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Gaussian Sum FIR Filtering for 2D Target Tracking

Jung Min Pak

Abstract: The constant velocity (CV) motion model has been typically used in 2-dimensional (2D) target tracking
problems, but it has an uncertain process noise covariance problem. Unlike the Kalman filter (KF), the least square
finite impulse response filter (LSFF) does not require noise covariance information and can overcome the uncertain
process noise covariance problem. However, the LSFF has a cumbersome problem that is to select a suitable value
of design parameter called the horizon size. This paper proposes a Gaussian sum FIR filter (GSFF), where the
Gaussian sum method is used to deal with the horizon size in LSFFs. The GSFF overcomes the uncertain process
noise covariance problem and can be alternative to existing filters in 2D target tracking. Superior performance
of GSFF is demonstrated by comparison with the Gaussian sum KF (GSKF) that is an existing filter to solve the

uncertain process noise covariance problem.
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1. INTRODUCTION

Over the past few decades, state estimators, such as
the Kalman (KF) and particle (PF) filters, have been de-
veloped for target tracking problems and successfully ap-
plied to surveillance/navigation systems [1-8]. Measure-
ment systems are represented by nonlinear equations in
many target tracking problems, hence nonlinear estima-
tors, such as the extended Kalman filter (EKF) [5, 6], un-
scented Kalman filter [7], and PF [3, 4, 8], have been in-
tensively studied. However, linear estimators, e.g., KF,
have been often used in combination with measurement
conversion or for image based target tracking applications
[9-11].

The Kalman and particle filters are Bayesian filters that
recursively perform time update and measurement up-
date processes to iteratively refine a rough initial state
estimate. However, the recursive filter structure also ac-
cumulates modeling and/or computational errors, which
may lead to the filter divergence. Thus, estimators hav-
ing finite memory structure [12—17] have been developed
to overcome this divergence. In this regard, finite im-
pulse response (FIR) filters have been intensively studied
[13, 14,16, 18-27] and generally provide superior perfor-
mance, such as robustness against model parameter uncer-
tainties and fast tracking for abrupt target motion changes.

Various FIR filters have been developed and applied
to tracking applications, such as human/robot localization
[20,26,27], frequency tracking [23], visual object tracking

[17,24], and target tracking [18,25]. The constant velocity
(CV) motion model is commonly employed for tracking
applications. However, the CV model has a drawback that
the design parameter, process noise covariance, is very
uncertain and inappropriate selection of process noise co-
variance may worsen tracking performance [25,28]. On
the other hand, FIR filters are robust against process noise
covariance uncertainty from the CV model compared with
KF [17,23-25]. Thus, FIR filter may be a good alternative
to KF for tracking applications using the CV model.

Although the FIR filter has better robustness than KF,
it is difficult to handle. The FIR filter uses a finite set of
measurements (in the discrete-time case), called the hori-
zon or memory size. The horizon size is an uncertain de-
sign parameter for FIR filtering and several methods have
been proposed to select the most appropriate parameter.
The method to find optimal horizon size proposed in [29]
is appropriate for time-invariant systems, and the method
to adaptively adjust horizon size proposed in [21] can cope
with time-varying systems, but requires significantly more
computation time compared with KF.

This paper proposes a Gaussian sum FIR filter (GSFF)
for tracking applications. We focus on two-dimensional
(2D) target tracking where a target moves in a 2D space
and employ the 2D CV model. We use the Gaussian sum
filtering method to solve the horizon size problem. In the
proposed GSFF algorithm, several FIR filters using differ-
ent horizon sizes are operated in parallel. At each time
step, outputs of the FIR filters are merged together using
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the Gaussian sum method. The resulting GSFF has ro-
bustness against uncertainties in process noise covariance
when using the CV model in 2D target tracking problem.
We compare the proposed GSFF with the Gaussian sum
KF (GSKEF) that is an existing filter to solve the uncertain
process noise covariance problem. Superior performance
of the GSFF is demonstrated by simulations in compar-
isons with the GSKF.

