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Adaptive Output Feedback Control for Switched Stochastic Nonlinear
Systems with Time-varying Parameters and Unknown Output Functions
Hui Ye, Bin Jiang* ■ , and Hao Yang

Abstract: In this paper, we discuss the adaptive output feedback control problem for switched stochastic nonlinear
systems which involve uncertain time-varying parameters and unknown output functions. The drift terms together
with diffusion terms meet the conditions for linear growth with unknown rate. Firstly, an adaptive output feedback
controller is proposed based on the backstepping method. Then, by using the stochastic Lyapunov stability theorem,
all signals of the closed-loop system are proven to be bounded in probability and the system states are almost certain
to reach the origin under arbitrary switching. Finally, a numerical example is provided to test the reliability of the
proposed method.
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1. INTRODUCTION

In recent years, research on nonlinear systems has been
attracted considerable attention [1–7] and the references
therein. Switched systems as a significant branch of hy-
brid systems. Switched stochastic nonlinear systems are
considered as a major player in physical as well as engi-
neering systems that involve stochastic disturbances [8].
With this regard, stability theory was proposed in [9], and
further discussion on the stabilizer design was given in
[10]. Subsequently, the problem of global stabilization
for switched stochastic nonlinear lower-triangular systems
subject to arbitrary switching was addressed in [11]. As it
well known, the use of backstepping design is an essential
part of the global output-feedback stabilization for nonlin-
ear systems, such as [12]. When the growth rate of non-
linearities is unknown, [13] designed an adaptive observer
and controller by using this method. [14] proposed a new
adaptive output feedback controller by using the meth-
ods of backstepping and universal control. [15] proposed
a novel universal adaptive control scheme for nonlinear
systems under lower-triangular and upper-triangular ho-
mogenous growth condition with unknown growth rates.
For switched stochastic nonlinear systems, it is important
to build a common Lyapunov function for all subsystems
subject to arbitrary switching.

However, the above works require the precise out-
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put functions. In the presence of unknown output func-
tions, how to handle global output feedback control prob-
lem? With this issue, an approach of global stabilization
was proposed for non-switched nonlinear systems in [12],
where the upper and lower bounds conditions were given
for the partial derivative of the output function. [16] de-
veloped an adaptive output feedback controller for a class
of stochastic nonlinear systems with unknown output gain
and growth rate. [17] investigated the problem of global
output feedback stabilization for a class of switched non-
linear systems with unknown control coefficients. To the
best of authors’ knowledge, no results are available on the
control for switched stochastic nonlinear systems that in-
volve uncertain output functions. In this paper, we will
consider the problem of switched stochastic nonlinear sys-
tems described by

dxi = ℓixi+1dt + fiσ(t)(t,x,d(t))dt

+giσ(t)(t,x,d(t))dω, i = 1, . . . ,n−1,

dxn = ℓnuσ(t)dt + fnσ(t)(t,x,d(t))dt

+gnσ(t)(t,x,d(t))dω,

y = hσ(t)(x1), (1)

where x = (x1, . . . ,xn)
T ∈Rn is system state, u ∈R is con-

trol input, and y ∈R is measured output, respectively. The
control coefficients ℓi > 0, i = 1, . . . ,n are unknown con-
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stants. d : R→ Rs is a continuous function denoting a pa-
rameter or disturbance that varies with time. σ(t) is the
switching signal, with its values taken in a finite set M =
{1, . . . ,m} and m being the number of subsystems. The
uncertain drift functions fik : R+×Rn ×Rs → R and the
diffusion functions gik :R+×Rn×Rs →R are Borel mea-
surable and continuous functions, where fik(t,0,d(t)) =
0,gik(t,0,d(t)) = 0 for i = 1, . . . ,n and k ∈ M. The uncer-
tain function hk : R→R, k ∈ M, is C1 and hk(0) = 0. ω is
a standard Wiener process which defined on the complete
probability space (Ω,F ,P)( Ω is the sample space, F is
the σ -field and P is probability measure). In addition, as-
suming no state-jump of system (1) occurs at the moments
of switching, which suggests that the trajectory x(t) is un-
interrupted. To construct an adaptive controller for system
(1), a new common coordinate is first introduced with a
dynamic gain, and a novel observer is constructed with-
out using the unmeasurable state information. Then, by
using the backstepping design method, an adaptive out-
put feedback controller is designed to globally regulate
the states of the switched stochastic nonlinear systems to
the origin. The main contribution of this paper are high-
lighted as follows: (i) Different from [12, 18, 19], in spite
of unknown growth condition and unknown control co-
efficients, an entirely new dynamic high-gain observer is
created. (ii) Compared with [3, 17], a different adaptive
controller is designed to deal with the unknown output
function.

2. PRELIMINARIES AND PROBLEM
STATEMENT

The following notations will be used throughout the pa-
per: Rn stands for the real n-dimensional space; R+ de-
notes the set of nonnegative real numbers; Ci denotes the
set of all functions that have continuous ith partial deriva-
tives. For consistent denotation, ∏i

l= j(·) = 1 is taken
for j > i. |X | is the absolute value of scalar X ; XT de-
notes its transpose, Tr{X} represents its trace when X
is square, and ∥X∥ is the Euclidean norm of a vector X .
In A ∈ Rn×m, |A| is the Frobenius norm, described by
|A| = (∑n

i=1 ∑m
j=1 A2

i j)
1/2. K denotes the set of all func-

tions: R+ → R+, which are continuous, and increase and
vanish strictly at zero. K∞ stands for the set of all class-
K and unbounded functions. KL is the set of all functions
β (s, t) : R+×R+ → R+: these are class K functions for
each fixed t, and they decrease to zero as t → ∞ for each
fixed s.

Consider the following stochastic nonlinear system:

dx = f (x)dt +g(x)T dω, x0 ∈ Rn, (2)

where x ∈ Rn is the system state, ω ∈ Rr is an r-
dimensional independent standard Wiener process defined
on the complete probability space (Ω,F ,P). f : Rn → Rn

and gT : Rn → Rn×r are Borel measurable and continuous

functions satisfying f (0) = 0, g(0) = 0, ∀t ≥ 0 and x0 is
the initial value.

The following definitions and a lemma are introduced,
which play important roles in this paper.

Definition 1 [20]: For any given V (x) ∈ C2, associated
with stochastic system (2), the infinitesimal generator L is
given by

LV (x) =
∂V
∂x

f (x)+
1
2

Tr
{

gT (x)
∂ 2V
∂x2 g(x)

}
, (3)

where Tr
{

gT (x) ∂ 2V
∂x2 g(x)

}
is the Hessian term of L.

