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Fully Distributed Event-triggered Semi-global Consensus of Multi-agent
Systems with Input Saturation and Directed Topology
Siyu Chen, Haijun Jiang* ■ , and Zhiyong Yu

Abstract: This paper studies the consensus problem of multi-agent systems with input saturation and directed
communication topology, by utilizing the low-gain feedback method and the event-triggered control laws. Two
event-triggered control laws, the centralized and the distributed laws, are proposed to guarantee semi-global con-
sensus of the multi-agent systems. Then, a sufficient condition is presented to prove strictly positive low bound of
inner-event time, i.e., the Zeno behavior can be avoided. Finally, the effectiveness of the proposed event-triggered
laws is further verified by an example.
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1. INTRODUCTION

Over the past decade, the coordinated control prob-
lems of multi-agent systems have received increasing at-
tention due to its wide applications and great potentials
in physical and economical sciences, transport networks,
smart grid system, flocking and distributed wireless com-
munication networks [1–10]. With the wide develop-
ment of coordinated control in various fields and con-
siderations such as reality and environment, the research
have been extended from the original ideal model to the
more practical dynamic model. Therefore, for the above-
mentioned systems, researchers considered the practical
dynamic models with delay, saturation, nonlinearity, and
further combined the theoretical research and practice
closely [11–13], and the application of coordinated con-
trol is broadened. Coordination control includes synchro-
nization, clustering, consensus, etc. The consensus is one
of the most important problems in coordinated control
problems. The purpose of the consensus is to ensure that
all agents reach a common value through interactions with
their neighboring agents.

Recently, researchers paid more attention to the prob-
lem of consensus, because of its widespread existence
and application in real life, and they have devoted more
and more energy to study it. Many different dynam-
ics have been investigated for the consensus problem,
such as single-integrator dynamics [14], double-integrator
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[15,16], linear dynamics [17], nonlinear dynamics [18,19]
continuous time [16], [18] and discrete time [20] and so
on. In most of the literatures on consensus problems,
each agent needs to measure its state, update its infor-
mation and send information to its neighboring agents.
Generally, we all assume that data packets can be suc-
cessfully transmitted. However, in actual systems, data
packets are lost due to internal system failure or external
factors [21–23]. At the same time, in some practical ap-
plication systems, the state of the system can not be re-
ally obtained, so it is necessary to estimate the state in-
formation of the system [22]. Because of these factors,
researchers have studied different systems and proposed
many control methods. Several methods are now available
in the existing literatures. These include impulsive con-
trol method [24], feedback control method [25], adaptive
control method [26], intermittent control method [27] and
sampled-data control [19], [21] and [28]. These methods
require the continuous communication between the agent
and their neighbors or continuously update controllers via
current states of agents. However, in the practical appli-
cations of multi-agent systems, constrained by resources
and technologies, it is necessary to save communication
resources as much as possible to prolong the service life of
the system when designing the desired controller. To solve
the problem, Tabuada [29] presented an event-triggered
strategy for a stabilization problem, where the protocol is
triggered when error defined exceeds the predetermined
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value. A new combined measurement approach to event-
triggered strategy was proposed in [30], so that the control
protocol of agents is triggered only at its own event time
and not at its neighbor’s event time. In our paper, two
event-triggered control laws, the centralized and the dis-
tributed event-triggered laws, are proposed. Compared to
the periodic or aperiodic sampling protocols, the event-
triggered protocol does not need to sample and update its
information before the next event time.

Event-triggered control strategy is widely used in re-
ality because of its good performance. It can effectively
reduce the update frequency of the controller by adjusting
the control parameters, so it can be better applied to the
system with limited resources. In existing works, there
are two kinds of event-triggered control, namely, central-
ized event-triggered and distributed event-triggered. Cen-
tralized event-triggered law means that the updating sig-
nals of all agents should be transferred at the same time.
However, this centralized event-triggered law will result
heavy network congestion, especially when the wireless
network bandwidth is limited. Meanwhile, event agent
uses the identical event-triggered function condition de-
fined by the information of all agents. Under such a event-
triggered mechanism, some unnecessary data may be trig-
gered while the necessary one may not. We know that
the distributed event-triggered means that each agent will
need an event-triggered condition, which will consume
lager costs or other expenditures when plenty of agent
nodes exist. Both of these mechanism have their advan-
tages and need to be balanced.