Novelty and contribution of this paper can be summa-
rized as follows. The GSFF, which is a new FIR filter that
solves the horizon size problem by Gaussian sum method,
was firstly proposed. The proposed GSFF overcomes the
uncertain process noise problem in 2D target tracking. Es-
timation accuracy of the GSFF is superior to the existing
filters, KF and GSKF. In addition, the GSFF is computa-
tionally efficient compared with the GSKF.

The remainder of this paper is organized as follows:
Section 2 briefly explains the 2D target tracking scheme
and formulates the problem to be solved. Section 3 pro-
vides the proposed GSFF details and Section 4 presents
simulation results. Section 5 summarizes and concludes
the paper.

2. 2D TARGET TRACKING SCHEME AND
PROBLEM FORMULATION

We assume that a target moves in 2D space in diverse
directions at different speeds, where target direction and
speed change arbitrarily and unpredictably. The CV mo-
tion model is often used to represent target motion for this
case, assuming target velocity is constant over a short time
interval, i.e., the target moves straight at constant speed
between neighbouring points. We denote target 2D posi-
tions and velocities at time step k by (xx, i) and (X, k),
respectively, and the position at next time step k+ 1 can
be expressed as

X1 = Xk + % T, (D

Vi1 = Yk + 0T, 2)

where T is the time interval between time steps k and k +
1. The 2D positions and velocities can be combined by
defining the state vector, X; = [x; yi X Y&]”. Thus, the CV
motion model in state-space form is

Xi+1 = Ax; + Gwy, 3
1 0T 0 T?/2 0
01 0T 0 T?%)2

A=lo o1 0| ¢ 7 0 |’
00 0 1 0 T

“)

where wy is the process noise vector. We assume that wy,
is zero-mean white Gaussian noise with the covariance
matrix, Q. In the CV model, Q is a key parameter re-

lated to the amount of change of target motion. Increas-
ing Q means increasing target velocity (course and speed)
change.

We assume that 2D measurements (i.e., x- and y-
coordinates of the target) are available and define the mea-
surement vector at time k as y; = [xx yx]. Thus, the mea-
surement model can be expressed as

Vi = Cxp 4 vi, (5)

C[IOOO]7 ©)

01 0O
where vy, is the measurement noise vector with the covari-
ance matrix R.

Measurements are corrupted by noise, hence the mea-
sured 2D target positions are not accurate. The KF is typ-
ically used to filter the noise and obtain more accurate 2D
positions, recursively performing prediction and correc-
tion steps. The prediction step produces an a priori esti-
mated state, X, using the motion model and the correction
step produces an a posteriori estimated state, X; , using the
measurements and measurement model. KF for 2D target
tracking can be expressed as

x, =Ax; |, (N
P, =AP; AT +Q, ®)
K, =P, C'(CP,C" +R) ', 9)
x{ =x; +Ki(yr — Cxp ), (10)
P/ = (I-K.C)P, (11)

where P; is estimation error covariance matrix, K; is
Kalman gain, and superscripts — and 4 mean a priori and
a posteriori, respectively.

Equation (8) shows that KF requires Q, which is in-
herently uncertain information, because no prior informa-
tion regarding target movement is available. This Q; un-
certainty causes mismatch between model and real target
motion, which degrades KF estimation accuracy.

The least square FIR filter (LSFF) [25] was proposed to
overcome this problem for target tracking, since it does
not require noise covariance information, and is robust
against Q uncertainty in the CV model. LSFF performs
batch processing, and produces estimated state, Xy, us-
ing recent finite measurements on the time horizon [m, n],
where m =k — N and n = k — 1 are the horizon initial and
final time steps, respectively; and N is the horizon size,
i.e., the number of measurements on the horizon. Thus,
the LSFF for 2D target tracking can be expressed as

R, =HyY,, (12)

Hy 2 (C{Cy)~'CF, (13)
C

- CA

Cy2 oA, (14)
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Y, & [yn Yo o Yalh (15)

where Hy is filter gain and subscript N means that the
gain depends on the horizon size. Hy is time-invariant,
and is computed only once in the filtering process, which
relieves computational burden.