Definition 2 [20]: The equilibrium x(t) = 0 of sys-
tem (2) with f (0) = 0, g(0) = 0 is featured by global
asymptotic stability in probability, provided that there is
a class KL function β (·) for if any ε > 0, in which case
P{x(t)< β (|x0|)} ≥ 1− ε , ∀t ≥ 0, x0 ∈ Rn \{0}.

Lemma 1 [20]: For system (2), if there is a C2 function
V (x), class K∞ functions α1 and α2, constants c1 > 0, c2 ≥
0, and a nonnegative function W (x) satisfy

α1(|x|)≤V (x)≤ α2(|x|), LV ≤−c1W (x)+ c2, (4)

then
(i) For system (2), a unique solution on [0,∞) for each

x0 ∈ Rn is almost sure to exist;
(ii) When c2 = 0, f (0) = 0, g(0) = 0, and W (x) =

α3(|x|) is a class K function, the equilibrium equation
x(t) = 0 is globally asymptotically stable in the sense of
probability and P{limt→∞ |x(t)|= 0}= 1.

This paper aims to develop an output feedback con-
troller for system (1) so as to perform global regulation
of each state to origin from any initial condition. To do
that, the following scenarios are assumed.

Assumption 1: For i = 1, . . . ,n, control coefficients ℓi

satisfy ℓ ≤ ℓi ≤ ℓ̄, where ℓ and ℓ̄ are known positive con-
stants.

Assumption 2: For i= 1, . . . ,n and k ∈M, there are un-
known nonnegative constants λ̃1k and λ̃2k exist, such that

| fik(t,x,d(t))| ≤ λ̃1k(|x1|+ · · ·+ |xi|),
|gik(t,x,d(t))| ≤ λ̃2k(|x1|+ · · ·+ |xi|). (5)

Assumption 3: There are known positive constants µ
k

and µ̄k, k ∈ M such that

µ
k
≤ ∂hk(x1)

∂x1
≤ µ̄k, ∀x1 ∈ R. (6)

Remark 1: Assumption 1 suggests that the control co-
efficients are limited by the positive constants. From As-
sumption 2, it is shown that the drift and diffusion terms
rely on unknown growth rate and unmeasurable states,
which is a general linear growth condition. As shown in
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[21], the sensor output y is a nonlinear uncertain func-
tion of the real displacement x1 in the working region.
However, the derivative of the nonlinear function h(x1)
actually is bounded, which implies that Assumption 3
is a natural assumption. For example, some nonlinear
output functions with bounded first derivative, such as
h(x1) = 3x1 +2sin(x1), satisfy Assumption 3 as well.

Given the above, the scaling transformation is intro-
duced:

zi =
ℓn

∏n
j=i ℓ j

xi, i = 1, . . . ,n. (7)

Based on the transformation (7), system (1) becomes

dzi = zi+1dt +φiσ(t)(t,z,d(t))dt

+ϕ T
iσ(t)(t,z,d(t))dω, i = 1, . . . ,n−1,

dzn = ℓnuσ(t)dt +φnσ(t)(t,z,d(t))dt

+ϕ T
nσ(t)(t,z,d(t))dω,

y = hσ(t)(ℓz1), (8)

where z = (z1, . . . ,zn)
T , ℓ = (∏n

j=1 ℓ j)/ℓ
n, φik =

(ℓn/∏n
j=i ℓ j) fik, and ϕik = (ℓn/∏n

j=i ℓ j)gik, i = 1, . . . ,n,
k ∈ M.

From Assumptions 2 and 3, it can be found unknown
positive constants λ1k and λ2k, and positive constants ck,
c̄k, such that

|φik(t,z,d(t))| ≤ λ1k(|z1|+ · · ·+ |zi|),
|ϕik(t,z,d(t))| ≤ λ2k(|z1|+ · · ·+ |zi|), (9)

ck ≤
∂hk(ℓz1)

∂ z1
≤ c̄k, ∀z1 ∈ R, (10)

where ck = µ
k

and c̄k = (ℓ̄n/ℓn)µ̄k.

3. MAIN RESULTS

In this section, an adaptive output feedback controller
will be developed to globally stabilize system (1). The
main result is outlined in the following theorem.

Theorem 1: Under Assumptions 1-3, system (1) under
arbitrary switching undergoes global adaptive regulation
via the observer and controller:

dẑi = (ẑi+1 −Liaiẑ1)dt, i = 1, . . . ,n−1,

dẑn = (ℓnu−Lnanẑ1)dt,

dL = (ε1
2 +η2

1 + ε2
n )dt, L(0) = 1,

u =−ℓ−nLn+1bnεn, (11)

where ẑ = (ẑ1, . . . , ẑn)
T . ai > 0, i = 1, . . . ,n is the coeffi-

cient of the Hurwitz polynomial p(s) = sn+a1sn−1+ · · ·+
an−1s+ an. L is a dynamic high gain. εi, i = 1, . . . ,n are
given by

ε1 =
y
L
, εi+1 = ηi+1 −αi,

αi =−biεi, ηi =
ẑi

Li , i = 1, . . . ,n (12)

with b1, . . ., bn being positive constants.

Proof: For system (8), we introduce the following the
change of coordinates:

ei =
zi − ẑi

Li , i = 1, . . . ,n. (13)

Then, it can be verified that

de = (LAe+Φk(·)+Ψk(·)+ϒk(·))dt − De
L

dL,

dη = (LAη +
ℓn

Ln Bu)dt − Dη
L

dL, (14)

where

e = (e1, . . . ,en)
T , Φk(·) = (φ1k/L, . . . ,φn,k/Ln)T ,

η = (η1, . . . ,ηn)
T ,ϒk = (a1z1, . . . ,anzn)

T ,

Ψk(·) = (ϕ1k/L, . . . ,ϕn,k/Ln)T ,

and

A =


−a1 1 · · · 0

...
...

. . .
...

−an−1 0 · · · 1
−an 0 · · · 0


n×n

, B =


0
...
0
1


n×1

,

D =


1 0 · · · 0
0 2 · · · 0
...

...
. . . 0

0 0 · · · n


n×n

.

Clearly, A is Hurwitz matrix through its construction.
Thus, there exists a positive definite matrix P satisfying
AT P+PA ≤−I and DP+PD ≥ 0.