As well known to all, saturated nonlinear dynamics are
ubiquitous in physical and engineering systems. Input sat-
uration [12] and [31,32] means that the magnitude of con-
trol input is limited in a bounded region which cannot go
beyond the boundary of the region. In addition, in existing
works such as [30] and [33, 34], the main studies are the
undirected connected systems, in which the Laplacian ma-
trix of communication topology is symmetric, so that the
communication information between any two agents for
the connected topology is bidirectional. However, in many
cases, directed information communication is also ubiqui-
tous such as [35–37]. Therefore, consensus of multi-agent
systems with input saturation and directed communication
not only conforms to the reality but also extends the exist-
ing theories.

Motivated by the above-mentioned works and the re-
sults of existence, the centralized and distributed event-
triggered control strategies are proposed in this paper to
solve the consensus problem of multi-agent systems with
input saturation and directed topology. The contributions
of this paper are three-fold. Firstly, the low-gain feed-
back method is used to solve the dynamic system with
input saturation. Secondly, both the centralized and the
distributed event-triggered protocols are designed for the
directed communication network with input saturation.

Then, the event-triggered schemes are fully distributed,
which only need the state information of the agent and its
neighbor’s. Finally, two methods are used to prove that the
Zeno behavior can be avoided in these two event-triggered
functions.

The rest of this paper is organized as follows: Section
2 contains preliminaries and model description. Section 3
proposes event-triggered control strategy. Section 4 gives
an example to verify the effectiveness and Section 5 is the
conclusion of this paper.

Notations: Throughout the paper, Rn and Rn×m denote
the space of all n dimensional real column vectors and the
space of all n×m dimensional real matrices and In is an
n× n-dimensional identity matrix. For a real symmetry
matrix A > 0 (A < 0) means A is a positive (negative)-
definite matrix and AT denotes its transpose and λmax(A)
and λmin(A) represent the maximum and the minimum
eigenvalue of A, respectively. ∥·∥ represents the two-norm
of matrix or vector and ∥ · ∥∞ denotes the infinite-norm of
matrix or vector. ⊗ denotes the Kronecker product of ma-
trices.

2. PRELIMINARIES

In this section, preliminaries about model formulation,
algebraic graph theory, definitions and lemmas are briefly
introduced.

2.1. Algebraic graph theory
Let G = {V,E ,A} denote a weighted digraph of N

nodes with the set of nodes V = 1,2, · · · ,N, and the set
of edges E ⊆ {(i, j) : i, j ∈ V, j ̸= i}. A= (ai j)N×N repre-
sents a weighted adjacency matrix, where ai j denotes the
weight of edge ( j, i). The node indices belong to finite
index set I = {1,2, · · · ,N}. The edge of E is denoted by
ei j = (vi,v j). The adjacency elements associated with the
edges of the graph are positive and the others are zero, i.e.,
ei j ∈ E ⇐⇒ ai j ̸= 0. Moveover we assume aii = 0 for all
i ∈ I. Let D = diag(d1,d2, · · · ,dN) be a diagonal matrix

with elements di =
N
∑

j=1, j ̸=i
ai j. Then the Laplacian matrix

of the directed graph G is defined as L =D−A, where A
is the adjacent matrix of graph G.

In G a node i ∈ V is reachable from a node j ∈ V if
there exists a path from node j to node i which respects
the direction of the edge. A directed graph G is called
strongly connected if every node is reachable from every
other node.

2.2. Problem statement
Consider a linear multi-agent system with N agents.

Each agent moves in an n-dimensional Euclidean space
and updates itself according to the following dynamics:

ẋi(t) = Axi(t)+Bσ(ui(t)), (1)
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where A ∈ Rn×n and B ∈ Rn×m are constants ma-
trices, and xi(t) ∈ Rn is the state of agent ith and
ui(t) ∈ Rm is its control input. For all j = 1,2, · · · ,m,
σ(ui(t)) = [σ(ui1(t)), · · · ,σ(uim(t))]T is the saturation
function induced by the physical devices of the system
and σ(ui j(t)) = sign(ui j(t))min{|ui j(t)|,ϖ} where ϖ > 0
an input saturation threshold. Moreover, we assume that
the system (1) satisfies the following assumption.

Assumption 1: The pair (A,B) is asymptotically null
controllable with bounded control in the sense that:

1) all eigenvalues of matrix A are in the closed left-half
s-plane;

2) the pair (A,B) is stabilizable.
Assumption 2: The directed communication graph G

is strongly connected.
Lemma 1 [38]: Under Assumption 1, for any ε ∈ (0,1],

there exists an unique matrix P(ε) > 0, which solves the
following algebraic Riccati equation(ARE):

AT P(ε)+P(ε)A−P(ε)BBT P(ε)+ εIn = 0.

