summa-
rized in the following Table 4. Obviously, our result sig-
nificantly enlarges the allowed measurement sensitivity
over [2].

In summary, the advantages of our results are two-fold:
(i) enlarged nonlinearity; (ii) enlarged allowed measure-
ment sensitivity.

Remark 4: The values of K, L, and M in the case study
are selected in order to maximize the allowed measure-
ment sensitivity. With these extreme choices, however, α
of (22) can be small, which possibly leads to very con-
servative choice of ε in using (26). In this regard, if the
bound of θ(t) is somewhat known beforehand, different
values of K, L, and M can be selected so that the con-
sidered θ(t) can be covered, and at the same time, less
conservative value of ε can be selected.
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Remark 5: Although our result shows that much more
measurement sensitivity can be allowed over [2], our sta-
bility condition of (26) uses the term σ which is derived
by calculating the norm value. So, this causes some lim-
itations in our approach and there is a room for improve-
ment if this norm-term σ can be removed or replaced by
developing a new matrix inequality.

5. ILLUSTRATIVE EXAMPLES

Example 1: The following system is taken from [2].

ẋ1 = x2 + sin(x1),

ẋ2 = u+d(t) ln(1+ x2
1),

y = θ(t)x1, (42)

where θ(t) = 1+0.63|sin(10t)| and d(t) = cos(t). Here,
θ(t) is modified such that δθ(t) changes now up to 63%
which cannot be handled by [2].

The values of K and L are selected as K =
[−0.74,−1.64], L = [−7,−5.3]T . Let M = diag[0.6, 1.57,
0.79, 1.1]. With these choices, using the conditions (28)-
(29), the allowed range of θ(t) is

1(0%)≤ θ(t)(δθ(t)%)≤ 2.1469(114%). (43)

Using (26), we obtain that γ(ε) = 1 + ε and σ =√
2α−1∥P∥= 13.1135. This yields the selection range of

ε as 0 < ε < 0.0306 such that ∆(ε) > 0 in (26). We pick
ε = 0.03. Then, this system can certainly be stabilized by
our method. For simulation, the initial conditions are set
as [x1(0),x2(0),z1(0),z2(0)]T = [−0.5,4,0,8]T . The sim-
ulation result in Fig. 1 agrees with our analysis.

Example 2: Consider a non-triangular system as

ẋ1 = x2 +0.1x1 +0.01x2 cos t,
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Fig. 1. Trajectories of the closed-loop system in Exam-
ple 1.

ẋ2 = u+
x2

1x2

10(3+ x2
1)
,

y = θ(t)x1, (44)

where θ(t) = 1+ 0.5cos(5t). Here, the nonlinearity vi-
olates both (A1) and (A2). The change of measurement
sensitivity is ±50%, which is beyond the bound given
in [2].

The values of K and L are selected as K = [−4.7,−3]
and L = [−10,−6]T . Let M = diag[0.4,3,2.6,1]. With
these choices, using the conditions (28)-(29), the allowed
range of θ(t) is

0.4484(−55%)≤ θ(t)(δθ(t)%)≤ 2.1889(118%).
(45)

We obtain that γ(ε) = max{ 1
100ε ,

1
10}= 0.1 when 0.1 ≤ ε

under Assumption 1 and using (26), σ =
√

2α−1∥P∥ =
40.9628. This yields the selection range of ε as 0.1 ≤
ε < 0.1011 such that ∆(ε) > 0 in (26). We select ε =
0.101. For initial conditions [x1(0),x2(0),z1(0),z2(0)]T =
[1,−3,0,0]T , the simulation result is shown in Fig. 2.

Example 3: The state equation of DC motor with pa-
rameter uncertainties is given below [17]

ẋ1 = x2,

ẋ2 =−B+ B̄
Jm

x2 +
Kt

Jm
x3,

ẋ3 =−Ke

La
x2 −

Ra + R̄a

La
x3 +

1
La

u,

y = θ(t)x1, (46)

where x1 is the position of motor, x2 is the velocity of
motor, and x3 is the current, u is the input voltage, and
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Fig. 2. Trajectories of the closed-loop system in Exam-
ple 2.
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θ(t) = 1+0.18sin(3t). The change of measurement sen-
sitivity is ±18%, which is beyond the bound given in [2].