Although LSFF is robust against Q uncertainty, it has
a cumbersome problem. LSFF uses recent finite mea-
surements on the time horizon [k — N,k — 1] to produce
X;. Thus, N has significant effects on estimation perfor-
mance, and optimal N is not constant but changes ac-
cording to various model parameters, such as process and
measurement noise magnitudes, sampling interval, etc. If
the motion and measurement models are accurate, N can
be chosen by simulation to minimize estimation errors.
However, 2D target tracking has high Q uncertainty and
hence selecting an appropriate LSFF horizon size is diffi-
cult. Thus, the problem is to find a method to deal with the
LSFF horizon size. By solving this problem, we obtain a
new state estimator offering reliable performance for 2D
target tracking without requiring suitable Q and N values.

3. GAUSSIAN SUM FIR FILTER

This section proposes GSFF to solve the problem for-
mulated in Section 2. GSFF is based on Gaussian sum ap-
proximation [30, 31], where the estimated state probabil-
ity density function (pdf) is approximated by a weighted
sum of Gaussian density functions [32]. Let the esti-
mated state pdf be a conditional density, p(xx|Yx) and
Y, £ {yi, i=1,--- ,k} be the sequence of measurements
up to time k. Then, the Gaussian sum approximation can
be expressed as

M
p(xe|Yi) = Y wiN (% X, Py (16)
i=1

i ; i i Ppi : :
where wy, are weights, J\/’(xk,xk‘k7 Pk‘k) are Gaussian densi-
i

e and M is the number

ties with mean xf(l . and variance P
of Gaussian densities [32].

The GSFF runs several independent LSFFs in parallel,
and merges the outputs using the Gaussian approximation.
The independent LSFFs use different horizon sizes, and
the merged output contains various characteristics of the
horizon sizes. By determining the range of horizon size
as [Nmin, Nmax] and the number of LSFFs N, the horizon

sizes for the LSFFs are determined as
Ni=Nmnin+ixp, i=1,2,--- Np, 17

where p = (Npax — Nmin) /Nr.

Design parameters Nyin, Nmax, and N affect GSFF per-
formance. However, GSFF avoids the difficult and cum-
bersome task of selecting FIR filter horizon size. Thus,
rather than discussing Npin, Nmax, and N selection, in de-
tial, we demonstrate that GSFF with roughly selected pa-

Algorithm 1: Filtering using GSFF
Data: N;(i=1,2,--- ,NF)

Result: X,
1 begin
2 - Compute gain matrices Hy, for horizon sizes
Ni(i=1,2,---,Nr) using the following
equations:
C
~ CA,
3 CM = . AN
CA}VI"l
4 HN,- = (6%61\/{.)7161{;‘_,
5 fork=N,+1,Ni+2,--- do
6 fori=1,2,--- ,Nr do
7 if k== N'+1 then
8 - Generate N; weight variables and set
them to 1/N;.
9 end if
10 if k > N’ then
11 - Construct the augmented
measurement matrix Yy, x:
12 Yr, = [YJ{—N,» yIZ—N,'+l YI{—JT
13 - Obtain the state estimate of the i-th
LSFF, &i:
14 ﬁk = HN;YNi,k
15 - Compute the likelihood using the
following equations:
16 $i = CXL, p(yeli) = |
s eXP(Yie— 91 TR (e = $i),
17 end if
18 end for
19 fori=1,2,--- ,Nr do
20 - Update the weight of the i-th LSFF:
x W= s
22 end for
23 - Obtain the state estimate of the GSFF at
time k by Gaussian sum:
24 X, = YN wikh
25 end for
26 end

rameters outperforms both KF and conventional FIR filter.
Once Np is determined, the weights for Gaussian sum
approximation shown in (16) are initialized as

1
WB:N—F, i=1,2,...,Nr, (18)

and weights at time k are computed using the update rule
(32]
i P(Yl)wi,
Wi = N i 5
Y1 Nr p(Yel /)i

19)
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where p(y|i) is the likelihood of measurement y; given
i, which is obtained from the i-th LSFF. Assuming Gaus-
sian measurement noise, the likelihood p(yi|i) is com-
puted as follows:

~ 1 ST .
P(Yk\l):WCXPKYk—Yk) R™ (yx—%)], (20)

9i = CX;, 1)

where |R| is the determinant of R.