By constructing the Lyapunov function V0 = eT Pe with
a simple calculation, one has

LV0 =LeT (PA+AT P)e− eT (PD+DP)e
L

dL

+2eT P(Φk +ϒk)+
1
2

tr
{

ΨT
k (e)

∂ 2V0

∂e2 Ψk(e)
}

≤−L∥e|2 +2eT PΦk +2eT Pϒk

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2V0

∂ei∂e j
ΨT

k (e)Ψk(e)

≤−L∥e|2 +2eT PΦk +2eT Pϒk +2eT PΨk. (15)

Since L̇(t)≥ 0, L(0) = 1, then L(t)≥ 1 for ∀t ≥ 0. For
i = 1, . . . ,n, k ∈ M, it follows from (9) that

|φik

Li | ≤
λ1k

Li (|z1|+ · · ·+ |zi|)≤ λ1k

i

∑
j=1

|z j|
L j ,

|ϕik

Li | ≤
λ2k

Li (|z1|+ · · ·+ |zi|)≤ λ2k

i

∑
j=1

|z j|
L j ,
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which leads to

∥Φk(·)∥ ≤
|φ1k|

L
+

|φ2k|
L2 + · · ·+ |φnk|

Ln

≤ nλ1k

n

∑
j=1

|z j|
L j , k ∈ M,

∥Ψk(·)∥ ≤
|ϕ1k|

L
+

|ϕ2k|
L2 + · · ·+ |ϕnk|

Ln

≤ nλ2k

n

∑
j=1

|z j|
L j , k ∈ M. (16)

Based on the definitions of ei and ηi, it can be obtained
that

n

∑
j=1

|z j|
L j ≤ |z1|

L
+

n

∑
i=2

|ηi|+
√

n∥e∥. (17)

According to (10), it can be deduced that

ck|z1| ≤ |y| ≤ c̄k|z1|, k ∈ M. (18)

Combining (16), (17) with (18), it yields

2eT PΦk ≤2λ1k∥P∥∥e∥
(
n
|ε1|
ck

+n
n

∑
i=2

|ηi|+n
√

n∥e∥
)

≤1
2

ε2
1 +

1
4

n

∑
i=2

η2
i +∥e∥2(2λ 2

1kn2∥P∥2

c2
k

+2λ1kn
√

n∥P∥+4λ 2
1kn2(n−1)∥P∥2),

2eT Pϒk ≤2∥e∥∥Pa∥|Lε1

ck
| ≤ L

2
∥e∥2 +

2L∥Pa∥2

c2
k

ε2
1 ,

2eT PΨk ≤2λ2k∥P∥∥e∥
(
n
|ε1|
ck

+n
n

∑
i=2

|ηi|+n
√

n∥e∥
)

≤1
2

ε2
1 +

1
4

n

∑
i=2

η2
i +∥e∥2(2λ 2

2kn2∥P∥2

c2
k

+λ2kn(n+
√

n)∥P∥+4λ 2
2kn2(n−1)∥P∥2).

(19)

Substituting (19) into (15) yields

LV0 ≤−
(L

2
−ρk

)
∥e∥2+

1
4

n

∑
i=2

η2
i +

(1
2
+

2L∥Pa∥2

c2
k

)
ε2

1 ,

(20)

where ρk = 2n2(λ 2
1k+λ 2

2k)∥P∥2/c2
k +2(λ1k+λ2k)n

√
n∥P∥+

4n2(n−1)(λ 2
1k +λ 2

2k)∥P∥2 is an unknown constant depen-
dent on λ1k and λ2k.

3.1. Controller design
Step 1: Choose the Lyapunov function V1(e,η1,ε1) =

V0(e)+
η2

1
2L +

ε2
1
2 . From the definitions of ε1 and η1, one has

ε̇1 =
∂hk

∂ z1

(
Le2 +Lη2 +

φ1k

L

)
+

1
2
(

∂hk

∂ z1
)2ϕ T

1kϕ1k

+
1
2

ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k −
ε1

L
L̇,

η̇1 = Lη2 −La1η1 −
η1

L
L̇. (21)

By a simple calculation, one has

LV1 =LV0 + ε1ε̇1 +
η1

L
η̇1 −

L̇
2L2 η2

1

≤−
(L

2
−ρk

)
∥e∥2 +

(1
2
+

2L∥Pa∥2

c2
k

)
ε2

1

+
1
4

n

∑
i=2

η2
i +

∂hk

∂ z1

(
Le2 +Lη2 +

φ1k

L

)
ε1

+
(1

2
(

∂hk

∂ z1
)2ϕ T

1kϕ1k +
1
2

ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)
ε1

− L̇
L

ε2
1 +η1

(
η2 −a1η1 −

L̇
L2 η1

)
− L̇

2L2 η2
1 .

(22)

By completion of square and (9)-(10), one has

∂hk

∂ z1
Lε1e2 ≤ c̄kL|ε1e2| ≤

L
4

e2
2 + c̄2

kLε2
1

≤ L
4
∥e∥2 + c̄2

kLε2
1 ,

∂hk

∂ z1
ε1

φ1k

L
≤ c̄kλ1k

ck
ε2

1 ,

η1η2 ≤
a1

2
η2

1 +
1

2a1
η2

2 ,

1
2
(

∂hk

∂ z1
)2ϕ T

1kϕ1kε1 ≤
1
2

c̄kλ2k

ck
ε2

1 ,

1
2

ε2
1

∂ 2hk

∂ z1
2 ϕ T

1kϕ1k ≤
1
2

c̄kλ2k

ck
ε2

1 . (23)

By construction, one has − 3L̇
2L2 η2

1 ≤ 0. Then, substitut-
ing (23) into (22), one has

LV1 ≤−
(L

4
−ρk

)
∥e∥2 +

(1
2
+

c̄kλ1k +λ2k

ck

+
(2∥Pa∥2

c2
k

+ c̄2
k

)
L
)

ε2
1 −

L̇
L

ε2
1 +

1
4

n

∑
i=2

η2
i

− a1

2
η2

1 +
1

2a1
η2

2 +
∂hk

∂ z1
Lε1α1

+
∂hk

∂ z1
Lε1(η2 −α1). (24)

Choose the virtual controller as

α1 =−b1ε1, b1 ≥ max
k∈M

{ 1
ck
(1+

2∥Pa∥2

c2
k

+ c̄2
k)
}
,

(25)

which leads to

LV1 ≤−
(L

4
−ρk

)
∥e∥2 −

(
L− 1

2
− c̄k(λ1k +λ2k)

ck

)
ε2

1

− L̇
L

ε2
1 +

1
4

n

∑
i=2

η2
i −

a1

2
η2

1 +
1

2a1
η2

2
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+
∂hk

∂x1
Lε1(η2 −α1). (26)