Moreover, lim
ε→0

P(ε) = 0.

Lemma 2 [39]: If G is a strongly connected graph with
Laplacian matrix L, there exists a positive vector ξ such
that ξ T L = 0.

Definition 1 [40]: For a strongly connected network
with Laplacian matrix L, the general algebraic connectiv-
ity is defined to be the real number

λ (L) = min
xT ξ=0,x ̸=0

XT L̂X
XT ΞX

,

where L̂ = (ΞL+ LT Ξ)/2, Ξ = diag(ξ1,ξ2, · · · ,ξN), ξ =

(ξ1,ξ2, · · · ,ξN)
T with ξi > 0 for all i ∈ I and

N
∑

i=1
ξi = 1.

Lemma 3 [41]: The general algebraic connectivity of a
connected network can be computed by the following:

max δ
subject to QT (L̂−δΞ)Q ≥ 0,

where Q = (IN−1 − ξ̂
ξN
)T ∈ RN×N−1 and ξ̂ = (ξ1, ξ2, · · · ,

ξN−1)
T .

This paper aims at solving the semi-global consensus
problem of multi-agent systems subject to input satura-
tion and directed topology by using event-triggered con-
trol strategies. Specially, for agent ith, its input control
ui(t) is computed by monotone increasing sequences of
time instants: the event instant sequence {tk}∞

k=0. The
event instant tk denotes the kth sampling instant of the con-
trol ui(t). Then, ui(t) is constant for t ∈ [tk, tk+1).

Definition 2: For any a priori given bounded set χ ∈Rn,
the system (1) achieves semi-global consensus, if starting
from any xi(0) ∈ χ

lim
t→∞

∥xi(t)− x j(t)∥= 0, i, j = 1,2, · · · ,N.

To solve this problem, one has to design a fully dis-
tributed control algorithm according to the following two
steps.

Step 1: Solving the parameterized ARE:

AT P(ε)+P(ε)A−αP(ε)BBT P(ε)+2εIn = 0, (2)

where ε ∈ (0,1], 0 < α ≤ 2λ (L).
Step 2: Construct control law ui(t) for system (1):

ui(t) =−BT P(ε)
( N

∑
j=1

ai j(xi(tk)− x j(tk))
)
, (3)

where P(ε) ∈ Rn×n is the solution of ARE (2).

3. EVENT-TRIGGERED CONSENSUS OF
MULTI-AGENT SYSTEM

In this section, we consider two kinds of event-triggered
mechanisms and analyze their characteristics and practical
application.

3.1. Centralized event-triggered cooperative control
In this part, the consensus problem of multi-agent sys-

tems subject to input saturation and directed topology is
considered. Then for t ∈ [tk, tk+1), each agent updates it-
self according to the following equation:

ẋi(t) = Axi(t)−Bσ
(

BT P(ε)
N

∑
j=1

ai j(xi(tk)− x j(tk))
)
.

(4)

We define the following consensus error and measurable
error

x̃i(t) = xi(t)−
N

∑
k=1

ξkxk(t), (5)

wi(t) =
N

∑
j=1

ai j(xi(t)− x j(t)), (6)

ei(t) = wi(t)−wi(tk), (7)

where
N
∑

k=1
ξk = 1 and ξk > 0, the derivative of (5) along

with (4), (6) and (7) yields

˙̃xi(t) =Axi(t)−
N

∑
k=1

ξkAxk(t)

−Bσ
(

BTP(ε)
( N

∑
j=1

ai j(xi(t)−x j(t))−ei(t)
))

+
N

∑
k=1

ξkBσ
(

BT P(ε)
( N

∑
j=1

ak j(xk(t)− x j(t))

− ek(t)
))

. (8)
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Theorem 1: Consider the multi-agent system (1) over a
directed strongly connected communication graph, if the
Assumption 1 holds, then the semi-global consensus of the
system can be guaranteed according to the given control
law and execution event-triggered function

tk+1 = sup{t | ∥e(t)∥⩽ η∥w(t)∥}, (9)

where η =
√

δk(2ε−kρ)λmin(Ξ)
ρλmax(Ξ) satisfying 0 < η < ε ,

with ρ = ∥P(ε)BBT P(ε)∥, 0 < k < 2ε
ρ and 0 < δ <

min
{

1,min{ρ2, 1
λmax(LT L)}

}
.