The motor parameters are that B = 0.047 · 10−4

[Nms/rad] is the friction constant, |B̄| ≤ 0.005 · 10−4

[Nms/rad] is the uncertainty of friction constant, Jm =
0.226 · 10−3 [Nms2/rad] is the moment of inertia,
Kt = 0.0346 [Nm/A] is the torque constant, Ke = 0.0156
[Vs/rad] is the back EMF constant, Ra = 0.1 [Ω] is the
armature resistance, |R̄a| ≤ 0.01 [Ω] is the uncertainty
of resistance, La = 0.92 [H] is the armature inductance.
Define χ1 = x1, χ2 = x2, χ3 =− B

Jm
x2+

Kt
Jm

x3, and u = JLa
Kt

v.
Then, we obtain the transformed system as

χ̇1 = χ2,

χ̇2 = χ3 +ϕ2(t,χ,v),
χ̇3 = v+ϕ3(t,χ,v),
y = θ(t)χ1, (47)

where

ϕ2(t,χ,v) =− B̄
Jm

χ2,

ϕ3(t,χ,v) =
(

BB̄
J2

m
− KtKe +B(Ra + R̄a)

JmLa

)
χ2

−
(

B
Jm

+
Ra + R̄a

La

)
χ3. (48)

Note that this system (47) belongs to (A1) case.
The values of K and L are selected as K =

[−9.5,−14,−5.9] and L = [−11.8,−12,−6]T . Let
M = diag[2.6,3.2,2.5,3.4,1,0.5]. With these choices,
using the conditions (32)-(34), the allowed range of θ(t)
is

0.7734(−22%)≤ θ(t)(δθ(t)%)≤ 1.3892(38%).
(49)

Note that measurement sensitivity of ±18% can be
obviously covered under the condition (49). Us-
ing (26), we obtain that γ(ε) = B+|B̄|

Jm
+ Ra+|R̄a|

La
+

ε
(

B|B̄|
J2

m
+ Kt Ke+B(Ra+|R̄a|)

JmLa

)
under Assumption 1 and

σ =
√

3α−1∥P∥ = 122.6590. This yields the se-
lection range of ε as 0 < ε < 0.0179 such that
∆(ε) > 0 in (26). We select ε = 0.0178. For ini-
tial conditions [x1(0),x2(0),x3(0),z1(0),z2(0),z3(0)]T =
[−0.6,2,0.3,0,0,0]T , the trajectories of transformed
states χ1,χ2,χ3 and observer states z1,z2,z3 are shown
in Fig. 3. Also, the trajectories of original states x1,x2,x3

are shown in Fig. 4. Simulation results agree with our
theoretical analysis.

Remark 6: The advantages of our control scheme
over [2] are demonstrated as follows:
(i) In example 1, the method of [2] can cover the mea-

surement sensitivity δθ(t) up to 43.83%, but our pro-
posed method can cover 63% of δθ(t) for the same
considered system.
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Fig. 3. Trajectories of transformed states χ1, χ2, χ3 and
observer states z1, z2, z3 in Example 3.
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Fig. 4. Trajectories of original states x1, x2, x3 in Exam-
ple 3.

(ii) In example 2, we can handle the non-triangular non-
linearity that is not treatable by [2].

(iii) In example 3, the proposed method is applied to the
position control of DC motor with the measurement
sensitivity δθ(t) of 18% that is beyond the bound
given in [2].

6. CONCLUSIONS

We have considered an output feedback control prob-
lem for a class of nonlinear systems where there is an un-
known measurement sensitivity in output feedback. We
have shown that more nonlinearity and the significantly
larger amount of measurement sensitivity can be handled
over the existing result. Analysis and examples are given
for clear illustration. The proposed control approach may
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have a potential to be extended for further generalization
of the systems by considering (i) input time-delay, (ii) un-
certain time-varying parameters, (iii) more relaxed matrix
inequality condition, and all these can be interesting future
research topics.