Due to ε2 = η2−α1 = η2+b1ε1, one has η2
2 ≤ 2b2

1ε2
1 +

2ε2
2 . Hence

LV1 ≤−
(L

4
−ρk

)
∥e∥2 −

(
L− ι1k

)
ε2

1 +
(1

2
+

1
a1

)
ε2

2

+
1
4

n

∑
i=3

η2
i −

a1

2
η2

1 −
L̇
L

ε2
1 +

∂hk

∂x1
Lε1ε2, (27)

where ι1k = 1/2+ c̄k(λ1k +λ2k)/ck +(1/2+ 1/a1)b2
1 is a

constant but unknown.
Step 2: Select the Lyapunov function V2(e,η1,ε1,ε2) =

σ1V1(e,η1,ε1)+
1
2 ε2

2 , where σ1 ≥ 1 is a constant to be de-
termined later. Based on the definition of ε2, one has

ε̇2 =b1
∂hk

∂ z1

(
Le2 +Lη2 +

φ1k

L

)
+

1
2

b1
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k

+ ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)
+Lη3 +a2(Le1 − z1)

− 2L̇
L

ε2 +b1
L̇
L

ε1. (28)

By a direct calculation, one has

LV2 ≤σ1
(
− (

L
4
−ρk)∥e∥2 −

(
L− ι1k

)
ε2

1 −
L̇
L

ε2
1

+
(1

2
+

1
a1

)
ε2

2+
1
4

n

∑
i=3

η2
i −

a1

2
η2

1+
∂hk

∂ z1
Lε1ε2

)
+ ε2

(
b1

∂hk

∂ z1

(
Le2 +Lη2 +

φ1k

L

)
+

1
2

b1
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k + ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)

+Lη3 +a2(Le1 − z1)−
2L̇
L

ε2 +b1
L̇
L

ε1

)
. (29)

Similar to (23), one has

σ1
∂hk

∂ z1
Lε1ε2 ≤ σ1

L
6

ε2
1 +σ1

3c̄2
kL
2

ε2
2 ,

a2ε2(Le1 − x1)≤ σ1
L
6

ε2
1 +σ1

L
16

∥e∥2

+
1

σ1

(3a2
2L

2c2
k
+4a2

2L
)
ε2

2 ,

b1
∂hk

∂ z1
Lε2e2 ≤ σ1

L
16

∥e∥2 +
4b2

1c̄2
kLε2

2

σ1
,

b1
∂hk

∂ z1
Lε2η2 ≤ b1c̄kL|ε2||ε2 −b1ε1|

≤ σ1
L
6

ε2
1 +

(
b1c̄kL+

3b4
1c̄2

k

2σ1
L
)
ε2

2 ,

b1
∂hk

∂ z1

φ1k

L
ε2 ≤

b2
1λ 2

1kc̄2
k

2σ1c2
k

ε2
1 +

σ1

4
ε2

2 ,

b1
L̇
L

ε1ε2 ≤
b2

1

4
L̇
L

ε2
1 +

L̇
L

ε2
2 ,

ε2

2
b1
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k + ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)

≤ b2
1λ 2

2kc̄2
k

2σ1c2
k

ε2
1 +

σ1

4
ε2

2 , (30)

under which (29) becomes

LV2 ≤−σ1
(L

8
−ρk

)
∥e∥2 −

(
σ1 −

b2
1

4
) L̇

L
ε2

1 −
L̇
L

ε2
2

−σ1
(L

2
− ι1k −

b2
1(λ 2

1k +λ 2
2k)c̄

2
k

2c2
k

)
ε2

1

+
σ1

4

n

∑
i=3

η2
i −

σ1a1

2
η2

1 +Lε2α2 +Lε2(η3 −α2)

+
(
σ1 +

σ1

a1
+(

3σ1c̄2
k

2
+

3a2
2

2c2
k
+4a2

2 +4b2
1c̄2

k

+b1c̄k +
3b4

1c̄2
k

2
)L
)
ε2

2 . (31)

Then, we can design the virtual controller

α2 =−b2ε2, b2 ≥max
k∈M

{1+
3σ1c̄2

k

2
+

3a2
2

2c2
k
+4a2

2

+4b2
1c̄2

k +b1c̄k +
3b4

1c̄2
k

2
}, (32)

then (31) becomes

LV2 ≤−σ1
(L

8
−ρk

)
∥e∥2 −σ1

(L
2
− ι2k

)
ε2

1

−
(
L−σ1 −

σ1

a1

)
ε2

2 −
(
σ1 −

b2
1

4
) L̇

L
ε2

1

− L̇
L

ε2
2 +

σ1

4

n

∑
i=3

η2
i −

σ1a1

2
η2

1

+Lε2(η3 −α2), (33)

where ι2k = ι1k + b2
1(λ 2

1k + λ 2
2k)c̄

2
k/(2c2

k) is an unknown
positive constant.

From ε3 = η3 −α2 = η3 +b2ε2, one has η2
3 ≤ 2b2

2ε2
2 +

2ε2
3 . Hence

LV2 ≤−σ1
(L

8
−ρk

)
∥e∥2 −σ1

(L
2
− ι2k

)
ε2

1

−
(
L− ι2

)
ε2

2 −
(
σ1 −

b2
1

4
) L̇

L
ε2

1 −
L̇
L

ε2
2

+
σ1

2
ε2

3 +
σ1

4

n

∑
i=4

η2
i −

σ1a1

2
η2

1 +Lε2ε3, (34)

where ι2 = σ1 +σ1/a1 +σ1b2
2/2 is a positive constant.

Inductive Step: Assume in step i− 1, we choose the
Lyapunov function Vi−1 = σi−2Vi−2 +

1
2 ε2

i−1 with the con-
stant σi−2 ≥ 1 and virtual controllers α1, . . ., αi−1 are ex-
pressed as follows:

α1 =−b1ε1, ε2 = η2 −α1,

α2 =−b2ε2, ε3 = η3 −α2,
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...