Proof: Define a Lyapunov function as

V (t) =
1
2

x̃T (t)(Ξ⊗P(ε))x̃(t), (10)

where Ξ > 0 and P(ε)> 0.
Due to the existence of the bounded set χ and the facts
that xi(0)∈ χ, i ∈ I, and lim

ε→0
P(ε) = 0, there exists an ε0 ∈

(0,1], for any given constants c > 0, such that

c ≥ sup
ε0∈(0,1], xi(0)∈χ, i∈I

V (0). (11)

Let LV (c) = {V (t) ≤ c}. Similarly, there exists an ε∗ ∈
(0,ε0], such that, for all ε ∈ (0,ε∗],

∥ui(t)∥∞ ≤ ϖ , i ∈ I. (12)

That is, there must exist an ε∗ to dominate the nonlinear-
ity induced by the input saturation and σ(ui(t)) becomes
ui(t). Then, (1) becomes

ẋi(t) = Axi(t)+Bui(t), t ∈ [tk, tk+1), (13)

and the (8) can be written as

˙̃xi(t) =Axi(t)−
N

∑
k=1

ξkAxk(t)

−BBT P(ε)
N

∑
j=1

ai j(xi(t)− x j(t))

+BBT P(ε)
N

∑
k=1

ξk

N

∑
j=1

ak j(xk(t)− x j(t))

+BBT P(ε)ei(t)−BBT P(ε)
N

∑
k=1

ξkek(t). (14)

Since ξ T L = 0, one has
N
∑

k=1
ξk

N
∑
j=1

lk jx j(t) = (ξ T L ⊗

In)x(t) = 0. Let w(t) = (wT
1 (t), · · · ,wT

N(t))
T , e(t) =

(eT
1 (t), · · · ,eT

N(t))
T and x̃(t) = (x̃T

1 (t), · · · , x̃T
N(t))

T . The
(14) can be written as

˙̃x(t) =(IN ⊗A)x̃(t)− (L⊗BBT P(ε))x̃(t)
+(IN ⊗BBT P(ε))e(t). (15)

Now, the derivative of V (t) along with (15) yields

V̇ (t) =x̃T (t)
(

Ξ⊗ (AT P(ε)+P(ε)A)
2

)
x̃(t)

+ x̃T (t)
(

Ξ⊗P(ε)BBT P(ε)
)

e(t)

− x̃T (t)
(
(LT Ξ+ΞL)⊗ P(ε)BBT P(ε)

2

)
x̃(t).

From Definition 1, one has −x̃T (t)(LT Ξ + ΞL)x̃(t) ≤
−2λ (L)x̃T (t)(Ξ⊗ In)x̃(t). Let P(ε) be the solution of the
following ARE:

AT P(ε)+P(ε)A−αP(ε)BBT P(ε)+2εIn = 0,

where 0 < α ≤ 2λ (L). Then we can further get

V̇ (t)≤x̃T (t)
(

Ξ⊗
(

AT P(ε)+P(ε)A
2

−λ (L)(P(ε)BBT P(ε))
))

x̃(t)

+ x̃T (t)
(

Ξ⊗P(ε)BBT P(ε)
)

e(t). (16)

Since P(ε)BBT P(ε)≥ 0, it follows from (2) that,

AT P(ε)+P(ε)A
2

−λ (L)(P(ε)BBT P(ε))≤−εIn.

Equation (16) can be rewritten as

V̇ (t)≤
N

∑
i=1

−εξix̃T
i (t)x̃i(t)

+
N

∑
i=1

ξix̃T
i (t)P(ε)BBT P(ε)ei(t).

By using inequality ∥ξ∥ · ∥ζ∥ ≤ k
2∥ξ∥2 + 1

2k∥ζ∥2 for any
k > 0 and ξ ,ζ ∈ Rn, one has

V̇ (t)≤
N

∑
i=1
−εξix̃T

i(t)x̃i(t)+
N

∑
i=1

ξix̃T
i (t)P(ε)BBTP(ε)ei(t)

≤−(ε− kρ
2
)

N

∑
i=1

ξi∥x̃i(t)∥2+
ρ
2k

N

∑
i=1

ξi∥ei(t)∥2

≤−(ε− kρ
2
)λmin(Ξ)∥x̃(t)∥2+

ρ
2k

λmax(Ξ)∥e(t)∥2.