REFERENCES

[1] A. M. Boker and H. K. Khalil, “Semi-global output feed-
back stabilization of non-minimum phase nonlinear sys-
tems,” IEEE Trans. on Automat. Contr., vol. 62, no. 8, pp.
4005-4010, 2017.

[2] C.-C. Chen, C. Qian, Z.-Y. Sun, and Y.-W. Liang, “Global
output feedback stabilization of a class of nonlinear sys-
tems with unknown measurement sensitivity,” IEEE Trans.
on Automat. Contr., vol. 63, no. 7, pp. 2212-2217, 2018.

[3] C. Qian and H. Du, “Global output feedback stabilization
of a class of nonlinear systems via linear sampled-data con-
trol,” IEEE Trans. on Automat. Contr., vol. 57, no. 11, pp.
2934-2939, 2012.

[4] H.-L. Choi and J.-T. Lim, “Global exponential stabiliza-
tion of a class of nonlinear systems by output feedback,”
IEEE Trans. on Automat. Contr., vol. 50, no. 2, pp. 255-
257, 2005.

[5] H.-L. Choi and J.-T. Lim, “Stabilisation of nonlinear sys-
tems with unknown growth rate by adaptive output feed-
back,” Int. J. Systems Science, vol. 41, no. 6, pp. 673-678,
2010.

[6] H. Lei and W. Lin, “Universal adaptive control of nonlinear
systems with unknown growth rate by output feedback,”
Automatica, vol. 42, no. 10, pp. 1783-1789, 2006.

[7] H. Lei and W. Lin, “Adaptive regulation of uncertain non-
linear systems by output feedback: a universal control ap-
proach,” Systems Control Letters, vol. 56, no. 7-8, pp. 529-
537, 2007.

[8] H. Lei and W. Lin, “Robust control of uncertain systems
with polynomial nonlinearity by output feedback,” Int. J.
Rournal Nonlinear Control, vol. 19, no. 6, pp. 692-723,
2009.

[9] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall,
Upper Saddle Riber, NJ07458, 2002.

[10] P. Krishnamurthy and F. Khorrami, “Dual high-gain-based
adaptive output-feedback control for a class of nonlinear
systems,” Int. J. Adaptive Control Signal Processing, vol.
22, no. 1, pp. 23-42, 2008.

[11] W. Lin, W. Wei, and G. Ye, “Global stabilization of a class
of nonminimum-phase nonlinear systems by sampled-data
output feedback,” IEEE Trans. on Automat. Contr., vol. 61,
no. 10, pp. 3076-3082, 2016.

[12] M. Zhang, P. Shi, L. Ma, J. Cai, and H. Su, “Network-based
fuzzy control for nonlinear Markov jump systems subject
to quantization and dropout compensation,” Fuzzy Sets and
Systems, vol. 371, no. 15, pp. 96-109, Sep. 2019.

[13] M. Zhang, P. Shi, L. Ma, J. Cai, and H. Su, “Quantized
feedback control of fuzzy Markov jump systems,” IEEE
Trans. on Cybernetics,vol. 49, no. 9, pp. 3375-3384, Sep.
2019.

[14] Z. Zhang, Y. Shi, Z. Zhang, and W. Yan, “New results on
sliding-mode control for Takagi-Sugeno fuzzy multiagent
systems,” IEEE Transactions on Cybernetics, vol. 49, no.
5, pp. 1592-1604, 2019.

[15] H.-W. Jo, H.-L. Choi, and J.-T. Lim, “Output feedback con-
trol of a class of feedforward nonlinear systems in the pres-
ence of sensor noise,” International Journal of Robust and
Nonlinear Control, vol. 24, no. 13, pp. 1845-1857, 2014.

[16] D. Zhao, S. X. Ding, H. R. Karimi, Y. Li, and Y. Wang,
“On robust kalman filter for two-dimensional uncertain lin-
ear discrete time-varying systems: a least squares method,”
Automatica, vol. 99, pp. 203-212, 2019.

