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P-type Iterative Learning Control with Initial State Learning for One-
sided Lipschitz Nonlinear Systems
Panpan Gu and Senping Tian* ■

Abstract: In this paper, the problem of iterative learning control is considered for a class of one-sided Lipschitz
nonlinear systems. For such nonlinear systems, open-loop and closed-loop P-type learning algorithms with initial
state learning are adopted, respectively. Furthermore, the convergence conditions of the P-type learning algorithms
are established. It is shown that both algorithms can guarantee the system output converges to the desired one on
the whole time interval. A numerical example is constructed to illustrate the effectiveness of the proposed learning
algorithms.
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1. INTRODUCTION

Iterative learning control (ILC) is an effective control
strategy to achieve perfect trajectory tracking for dynam-
ics with repetitive operation over a finite time interval (see
[1, 2]). The basic idea of ILC is to improve the current
tracking performance by fully utilizing the past control ex-
perience. On account of its simplicity and effectiveness,
ILC has attracted extensive attention in the field of both
theory and applications, and lots of achievements have
been made over the past decades (see, e.g., [3–9] and ref-
erences therein).

Nonlinearity is a universal phenomenon existing in
practical control systems (see [10–13]). Hitherto, there
are many significant results which have been reported on
the ILC for nonlinear systems. By utilizing the relative
degree of the system, paper [14] proposed an ILC law
for a class of nonlinear systems. In [15], the D-type ILC
algorithm with initial state learning was applied to non-
linear time-varying uncertain systems, then the uniform
boundedness of the output tracking error was obtained in
the sense of λ -norm. Paper [16] considered the sampled-
data ILC problem for a class of nonlinear systems with
well-defined relative degree. In [17], a P-type learning
algorithm was designed to study the ILC problem for non-
linear systems with random packet dropouts. In order to
tracking the desired discontinuous trajectory, open-loop
and closed-loop P-type ILC algorithms with initial state
learning were developed in [18] for impulsive differential
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equations. In [19], the sampled-data ILC was applied to a
class of continuous-time nonlinear systems with iteration-
varying lengths. In [20], the adaptive ILC problem was
addressed for a class of MIMO discrete-time nonlinear
systems with time-iteration-varying parameters. The fault
estimation problem via iterative learning was presented in
[21] for a class of nonlinear time-delay systems. How-
ever, note that most of the nonlinear ILC designs of above
are based on Lipschitz condition. This condition limits
the applicability of ILC to some extent, consequently, it
motivates us to find some weak condition to replace this
constraint condition.

During the past years, one-sided Lipschitz condition
has been widely applied in observer design, due to the
fact that it provides a less conservative condition than the
classical Lipschitz one. The one-sided Lipschitz condi-
tion was first introduced in [22] to deal with the observer
design problem for a class of nonlinear systems. On this
basis, the existence conditions of observers for one-sided
Lipschitz nonlinear systems were further investigated in
[23, 24]. It is noted that these works utilize a modified
one-sided Lipschitz condition in which the nonlinearity
is scaled via a fixed symmetric matrix. In [25], the con-
cept of one-sided Lipschitz was extended by introducing
the quadratically inner-bounded condition. Actually, such
nonlinear systems arise in many practical systems, such
as single-link flexible joint robotic system, Lorenz system
and electromechanical system (see [26–28]). Recently, the
control and observer design problems for such one-sided
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Lipschitz nonlinear systems have attracted considerable
attention from researchers (see, e.g., [29–35] and refer-
ences therein). However, little effort has been made on the
design of an efficacious controller to achieve tracking of
one-sided Lipschitz nonlinear systems. And fortunately,
ILC is a good alternative approach, for repetitive systems,
that can offer a systematic design to improve tracking per-
formance by iterations on a finite time interval. This ob-
servation motivates our study.

This paper investigates the problem of iterative learn-
ing algorithm for a class of nonlinear systems. The non-
linearities considered in this paper satisfy the one-sided
Lipschitz condition. Then the open-loop and closed-loop
P-type learning algorithms with initial state learning are
adopted for such nonlinear systems, and furthermore, the
convergence conditions of the algorithms are presented.
Under the action of the P-type learning algorithms, the
uniform convergence of the output tracking error is guar-
anteed with the aid of λ -norm. This paper is organized
as follows: In Section 2, the basic assumptions of this
paper are made and the ILC problem for a class of one-
sided Lipschitz nonlinear system is proposed. In Section
3, the open-loop and closed-loop P-type learning algo-
rithms with initial state learning are constructed and the
corresponding convergence results are presented. In Sec-
tion 4, an example is given to illustrate the effectiveness
of the presented algorithms. Finally, Section 5 draws the
conclusion.