(17)

Then, by choosing 0 < k < 2ε
ρ and enforcing the event-

triggered function (9), the (17) becomes

V̇ (t)≤−(ε − kρ
2
)λmin(Ξ)(1−δλmax(LT L))∥x̃(t)∥2

≤ 0,

which implies that V (t) → 0 as t → ∞. One can get that
lim
t→∞

∥xi(t)− x j(t)∥ = 0, i, j = 1,2, · · · ,N, i.e., the semi-
global consensus of the system (1) can be achieved.
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Remark 1: Compared with the results in [7] and [15],
the result of this paper can be regarded as an extension
from continuous control laws to the event-triggered con-
trol laws. By using the event-triggered control law, the
update frequency of the controller can be reduced, and the
resources can be saved effectively.

Theorem 2: Consider the multi-agent system (1) over a
directed strongly connected communication graph, if As-
sumption 1 holds and all parameters in Theorem 1 are sat-
isfied, then the event-triggered instants tk(k ≥ 0 and t0 = 0)
defined by (9) excludes the Zeno behavior for every agent.
That is, tk+1 − tk ≥ T with T > 0.

Proof: For any agent ith, assume its current triggering
time is tk.

Given a sufficient condition to guarantee the event-
triggered condition ∥e(t)∥ ≤ η∥w(t)∥ is

∥e(t)∥ ≤ η
1+η

∥w(tk)∥, (18)

which can be written directly as:

∥e(t)∥ ≤ η
1+η

∥w(t)− e(t)∥

≤ η
1+η

∥w(t)∥+ η
1+η

∥e(t)∥.

Since ∥e(t)∥ ≤ η
1+η ∥w(tk)∥, by utilizing |∥w(tk)∥ −

∥w(t)∥| ≤ η
1+η ∥w(tk)∥, one has

1
1+η

∥w(tk)∥ ≤ ∥w(t)∥ ≤ (
η

1+η
+1)∥w(tk)∥. (19)

Then, the time derivative of ∥e(t)∥ over the interval
[tk, tk+1) is

d
dt
∥e(t)∥ ≤ ∥eT (t)∥

∥e(t)∥
∥ė(t)∥= ∥ẇ(t)∥. (20)

And since

ẇ(t) = (IN ⊗A)w(t)− (L⊗BBT P(ε))w(tk),

one has

ẇ(t) =(IN ⊗A)e(t)+(IN ⊗A)w(tk)

− (L⊗BBT P(ε))w(tk).

The equality (20) can be written as

d
dt
∥e(t)∥ ≤ ∥(IN ⊗A)∥∥e(t)∥+αk, (21)

where αk = ∥(IN ⊗A)w(tk)−(L⊗BBT P(ε))w(tk)∥. Then,
it follows that:

∥e(t)∥ ≤ αk

∥IN ⊗A∥
(e∥IN⊗A∥(t−tk)−1).

According to the sufficiency of the trigger condition, one
has

∥e(tk+1)∥=
η

1+η
∥w(tk)∥

≤ αk

∥IN ⊗A∥
(e∥IN⊗A∥(tk+1−tk)−1), (22)

which yields tk+1 − tk ≥ 1
∥IN⊗A∥ ln( ∥IN⊗A∥∥w(tk)∥η

(1+η)αk
+1).

To prove that the inner-event interval is strictly positive,
we first consider the case when w(tk)> 0. Since w(tk)> 0,
one has

tk+1 − tk ≥
1

∥IN ⊗A∥
ln
(
∥IN ⊗A∥∥w(tk)∥η

(1+η)αk
+1

)
≥ 1

∥IN ⊗A∥
ln
(
∥IN ⊗A∥∥w(tk)∥η

∏
+1

)
≥ 1

∥IN ⊗A∥
ln
(
∥IN ⊗A∥η

℧
+1

)
> 0, (23)

where ∏ = (1+ η)

(
∥IN ⊗ A∥∥w(tk)∥+ ∥L ⊗ BBT P(ε)∥

∥w(tk)∥
)

and ℧= (1+η)

(
∥IN ⊗A∥+∥L⊗BBT P(ε)∥

)
.

Next, we consider the case when w(tk) = 0 as k → ∞.
Then it follows from (19) that w(t) = 0, and thus:

ẇ(t) = (IN ⊗A)w(t)− (L⊗BBT P(ε))w(tk) = 0.

Simple transposition of (19) leads to

lim
k→∞

∥w(t)∥
∥w(tk)∥

≤ η
1+η

+1. (24)

Then, one has

αk ≤ ∥(L⊗BBT P(ε))w(tk)∥+∥IN ⊗A∥w(tk)∥

≤ max
t ′∈[tk ,tk+1]

∥IN ⊗A∥∥w(t
′
)∥+∥IN ⊗A∥∥w(tk)∥.