αi−1 =−bi−1εi−1, εi = ηi −αi−1, (35)

where b1 > 0, . . ., bi−1 > 0, and thus we have

LVi−1 ≤−
i−2

∏
j=1

σ j
( L

2i −ρk
)
∥e∥2

−
i−2

∏
j=1

σ j
( L

2i−2 − ι(i−1)k
)
ε2

1

−
i−1

∑
j=2

i−2

∏
l= j

σl
( L

2i−1− j − ι j
)
ε2

j

−
i−2

∏
j=2

σ j

(
σ1 −

b2
1

4
(
1+

i−2

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

−
i−2

∑
j=2

i−2

∏
l= j+1

σl
(
σ j −

1
4

i−2

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

− L̇
L

ε2
i−1 −

∏i−2
l=1 σla1

2
η2

1 +
∏i−2

l=1 σl

2
ε2

i

+
∏i−2

l=1 σl

4

n

∑
j=i+1

η2
j +Lεi−1εi, (36)

where ι(i−1)k is a constant but unknown and ι j, j =
1, . . . , i−1 are constants.

In what follows, we will show that (36) also
holds at step i. Select the Lyapunov function Vi =
σi−1Vi−1(e,η1,ε1,ε2 . . . ,εi−1)+

1
2 ε2

i . From the expression
of εi, one has

ε̇i =Lηi+1 −
(
ai +

i−1

∑
j=2

i−1

∏
l= j

bla j
)
(Le1 − z1)

+L
i

∑
j=3

i−1

∏
l= j−1

blη j +
i−1

∏
l=1

bl
∂hk

∂ z1

(
Lε2 +Lz2 +

φ1k

L

)
+

i−1

∏
l=1

bl
1
2
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k + ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)

− i
L̇
L

εi +
i−1

∑
j=1

i−1

∏
l= j

bl
L̇
L

ε j. (37)

Hence, one has

LVi ≤−
i−1

∏
j=1

σ j
( L

2i −ρk
)
∥e∥2−

i−1

∏
j=1

σ j
( L

2i−2 −ι(i−1)k
)
ε2

1

−
i−1

∑
j=2

i−1

∏
l= j

σl
( L

2i−1− j − ι j
)
ε2

j

−
i−1

∏
j=2

σ j

(
σ1 −

b2
1

4
(
1+

i−2

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

−
i−2

∑
j=2

i−1

∏
l= j+1

σl
(
σ j −

1
4

i−2

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

−σi−1
L̇
L

ε2
i−1 −

∏i−1
l=1 σla1

2
η2

1 +
∏i−1

l=1 σl

2
ε2

i

+
∏i−1

l=1 σl

4

n

∑
j=i+1

η2
j +σi−1Lεi−1εi

+ εi

(
Lηi+1 − (ai +

i−1

∑
j=2

i−1

∏
l= j

bla j)ẑ1

+L
i

∑
j=3

i−1

∏
l= j−1

blη j+
i−1

∏
l=1

bl
∂hk

∂ z1
(Lε2+Lz2+

f1,k

L
)

+
i−1

∏
l=1

bl
1
2
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k + ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)

− i
L̇
L

εi +
i−1

∑
j=1

i−1

∏
l= j

bl
L̇
L

ε j

)
. (38)

Similarly, due to the fact that σl ≥ 1, l = 1, . . ., i−1 and
based on (9)-(13), the following is obtained by completing
the square.

σi−1Lεi−1εi ≤
σi−1

6
Lε2

i−1 +
3σi−1

2
Lε2

i ,

i−1

∑
j=1

i−1

∏
l= j

bl
L̇
L

ε jεi ≤ (i−1)
L̇
L

ε2
i +

b2
1 ∏i−1

l=2 b2
l

4
L̇
L

ε2
1

+
i−1

∑
j=2

∏i−1
l= j b2

l

4
L̇
L

ε2
j ,

Lbi−1ηiεi ≤
(
bi−1 +

3
2

b4
i−1

)
Lε2

i +
σi−1

6
Lε2

i−1,

i−1

∏
l=1

bl
∂hk

∂ z1
Le2εi ≤

∏i−1
l=1 σl

2i+2 L∥e∥2 +2i
i−1

∏
l=1

b2
l c̄2

kLε2
i ,

i−1

∏
l=1

bl
∂hk

∂ z1
Lη2εi ≤

∏i−1
l=1 σl

2i Lε2
1 +

∏i−1
l=2 σl

2i−1 Lε2
2

+
(
2i−2b4

1c̄2
k +2i−3b2

1c̄2
k

) i−1

∏
l=2

b2
l Lε2

i ,

i−1

∏
l=1

bl
∂hk

∂ z1

φ1k

L
εi ≤

i−1

∏
l=1

bl c̄kλ1k
1
ck
|ε1||εi|

≤
c̄2

kλ 2
1k ∏i−1

l=1 b2
l

2c2
k

ε2
1 +

∏i−1
l=1 σl

2
ε2

i ,

i−1

∏
l=1

bl
1
2
(
(

∂hk

∂ z1
)2ϕ T

1kϕ1k + ε1
∂ 2hk

∂ z1
2 ϕ T

1kϕ1k
)
εi

≤
i−1

∏
l=1

bl c̄kλ2k
1
ck
|ε1||εi|

≤
c̄2

kλ 2
2k ∏i−1

l=1 b2
l

2c2
k

ε2
1 +

∏i−1
l=1 σl

2
ε2

i ,

L
i−1

∑
j=3

i−1

∏
l= j−1

blη jεi ≤
1
6

σi−1Lε2
i−1 +

∏i−1
l=2 σl

2i−1 Lε2
2

+3
i−1

∑
j=3

2i− j−1(1+b2
j−1)

i−1

∏
l= j−1

b2
l Lε2

i

+
i−2

∑
j=3

∏i−1
l= j σl

2i− j Lε2
j ,
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− (ai +
i−1

∑
j=2

i−1

∏
l= j

bla j)εi(Le1 − x1)

≤
(
ai +

i−1

∑
j=2

i−1

∏
l= j

bla j
)
|εi|

(
L|e1|+

L|ε1|
ck

)
≤ ∏i−1

l=1 σlL
2i+2 ∥e∥2 +

∏i−1
l=1 σlL

2i ε2
1

+
(
2i +

2i−2

c2
k

) (
ai +

i−1

∑
j=2

i−1

∏
l= j

bla j
)2Lε2

i . (39)