[17] B. C. Kuo and F. Golnaraghi, Automatic Control Systems,
9th ed., Prentice Hall, Upper Saddle River, NJ, 2010.

Sang-Young Oh received his B.S.E. in
2013 and his M.S. degree in 2015 from De-
partment of Electrical Engineering, Dong-
A university, Busan, Korea, respectively.
Currently, he is working toward a Ph.D.
degree. His research interests are in non-
linear system control problems including
optimal controls, feedback linearization
problems, time-delay issues. He is a mem-

ber of IEEE, ICROS, and KIEE.

Ho-Lim Choi received his B.S.E. degree
from the department of electrical engineer-
ing, The Univ. of Iowa, USA in 1996, and
an M.S. degree in 1999 and a Ph.D. de-
gree in 2004, from KAIST, respectively.
Currently, he is a professor at Department
of Electrical Engineering, Dong-A univer-
sity, Busan. His research interests are in
the nonlinear control problems with em-

phasis on feedback linearization, gain scheduling, singular per-
turbation, output feedback, time-delay systems, time-optimal
control. He is a senior member of IEEE.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

http://dx.doi.org/10.1109/TAC.2016.2615080
http://dx.doi.org/10.1109/TAC.2016.2615080
http://dx.doi.org/10.1109/TAC.2016.2615080
http://dx.doi.org/10.1109/TAC.2016.2615080
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2017.2759274
http://dx.doi.org/10.1109/TAC.2012.2193707
http://dx.doi.org/10.1109/TAC.2012.2193707
http://dx.doi.org/10.1109/TAC.2012.2193707
http://dx.doi.org/10.1109/TAC.2012.2193707
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1109/TAC.2004.841886
http://dx.doi.org/10.1080/00207720903144529
http://dx.doi.org/10.1080/00207720903144529
http://dx.doi.org/10.1080/00207720903144529
http://dx.doi.org/10.1080/00207720903144529
http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.automatica.2006.05.006
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1016/j.sysconle.2007.03.002
http://dx.doi.org/10.1002/rnc.1349
http://dx.doi.org/10.1002/rnc.1349
http://dx.doi.org/10.1002/rnc.1349
http://dx.doi.org/10.1002/rnc.1349
http://dx.doi.org/10.1002/acs.957
http://dx.doi.org/10.1002/acs.957
http://dx.doi.org/10.1002/acs.957
http://dx.doi.org/10.1002/acs.957
http://dx.doi.org/10.1109/TAC.2015.2498703
http://dx.doi.org/10.1109/TAC.2015.2498703
http://dx.doi.org/10.1109/TAC.2015.2498703
http://dx.doi.org/10.1109/TAC.2015.2498703
http://dx.doi.org/10.1016/j.fss.2018.09.007
http://dx.doi.org/10.1016/j.fss.2018.09.007
http://dx.doi.org/10.1016/j.fss.2018.09.007
http://dx.doi.org/10.1016/j.fss.2018.09.007
http://dx.doi.org/10.1109/TCYB.2018.2842434
http://dx.doi.org/10.1109/TCYB.2018.2842434
http://dx.doi.org/10.1109/TCYB.2018.2842434
http://dx.doi.org/10.1109/TCYB.2018.2842434
http://dx.doi.org/10.1109/TCYB.2018.2804759
http://dx.doi.org/10.1109/TCYB.2018.2804759
http://dx.doi.org/10.1109/TCYB.2018.2804759
http://dx.doi.org/10.1109/TCYB.2018.2804759
http://dx.doi.org/10.1002/rnc.2966
http://dx.doi.org/10.1002/rnc.2966
http://dx.doi.org/10.1002/rnc.2966
http://dx.doi.org/10.1002/rnc.2966
http://dx.doi.org/10.1016/j.automatica.2018.10.029
http://dx.doi.org/10.1016/j.automatica.2018.10.029
http://dx.doi.org/10.1016/j.automatica.2018.10.029
http://dx.doi.org/10.1016/j.automatica.2018.10.029