(25)

Together with (24) and (25), we have

T = lim
k→∞

(tk+1 − tk)

≥ 1
∥IN ⊗A∥

ln
(
∥IN ⊗A∥∥w(tk)∥η

(1+η)αk
+1

)
≥ 1

∥IN ⊗A∥
ln
(

∥w(tk)∥η
(1+η)(∥w(tk)∥+∥w(t ′)∥)

+1
)

≥ 1
∥IN ⊗A∥

ln
(

η
2+3η

+1
)
> 0, (26)

which is strictly positive.
Remark 2: In order to prove Theorem 2, a sufficient

condition is required when 0 < η < ε is satisfied. It is

noted that η =
√

δε2λmin(Ξ)
ρ2λmax(Ξ) (when k = ε

ρ ), so 0<η < ε can
be guaranteed. The event-triggered function is reduced to
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this sufficient condition at the event time instants, i.e., tk+1.
We can know from (23) and (26) that the Zeno behavior
can be excluded, and the lower bound value and the rate
of convergence are related to η . Therefore, the trigger
frequency and the update frequency of the controller can
be changed by adjusting the parameter η to achieve the
purpose of saving resources.

3.2. Distributed event-triggered cooperative control
Under distributed event-triggered control strategy,

event instants could be different for individual agents and
the sequence of event instants for agent ith is denoted by
t i
0, t i

1, · · · . Then for t ∈ [t i
k, t

i
k+1), (k = 0,1, · · ·and t i

0 = 0),
each agent updates itself according to the following equa-
tion:

ẋi(t) = Axi(t)−Bσ
(

BTP(ε)
N

∑
j=1

ai j(xi(t i
k)−x j(t

j
ḱ(t)

))

)
,

where ḱ(t) = argmax
l∈I

{l | t j
l ≤ t}.

Define

Ei(t) = xi(t i
k)− xi(t),

E j(t) = x j(t
j
ḱ(t)

)− x j(t),

∆i(t) =
N

∑
j=1

ai j(Ei(t)−E j(t)). (27)

The derivative of (5) along with (28) yields

˙̃xi(t) =Axi(t)−
N

∑
k=1

ξkAxk(t)

−Bσ
(

BT P(ε)
( N

∑
j=1

ai j(xi(t)−x j(t))+∆i(t)
))

+
N

∑
k=1

ξkBσ
(

BT P(ε)
( N

∑
j=1

ak j(xk(t)− x j(t))

+∆k(t)
))

. (28)

Theorem 3: Consider a multi-agent system (1) over a
directed strongly connected communication graph, if the
Assumption 1 holds, then, the event-triggered function

t i
k+1 = sup{t | ∥∆i(t)∥2 ⩽ ηi∥wi(t)∥2} (29)

can guarantee system to achieve the semi-global con-
sensus, where ηi =

δik(2λmin(Ξ)ε−λmax(Ξ)kρ)
ρλmax(Ξ) satisfying 0 <

ηi < ε2, with 0< δi <min
{

1,min{ λ 2
max(Ξ)ρ2

λ 2
min(Ξ)

, 1
aiλmax(LT L)}

}
,

and ai > 0 such that ∥wi(t)∥2 ≤ aiλmax(LT L)∥x̃i(t)∥2, i ∈
I, ρ = ∥P(ε)BBT P(ε)∥, and 0 < k < 2ελmin(Ξ)

λmax(Ξ)ρ .

Proof: Define a Lyapunov function as

V (t) =
1
2

x̃T (t)(Ξ⊗P(ε))x̃(t), (30)

where Ξ > 0 and P(ε)> 0.
Being similar to the analysis in Theorem 1, for any c >

0 and LV (c) = {V (t)≤ c}, there exists an ε∗ ∈ (0,1], such
that, for ε ∈ (0,ε∗], ∥ui(t)∥∞ ≤ ϖ , i ∈ I. That is, there
must exist an ε∗ to dominate the nonlinearity induced by
the input saturation and σ(ui(t)) becomes ui(t). Thus, one
gets

ẋi(t) = Axi(t)+Bui(t). (31)

Define ∆(t) = (∆T
1 (t), · · · ,∆T

N(t))
T . For t ∈ [t i

k, t
i
k+1), simi-

lar to the analysis in Theorem 1, we can get compact style

˙̃x(t) =(IN ⊗A)x̃(t)− (L⊗BBT P(ε))x̃(t)
− (IN ⊗BBT P(ε))∆(t). (32)

The derivative of V (t) along with (32) yields

V̇ (t) =x̃T (t)
(

Ξ⊗ (AT P(ε)+P(ε)A)
2

)
x̃(t)

− x̃T (t)
(

Ξ⊗P(ε)BBT P(ε)
)

∆(t)

− x̃T (t)
(
(LT Ξ+ΞL)⊗ P(ε)BBT P(ε)

2

)
x̃(t).