Substituting (39) into (38) yields

LVi ≤−
i−1

∏
j=1

σ j
( L

2i+1 −ρk
)
∥e∥2

−
i−1

∏
j=1

σ j
( L

2i−1 − ιik
)
ε2

1

−
i−1

∑
j=2

i−1

∏
l= j

σl
( L

2i− j − ι j
)
ε2

j

−
i−1

∏
j=2

σ j

(
σ1 −

b2
1

4
(
1+

i−1

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

−
i−1

∑
j=2

i−1

∏
l= j+1

σl
(
σ j −

1
4

i−1

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

− L̇
L

ε2
i −

∏i−1
l=1 σla1

2
η2

1 +
∏i−1

l=1 σl

4

n

∑
j=i+1

η2
j

+ ε2
i

( i−1

∏
l=1

σl +L
(3σi−1

2
+
(
2i +

2i−2

c2
k

)
×
(
ai +

i−1

∑
j=2

i−1

∏
l= j

bla j
)2
+bi−1 +

3
2

b4
i−1

+
(
2i−2b4

1c̄2
k +2i−3b2

1c̄2
k +2ib2

1c̄2
k

) i−1

∏
l=2

b2
l

+3
i−1

∑
j=3

2i− j−1(1+b2
j−1)

i−1

∏
l= j−1

b2
l

))
+Lεiαi +Lεiεi+1, (40)

where ιik = ι(i−1)k + c̄2
k(λ 2

1k +λ 2
2k)∏i−1

l=1 b2
l /(2c2

k) is an un-
known constant.

Clearly, we can design the virtual controller as αi =
−biεi with

bi ≥ max
k∈M

{
1+

3σi−1

2
+
(
2i +

2i−2

c2
k

)(
ai +

i−1

∑
j=2

i−1

∏
l= j

bla j
)2

+bi−1 +
3
2

b4
i−1 +3

i−1

∑
j=3

2i− j−1(1+b2
j−1)

i−1

∏
l= j−1

b2
l

+
(
2i−2b4

1c̄2
k +2i−3b2

1c̄2
k +2ib2

1c̄2
k

) i−1

∏
l=2

b2
l

)}
,

and η2
i+1 ≤ 2ε2

i+1 +2b2
i ε2

i , one has

LVi ≤−
i−1

∏
j=1

σ j
( L

2i+1 −Θk
)
∥e∥2

−
i−1

∏
j=1

σ j
( L

2i−1 − ιik
)
ε2

1

−
i

∑
j=2

i−1

∏
l= j

σl
( L

2i− j − ι j
)
ε2

j

−
i−1

∏
j=2

σ j
(
σ1 −

b2
1

4

(
1+

i−1

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

−
i−1

∑
j=2

i−1

∏
l= j+1

σl
(
σ j −

1
4

i−1

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

− L̇
L

ε2
i −

∏i−1
l=1 σla1

2
η2

1 +
∏i−1

l=1 σl

2
ε2

i+1

+
∏i−1

l=1 σl

4

n

∑
j=i+2

η2
j +Lεiεi+1, (41)

where ιi = (1+b2
i /2)∏i−1

l=1 σl .
This concludes the proof by induction.
Finally, at Step n, we choose the Lyapunov function

Vn = σn−1Vn−1 +
1
2 ε2

n . Then, one has

LVn ≤−
n−1

∏
j=1

σ j
( L

2n+1 −Θk
)
∥e∥2

−
n−1

∏
j=1

σ j
( L

2n−1 − ιnk
)
ε2

1

−
n−1

∑
j=2

n−1

∏
l= j

σl
( L

2n− j − ι j
)
ε2

j

−
n−1

∏
j=2

σ j

(
σ1 −

b2
1

4
(
1+

n−1

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

−
n−1

∑
j=2

n−1

∏
l= j+1

σl
(
σ j −

1
4

n−1

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

− L̇
L

ε2
n −

∏i−1
l=1 σla1

2
η2

1

+ ε2
n

( n−1

∏
l=1

σl +L
(3σn−1

2
+
(
2n +

2n−2

c2
k

)
×

(
an +

n−1

∑
j=2

i−1

∏
l= j

bla j
)2

+
(
2n−2b4

1c̄2
k +2n−3b2

1c̄2
k +2nb2

1c̄2
k

) n−1

∏
l=2

b2
l

+3
n−1

∑
j=3

2n− j−1(1+b2
j−1)

n−1

∏
l= j−1

b2
l

+bn−1 +
3
2

b4
n−1

))
+

gn

Ln εnu, (42)

where ιnk = ι(n−1)k + c̄2
k(λ 2

1k +λ 2
2k)∏n−1

l=1 b2
l /(2c2

k) is an un-
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known constant. Then, we design the controller

u =−ℓ−nLn+1bnεn =− ℓ−n
n

∑
j=2

Ln+1− j
n

∏
l= j

bl ẑ j

− ℓ−nLn
n

∏
l=1

bly, (43)

where

bn ≥max
k∈M

{
1+

3σn−1

2
+bn−1 +

3
2

b4
n−1

+
(
2n +

2n−2

c2
k

)(
an +

n−1

∑
j=2

n−1

∏
l= j

bla j
)2

+
(
2n−2b4

1c̄2
k +2n−3b2

1c̄2
k +2nb2

1c̄2
k

) n−1

∏
l=2

b2
l

+3
n−1

∑
j=3

2n− j−1(1+b2
j−1)

n−1

∏
l= j−1

b2
l

}
,

under which (42) becomes

LVn ≤−
n−1

∏
j=1

σ j
( L

2n+1 −ρk
)
∥e∥2

−
n−1

∏
j=1

σ j
( L

2n−1 − ιnk
)
ε2

1

−
n

∑
j=2

n−1

∏
l= j

σl
( L

2n− j − ι j
)
ε2

j

−
n−1

∑
j=2

n−1

∏
l= j+1

σl
(
σ j −

1
4

n−1

∑
p= j

p

∏
l= j

b2
l

) L̇
L

ε2
j

−
n−1

∏
j=2

σ j
(
σ1 −

b2
1

4

(
1+

n−1

∑
p=2

p

∏
l=2

b2
l

)) L̇
L

ε2
1

− L̇
L

ε2
n −

∏n−1
l=1 σla1

2
η2

1 , (44)

where ιn = ∏n−1
l=1 σl .