The LSFFs produce & (i = 1,2,---,Nr) at each time
step. Thus, the GSFF state estimate at time k is computed
as

NF ..
X = Y Wik (22)
i=1

The overall process of filtering using the GSFF is summa-
rized in Algorithm 1.

4. SIMULATION

This section presents simulation results to demonstrate
the proposed GSFF performance. We simulate 2D tar-
get tracking for a single target and use the CV model de-
scribed by (3). The simulation generates target trajectories
(i.e., target position sequences) using (3).

We also use the CV model for the filters. Although
KF requires Q, FIR filters (i.e., GSFF and LSFF) do not.
Since target motion is unpredictable, Q is actually un-
known, and it is difficult to select suitable Q for KF. Thus,
we test several Q hypotheses in the simulation. We define
Q as Q = gl,, where I, is a 2 x 2 identity matrix, and set
g = 1 when generating target trajectories. We test three g
values (0.1, 1, and 10) for the KF.

The measurement comprises the 2D target position, i.e.,
x- and y-coordinates. If the measurement vector at time k
is yx = [xx yx], the measurement equation is described by
(5) and (6), and we set R = I,.

Horizon size is an important design parameter of FIR
filters, and can significantly affect estimation perfor-
mance. If the horizon size is unsuitable, estimation ac-
curacy of the FIR filter can be significantly worsened. Al-
though LSFF requires appropriate horizon size, GSFF re-
lieves this requirement. Since the suitable horizon size is
unknown, we tested three horizon sizes (10, 20, and 30)
for the single LSFF. In this case, the GSFF is the Gaus-
sian mixture of three LSFFs using the three horizon sizes.
We compared single LSFF and GSFF performances. Next,
we demonstrated that GSFF is more accurate than GSKF
by simulation. GSKF overcomes ¢ uncertainty in the CV
motion model. GSKF is obtained by replacing LSFFs in
GSFF algorithm with KFs.

First, we compare single KF and GSKF performance.
Single KF uses constant g values, 0.1, 1, and 10, and

GSKF is the Gaussian mixture of these three KFs. Lastly,
we compare the GSFF and the GSKF performance.

In the simulation, the target state was generated using
the CV model with g = 1 for the whole simulation time,
1 <k <600. We set sampling interval, 7 = 0.1 s, and the
simulation time was 60 s. Filter performance was evalu-
ated by root mean square position error (RMSPE) and root
time averaged mean square error (RTAMSE). We ran 100
Monte Carlo (MC) simulations and RMSPE and RTAMS
were calculated as

100
RMSPE,; = mZ(Xi—fk)2+(y2—9i)2’ (23)
i=1

100 M
RTAMS; = L Y ) (£ (52 (24)
100 ==
If RMSPE of a filter is larger than that of the measured
output, there is no need to use the filter. Hence, we used
RMSPE of the measured output to evaluate filter effective-
ness.

Fig. 1(a) compares GSKF and standard KFs using g =
10, 1, and 0.1. All KFs initially exhibit significantly large
RMSPE that decrease over time, converging to relatively
constant value. RMSPE for both ¢; = 1 and g; = 10 are
larger than those of the measured output for early stages
but become smaller than those after a few seconds, al-
though g; = 1 exhibits slower convergence than g; = 10.
However, after convergence (approximately 15 s after sim-
ulation starts), KF with g; = 1 results in the smallest RM-
SPE because this process noise covariance corresponds to
the real one (i.e., the g used to generate the target trajec-
tories). Thus, the KF with g, = 1 is the ideal KF, which is
difficult to obtain for real experiments. GSKF is a Gaus-
sian mixture of three KFs using ¢ = 10, 1, and 0.1. Be-
cause the KF with g = 10 exhibits the smallest RMSPE in
the initial stage, the weight for this KF increases. Weight
for the KF with ¢ = 10 converges to 1 and weights for
other KFs converge to 0. After the convergence is com-
pleted, GSKF output equals to the KF with ¢ = 10. Hence,
GSKF RMSPE becomes the same as that of the KF with
q = 10. About 12 seconds after the simulation start, the
KF with g, = 1 exhibits the smallest RMSPE. However,
GSKF RMSPE is still the same as the KF with ¢; = 10.
This is because weights do not change after completion of
convergence.