From definition 1 and ARE, we have

V̇ (t)≤−ελmin(Ξ)∥x̃(t)∥2− x̃T (t)
(

Ξ⊗P(ε)BBT P(ε)
)

∆(t).

By using Young’s inequality, we have

V̇ (t)≤−
(

ελmin(Ξ)−
λmax(Ξ)kρ

2

)
∥x̃(t)∥2

+
λmax(Ξ)ρ

2k
∥∆(t)∥2. (33)

Then, by choosing 0 < k < 2ελmin(Ξ)
λmax(Ξ)ρ and enforcing the

event-triggered function (29), the (33) can be written as

V̇ (t)≤−
(

ελmin(Ξ)−
λmax(Ξ)kρ

2

)
×

N

∑
i=1

(
1−δiaiλmax(LT L)

)
∥x̃i(t)∥2

≤0,

which means consensus can be achieved.
Remark 3: In this part, the state of each agent is

regulated by a single event-triggered condition. There-
fore, compared with the centralized event-triggered con-
trol strategy, the trigger time of each agent is different in
this method. At each triggered instant, agent i will update
its controller ui(t) using the current state xi(t i

k) and send
the current state to neighbors. The neighbors will thereby
update their controllers, but they will not transmit their in-
formation at this moment unless their event-triggered con-
ditions are violated. Different from the reference [30], the
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event-triggered function with multiple control parameters
is adopted in this paper, so there are more choices of con-
trol parameters in adjusting convergence rate and updating
frequency.

Now, we prove that there is no Zeno behavior for each
agent given the event-triggered function. We consider
agent h ∈ I that satisfies

h ≜ argmax
i∈I

{i | ∥wi(t)∥}.

Since ∥∆h(t)∥ ≤ ∥∆(t)∥, the following inequality holds

∥∆h(t)∥
N∥wh(t)∥

≤ ∥∆(t)∥
N∥wh(t)∥

≤ ∥∆(t)∥
∥w(t)∥

,

which is equivalent to ∥∆h(t)∥
∥wh(t)∥ ≤ N ∥∆(t)∥

∥w(t)∥ .

Denote yh(t) =
∥∆h(t)∥
∥wh(t)∥ , then yh(t) ≤ N ∥∆(t)∥

∥w(t)∥ = Ny(t),

where y(t) = ∥∆(t)∥
∥w(t)∥ . For any interval t ∈ [th

k , t
h
k+1),

∥∆(t)∥
∥w(t)∥

is continuous. We have

ẏ(t)≤ ∥∆̇(t)∥
∥w(t)∥

+ y(t)
∥ẇ(t)∥
∥w(t)∥

. (34)

It follows from (27) that ∆̇(t) = −ẇ(t), and we can get
∥∆̇(t)∥= ∥ẇ(t)∥. The (34) becomes

ẏ(t)≤ (1+ y(t))
∥ẇ(t)∥
∥w(t)∥

. (35)

It follows from (6) that

ẇ(t) =(L⊗ In)ẋ(t)

=(IN ⊗A−L⊗BBT P(ε))w(t)
− (L⊗BBT P(ε))∆(t). (36)

Consequently,

∥ẇ(t)∥ ≤
(
∥IN ⊗A∥+∥L⊗BBT P(ε)∥

)
∥w(t)∥

+∥L⊗BBT P(ε)∥∥∆(t)∥,

then, we can conclude that

∥ẇ(t)∥
∥w(t)∥

≤∥IN ⊗A∥+∥L⊗BBT P(ε)∥

+∥L⊗BBT P(ε)∥∥∆(t)∥
∥w(t)∥

. (37)

Substituting (37) into (35), one has

ẏ(t)≤ (1+ y(t))(a+by(t)), (38)

where a = ∥IN ⊗ A∥ + ∥L ⊗ BBT P(ε)∥ and b = ∥L ⊗
BBT P(ε)∥. Thus, the evolution of y(t) for t ∈ [th

k , t
h
k+1)

satisfies that y(t)≤ ϕ(t,ϕ0), where ϕ(t,ϕ0) is the solution
of

ϕ̇(t) = (1+ϕ(t))(a+bϕ(t)). (39)