In the end, we choose σ j, j = 1, . . ., n−1 as

σ1 ≥ max
{

1,
b2

1

4
(
1+

n−1

∑
p=2

p

∏
l=2

b2
l

)}
,

σ j ≥ max
{

1,
1
4

n−1

∑
p= j

p

∏
l= j

b2
l

}
, j = 2, . . . ,n−1, (45)

and for j = 2, . . . ,n, define

ρ̄ = max
k∈M

{ n−1

∏
l=1

σlρk,
n−1

∏
l=1

σlιn,k,
n−1

∏
l= j

σlι j

}
,

τ = min
{∏n−1

l=1 σl

2n+1 ,
∏n−1

l=1 σla1

2
,

∏n−1
l= j σl

2n− j

}
,

such that (44) becomes

LVn ≤−(τL− ρ̄)(∥e∥2 +∥ε∥2)− τη2
1 . (46)

3.2. Stability analysis
For any initial condition (x(0), ẑ(0)) ∈ Rn × Rn and

L(0) = 1, we want to prove the existence and unique-
ness of the solution (x(t), ẑ(t),L(t)) of the closed-loop
system on [0,∞). Moreover, limt→+∞(x(t), ẑ(t)) = 0 and
limt→+∞ L(t) = L̄ ∈ R+.

First, we need to demonstrate the boundedness and
uniqueness of the solution (x(t), ẑ(t),L(t)) on the maximal
interval [0, t f ) for 0 < t f ≤+∞. To achieve this, a contra-
diction argument is applied. Suppose that limt→t f L(t) =
+∞. As L̇(t)≥ 0, L(t) is monotonic non-decreasing func-
tion. There exists a finite time T ∈ [0, t f ), such that
L(t)≥ (τ + ρ̄)/τ , ∀t ∈ [T, t f ). Thus, (46) yields

LVn ≤−τ(∥e∥2 +∥ε∥2)− τη2
1 , ∀t ∈ [T, t f ). (47)

Then, one has

+∞ = L(t f )−L(T ) =
∫ t f

T
L̇(t)dt

≤−
∫ t f

T

LV (t)
τ

dt ≤ V (T )
τ

<+∞,

which leads to a contradiction. It can be concluded that
L(t) is bounded on [0, t f ).

Next, we will show that η is bounded on [0, t f ).
With considerations given to the Lyapunov function, i.e.,
V (η) = ηT Pη for system (14), it can be obtained through
simple calculations

LV (z) =LηT (PA+AT P)η +
2
Ln ηT PBu

− L̇
L

zT (PD+DP)η

≤− L
2
∥η∥2 +2Lb2

n∥P∥2ε2
n

≤− 1
2
∥η∥2 +2b2

n∥P∥2LL̇. (48)

Thus, for ∀t ∈ [0, t f ), one has

ηT (t)Pη(t)≤ηT (0)Pη(0)−
∫ t

0

1
2
∥η(s)∥2ds

+b2
n∥P∥2(L2(t)−L2(0))

≤ηT (0)Pη(0)+b2
n∥P∥2L̄2.

This leads to the conclusion that on [0, t f )

∥η(t)∥2 ≤ 1
λmin(P)

(
ηT (0)Pη(0)+b2

n∥P∥2L̄2),∫ t

0
∥η(s)∥2ds ≤ 2

(
ηT (0)Pη(0)+b2

n∥P∥2L̄2), (49)

which indicates η(t) and
∫ t

0 ∥η(s)∥2ds are bounded on
[0, t f ).

Then, e is claimed to be bounded on [0, t f ). On account
of which the coordinates are changed as follows:

ēi =
zi − ẑi

L∗i , i = 1, . . . ,n,
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where L∗ = maxk∈M
{

L̄,ρk +3
}

is a positive constant.
Then, the error dynamic system (14) becomes

ē = L∗Aē+L∗aē1 −LΛ1aē1 +Λ2az1 +Φ∗
k +Ψ∗

k ,
(50)

where ē=(ē1, . . . , ēn)
T , Λ1 = diag{1,L/L∗, . . . ,(L/L∗)n−1},

Λ2 = diag{L/L∗, . . . ,(L/L∗)n}, Φ∗
k =(φ1k/L∗, · · · ,φnk/L∗n)T ,

and Ψ∗
k = (ϕ1k/L∗, · · · ,ϕnk/L∗n)T .

Now, we choose the Lyapunov function V (ē) = ēT Pē
for system (50). A direct calculation yields

LV (ē)≤−L∗∥ē∥2 +2L∗ēT Paē1 −2LēT PΛ1aē1

+2ēT PΛ2az1 +2ēT PΦ∗
k

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2V (ē)
∂ ēi∂ ē j

Ψ∗
k

T Ψ∗
k

≤−L∗∥ē∥2 +2L∗ēT Paē1 −2LēT PΛ1aē1

+2ēT PΛ2az1 +2ēT PΦ∗
k +2ēT PΨ∗

k . (51)

By completing the squares and L/L∗ ≤ 1, one has

2L∗ēT Paē1 ≤ L∗2∥Pa∥2ē2
1 +∥ē∥2,

2LēT PΛ1aē1 ≤ L2∥PΛ1a∥2ē2
1 +∥ē∥2,

2ēT PΛ2az1 ≤
L2∥PΛ2a∥2

c2
k

ε2
1 +∥ē∥2, (52)

2ēT PΦ∗
k ≤ 2λ1k∥P∥∥ē∥

(
n
|ε1|L
ckL∗ +n

n

∑
i=2

( L
L∗

)i
|ηi|

+n
√

n∥ē∥
)

≤ 1
4

ε2
1 +

1
8

n

∑
i=2

η2
i +

(λ 2
1kn2∥P∥2L2

c2
kL∗2

+2λ 2
1kn2(n−1)

( L
L∗

)2i
∥P∥2)∥ē∥2

+λ1kn
√

n∥P∥ ≤ 1
4

ε2
1+

1
8

n

∑
i=2

η2
i +ρ1k∥ē∥2,

2ēT PΨ∗
k ≤ 2λ2k∥P∥∥ē∥

(
n
|ε1|L
ckL∗ +n

n

∑
i=2

( L
L∗

)i
|ηi|

+n
√

n∥ē∥
)

≤1
4

ε2
1+

1
8

n

∑
i=2

η2
i +

(λ 2
2kn2∥P∥2L2

c2
kL∗2 +λ2kn

√
n∥P∥

+2λ 2
2kn2(n−1)

( L
L∗

)2i
∥P∥2)∥ē∥2

≤ 1
4

ε2
1 +

1
8

n

∑
i=2

η2
i +ρk∥ē∥2. (53)

Substituting (52) and (53) into (51), it yields

LV (ē)≤(L∗−ρk −3)∥ē∥2 +
1
4

n

∑
i=2

η2
i

+
(1

2
+

L2∥PΛ2a∥2

c2
k

)
ε2

1

+
(

L∗2∥Pa∥2 +L2∥PΛ1a∥2
)