Fig. 1(b) compares GSFF and conventional FIR filters,
i.e., single LSFF with N = 10, 20, and 30. The large RM-
SPEs for early stage KFs do not occur for the FIR filters,
and three LSFFs exhibit smaller RMSPE compared with
measured output. In this simulation, N = 30 provided the
best performance in terms of RMSPE. Although N = 30
is the best horizon size among the three considered, it
is not the optimal horizon size, Nop. Nope can be esti-
mated by Monte Carlo simulation as the horizon size pro-
ducing minimum RMSPE. However, in practise the best
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Fig. 1. Root mean square position error (RMSPE) of (a)
Kalman filters and (b) finite impulse response
(FIR) filters.

FIR filter horizon size is unknown unless elaborate and
extensive pre-simulations are performed. On the other
hand, GSFF exhibits similar RMSPEs to the best LSFF
(N = 30). Thus, GSFF provides performance similar to
the best horizon size without requiring pre-simulation. We
see that GSFF RMSPE converges to that of the best LSFF.
This is because the weight of the best LSFF converges
to 1.

Fig. 2 compares the GSKF and the proposed GSFF.
As clearly seen in this figure, GSFF RMSPE is smaller
than that of GSKF. Thus, GSFF can offer more accurate
tracking than GSKF. Especially, GSFF is much better than
GSKF in the early stage.

Table 1 shows RTAMS of all filters used in the simula-
tions. KF RTAMSs are significantly large because of large
RMSPE:s for early stage. GSKF RTAMS is larger than that
of best the KF with g; = 10. This is because the GSKF
produced larger RMSPE than that of the best KF until the
weight for this KF becomes 1. LSFF RTAMSs are signif-
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Fig. 2. Root mean square position error (RMSPE) for in-
consistent target mobility comparing the proposed
algorithm with (a) Kalman filters and (b) least
square finite impulse response filters (LSFFs).

Table 1. Root time averaged mean square error for consis-
tent target mobility.

KF 857.0 646.3 190.3
(qx =0.1) (=1 (gx =10)
0.9676 0.6775 0.5898
LSFF (N =10) (N =20) (N =30)
GSKF 4714
GSFF 0.5971
Measurement 1.188

Table 2. Total operation time (TOT).

Filter GSKF
TOT (s) 0.1134

GSFF
0.0820

icantly smaller than those of KFs. GSFF RTAMS is close
to the best LSFF with N = 30. In terms of RTAMS, GSFF
is superior to GSKF.

Table 2 compares GSFF and GSKF in terms of total
operation time (TOT). GSFF TOT is smaller than that
for GSKF. GSKF and GSFF operate three KFs and three
LSFFs, respectively. While KF gain is time-varying,
LSFF gain is time-invariant. Hence, GSFF can reduce
computation time by computing the gain beforehand. As
a result, the GSFF exhibited smaller TOT compared with
the GSKF.

5. CONCLUSIONS

This paper proposed a Gaussian sum FIR filter (GSFF)
for 2D target tracking. Simulations confirmed that GSFF
exhibited comparable performance to ideal LSFF with-
out requiring any information on horizon size. GSFF ex-
hibited better performance compared with KF and GSKF
without requiring any information on process noise co-
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variance. Thus, GSFF provides an alternative solution for
2D target tracking problems using the CV model. How-
ever, GSFF is only applicable for linear systems, which
limits its application. Therefore, future work will investi-
gate extending GSFF general nonlinear systems.
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