Assume that for agent hth, an event instant at times th
k ,

before the next event instant, the following inequality:

yh(t)≤ N
∫ t

th
k

ϕ̇(s)ds = N
ae(a−b)(s+c)−1
1−be(a−b)(s+c) |

t
s=th

k

holds, where c = 1
b−a lna. The next event will not be trig-

gered before (29) is crossing zero, i.e., before

ae(a−b)(T+c)−1
1−be(a−b)(T+c) = d, (40)

where d =
√

1
N

δhk(2λmin(Ξ)ε−kρλmax(Ξ))
λmax(Ξ)ρ . By solving (40), one

has

T =
1

a−b
ln

a(d +1)
a+bd

. (41)

Because a is bigger than b, ad + a > bd + a and one has
T > 0. This ensures that the Zeno behavior is excluded.

Remark 4: In [23], the consensus of multiagent sys-
tems was considered by constructing event-triggered func-
tion. The convergence rate is mainly regulated by the
eigenvalues of matrices. However, in our paper, it can be
adjusted by the control parameters of the event-triggered
function. Hence, the proposed method in our paper is eas-
ier to adjust the convergence rate.

4. NUMERICAL EXAMPLE

In this section, a numerical example is simulated to ver-
ify the theoretical analysis.

Consider the multi-agent system (1) consisting of four
nodes. The dynamics of each agent is described by

ẋi(t) = Axi(t)+Bui(t), i = 1, · · · ,4, (42)

where xi(t) = (xi1,xi2)
T , matrices A and B are described

by

A =

(
−1 1
0.1 −0.2

)
, B =

(
0.4
0.2

)
.

The directed communication topology of multi-agent sys-
tem (42) is given by Fig. 1.

Fig. 1. Communication topology.
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Fig. 2. The state trajectories of xi1.
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Fig. 3. The state trajectories of xi2.

The general algebraic connectivity of the above graph
can be computed by Lemma 3, then one has λ (L) =
0.4033. When ε = 0.1, solve the ARE: AT P(ε)+P(ε)A−
2λ (L)P(ε)BBT P(ε)+2εIn = 0, one has

P(ε) =
(

0.1152 0.1787
0.1787 1.1984

)
.

Using the event-triggered function (29), the simulation
results are shown in Figs. 2-5. Figs. 2-5 show simu-
lation results in the case of η1 = 0.0008, η2 = 0.0006,
η3 = 0.0004, η4 = 0.0002 and η1 = 0.008, η2 = 0.006,
η3 = 0.004, η4 = 0.002. It can be seen from Fig. 2 and
Fig. 3 that the consensus of MASs (1) is achieved asymp-
totically. And the event-triggered instants for each agent
are marked in Fig. 4 and Fig. 5, where each symbol repre-
sents the event time instants.

Under the condition of the same event-triggered, for
each agent to select different parameters and select
the same parameters, some agent’s trigger instants will
change.

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 4. The event-triggered instants of each agent.
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Fig. 5. The event-triggered instants of each agent.
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Fig. 6. The state trajectories of xi1.

Using the event-triggered function (9), the simulation
results are shown in Figs. 6-8. Figs. 6-8 show simulation
results in the case of η = 0.02. From Figs. 6-7 show re-
sults of that the consensus of multi-agent system (1) is
achieved. And the event-triggered instants of the whole
system as shown in Fig. 8.

Under the conditions of two kinds of event-triggered,
the consensus of MASs (1) is achieved. However, due
to different triggering mechanism, it is concluded that the
simulation diagrams are different. One case is to control
each agent, and the other one is to control the whole sys-
tem.

Remark 5: According to the comparison between
Figs. 4-5, triggering frequency of event-triggered function
can be directly changed by choosing different parameters.
In addition, from Figs. 4-5 and Fig. 8, the difference be-
tween centralized and decentralized trigger mechanisms
can be seen directly. Both of them have their own advan-
tages, depending on the situation in the actual system.
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Fig. 7. The state trajectories of xi2.
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Fig. 8. The event-triggered instants of the whole system.

5. CONCLUSION

In this paper, the consensus problem of multi-agent sys-
tem with input saturation and directed strongly topology
is studied. We propose two novel event-triggered strate-
gies with distributed protocols and use low-gain feedback
method to solve the consensus problem of multi-agent sys-
tems. Finally, an example is presented to illustrate the ef-
fectiveness of the theoretical results. In the future work,
we will extend our results to the general directed topol-
ogy with external disturbance, delay and the nonlinear dy-
namic system.
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