ē2
1

≤−∥ē∥2 +
(1

2
+

L2∥PΛ2a∥2

c2
k

)
ε2

1

+
1
4
∥η(t)∥2 +

(
L∗2∥Pa∥2 +L2∥PΛ1a∥2

)
×(2L2ξ 2

1

L∗2c2
k
+

2L2η2
1

L∗2

)
≤−∥ē∥2 +

1
4
∥η(t)∥2 + ρ̃ε2

1 + ρ̃η2
1

≤−∥ē∥2 +
1
4
∥η(t)∥2 + ρ̃L̇, (54)

where ρ̃ =maxk∈M

{
1
2 +

L̄2∥PΛ2a∥2

c2
k

+2L̄2 ∥Pa∥2

c2
k
+ 2L̄2 ∥PΛ1a∥2

c2
k

,

2L̄2∥Pa∥2 + 2L̄2∥PΛ1a∥2
}
. From (54), it follows that on

[0, t f )

ēT (t)Pē(t)≤ēT (0)Pē(0)−
∫ t

0
∥ē(s)∥2ds

+ ρ̃(L(t)−L(0))+
1
4

∫ t

0
∥η(s)∥2ds,

which implies

∥ē(t)∥2 ≤ 1
λmin(P)

(
ēT (0)Pē(0)+ ρ̃L̄

+
1
4

∫ t

0
∥η(s)∥2ds

)
,∫ t

0
∥ē(s)∥2ds ≤ ēT (0)Pē(0)+ ρ̃L̄

+
1
4

∫ t

0
∥η(s)∥2ds. (55)

Since η(t) and
∫ t

0 ∥η(s)∥2ds are bounded on [0, t f ), one
can obtain ē(t) and

∫ t
0 ∥ē(s)∥2ds are also bounded on [0, t f )

from (55). From the definitions of ēi, ei, i = 1, . . . ,n,
one obtains e(t) and

∫ t
0 ∥e(s)∥2ds are bounded on [0, t f )

as well. So far, (η(t),e(t),L(t)) has been proven to be
bounded on [0, t f ). With the definitions of zi and εi,
i = 1, . . . ,n , it is easy to know that (x(t), ẑ(t),L(t)) is
bounded on [0, t f ).

Moreover, t f = +∞. This can be further verified by
contradiction. In the case where t f < +∞, t f is a finite-
escape time. This indicates that the component of solution
(z(t), ẑ(t),L(t)) approaches infinity if t → t f . The contra-
diction here, however, is that the continuity of the solution
ensures (z(t), ẑ(t),L(t)) is bounded when t = t f . Hence,
the closed-loop system involves a solution that is bounded
over [0,+∞).

Finally, based on the boundedness of (η(t),e(t),L(t))
on [0,+∞), the conclusion can be drawn that η̇(t)
and ė(t) are bounded on [0,+∞). It should be noted
that

∫ +∞
0 ∥η(t)∥2dt < +∞ and

∫ +∞
0 ∥e(t)∥2dt < +∞,

by Barbalat’s Lemma, one has limt→+∞ z(t) = 0 and
limt→+∞ ε(t) = 0. From the definitions of L(t), ηi and
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ei, i = 1, . . . ,n, it holds limt→+∞ x(t) = limt→+∞ z(t) = 0,
limt→+∞ ẑ(t) = 0 and limt→+∞ L(t) = L̄ ∈ R+.

4. A SIMULATION EXAMPLE

Consider the switched uncertain nonlinear system

dx1 = ℓ1x2dt + f1σ(t)(t,x,d(t))dt

+gT
1σ(t)(t,x,d(t))dω,

dx2 = ℓ2udt + f2σ(t)(t,x,d(t))dt

+gT
2σ(t)(t,x,d(t))dω,

y = c1σ(t)x1 + c2σ(t) sinx1 (56)

where σ(t) : [0,+∞) → M = {1,2}, f11(t,x,d(t)) =
λ11x1 + d11(t)x1 sin2 x2, f21(t,x,d(t)) = λ12x2 sinx1 +
d12(t)λ13 ln(1+λ14x2

2), f12(t,x,d(t)) = λ21d21(t)x1 sinx1,
f22(t,x,d(t)) = λ22x2

1+x4
1
+ d22(t)x1, g11 = 0.2,g21 = 1,

g12 = 0.1,g22 = 1.2 with λ11,λ12,λ21,λ22 being unknown
constants and d11,d12,d21,d22 being uncertain bounded
parameters. 0.4 ≤ c11,c21 ≤ 1.4, 1.1 ≤ c12,c22 ≤ 2 and
1 ≤ ℓ1, ℓ2 ≤ 1.5. By verification, the switched stochastic
nonlinear system (56) satisfies Assumptions 1-3. Accord-
ingly, based on Theorem 1, we can design a dynamic
high-gain observer and a universal output feedback con-
troller as

dẑ1 = ẑ2dt −2Lẑ1dt,

dẑ2 = udt −L2ẑ1dt,

u =−12.546Lẑ2 −426.828L2y,

L̇ =
ẑ2

1

L2 +
y2

L2 +
( ẑ2

L2 +b1
y
L

)2
. (57)

The simulation is carried out with parameters as:
ℓ1 = 1, ℓ2 = 1.2, λ11 = 1.5,λ12 = 0.8,λ13 = 0.5,λ14 =
0.7,λ21 = 0.5,λ22 = 0.2, d11 = 1,d12 = 0.6,d21 =
0.4,d22 = 0.3, b1 = 100 and c11 = 0.2,c21 = 1,c12 =
1.1,c22 = 1.5. The initial condition is (x1(0),x2(0)) =
(0.1,−0.3) and (ẑ1(0), ẑ2(0),L(0)) = (0,0,1). The effec-
tiveness of the proposed control scheme is confirmed in
Figs. 1-5.

5. CONCLUSION

This paper has discussed the problem of adaptive output
feedback control for a class of switched stochastic nonlin-
ear systems under arbitrary switching. A new observer
with a dynamic gain has been designed to estimate the
states. An adaptive output feedback controller has been
proposed based on the backstepping method to guarantee
that all the signals of the closed-loop system are bounded
in probability and the system states converge to the ori-
gin almost surely. However, some problems need to be
solved in the future, such as the design of an adaptive out-
put feedback controller for high-order switched uncertain
stochastic nonlinear systems under weaker conditions.
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