Notations: Rn denotes the n-dimensional real Eu-
clidean space. For a given vector or matrix X , ∥X∥ de-
notes its Euclidean norm. ⟨·, ·⟩ is the inner product in
Rn, i.e., given x,y ∈ Rn, then ⟨x,y⟩ = xTy, where xT de-
notes the transpose of the column vector x. For a function
h(t) ∈ Rn and a real number λ > 0, the λ -norm is defined
as ∥h∥λ = supt∈[0,T ] e

−λ t∥h(t)∥ and the s-norm is defined
as ∥h∥s = supt∈[0,T ] ∥h(t)∥. I denotes an identity matrix
with appropriate dimension.

2. PROBLEM DESCRIPTION

Consider the following nonlinear system:{
ẋ(t) = f (x(t))+Bu(t),

y(t) =Cx(t)+Du(t),
(1)

where t ∈ [0,T ] denotes the time index; x(t) ∈ Rn, u(t) ∈
Rm, y(t) ∈ Rp represent the state, control input and output,
respectively; f (x(t)) ∈ Rn represents a nonlinear function
with respect to x(t); B, C and D are real matrices with
appropriate dimensions.

Assume that the system (1) is repeatable over t ∈ [0,T ].
Rewrite the system (1) as:{

ẋk(t) = f (xk(t))+Buk(t),

yk(t) =Cxk(t)+Duk(t),
(2)

where k is the iteration index.
In the following, the basic assumptions are first made

throughout this paper.
Assumption 1: The nonlinear function f (x(t)) is one-

sided Lipschitz, i.e., for ∀x(t), x̂(t) ∈ Rn,

⟨ f (x(t))− f (x̂(t)),x(t)− x̂(t)⟩ ≤ α∥x(t)− x̂(t)∥2,

where α ∈ R is the one-sided Lipschitz constant.

Remark 1: It should be noted that the constant α can
be positive, zero, or negative, while the Lipschitz constant
must be positive. Moreover, the one-sided Lipschitz con-
stant is always less than or equal to the traditional Lips-
chitz constant.

Assumption 2: The desired output trajectory yd(t) is
realizable, i.e., there exists a unique desired control in-
put ud(t) such that{

ẋd(t) = f (xd(t))+Bud(t),

yd(t) =Cxd(t)+Dud(t),

where xd(t) is the desired state.
Given a desired output trajectory yd(t), t ∈ [0,T ], the

target of this paper is to apply the ILC method to gener-
ate the control sequence uk(t), such that the system output
yk(t) can track the desired one yd(t) as k → ∞.

To end this section, we give the following lemma,
which will be used in the proof of the main theorems.

Lemma 1 [36]: Suppose {ak}, {bk} are two nonnega-
tive real sequences satisfying

ak+1 ≤ ρak +bk, 0 ≤ ρ < 1,

if lim
k→∞

bk = 0, then lim
k→∞

ak = 0.

3. MAIN RESULTS

For the system (2), we first adopt an open-loop P-type
learning algorithm with initial state learning as follows:{

xk+1(0) = xk(0)+Lek(0),

uk+1(t) = uk(t)+Γ1ek(t),
(3)

where L ∈ Rn×p, Γ1 ∈ Rm×p are the learning gain matri-
ces, and ek(t) = yd(t)− yk(t) is the output tracking error
at the kth iteration.

Theorem 1: For the system (2) with the learning algo-
rithm (3), and suppose that Assumptions 1-2 are satisfied.
If the gain matrices L and Γ1 can be chosen such that

ρ1 = max{∥I −DΓ1 −CL∥,∥I −DΓ1∥}< 1, (4)

then there exists a constant λ > 0 such that lim
k→∞

∥ek∥λ = 0,

which means that lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].
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Proof: Denote δxk(t) = xk+1(t) − xk(t), δuk(t) =
uk+1(t) − uk(t), δ fk(t) = f (xk+1(t)) − f (xk(t)). Note
that

ek+1(t) = ek(t)− (yk+1(t)− yk(t))

= ek(t)−Cδxk(t)−Dδuk(t)

= (I −DΓ1)ek(t)−Cδxk(t). (5)

It is obvious that

ek+1(0) = (I −DΓ1)ek(0)−Cδxk(0)

= (I −DΓ1 −CL)ek(0).

Taking Euclidean norm on both sides of the above expres-
sion and combining with (4), we can get

∥ek+1(0)∥ ≤ ∥I −DΓ1 −CL∥∥ek(0)∥ ≤ ρ1∥ek(0)∥.

Because of ρ1 < 1, then we have

lim
k→∞

∥ek(0)∥= 0. (6)

It follows from (2) and (3) that

δ ẋk(t) = δ fk(t)+Bδuk(t) = δ fk(t)+BΓ1ek(t). (7)

Left multiplying both sides of the expression (7) by
(δxk(t))T and combining with Assumption 1, it yields

⟨δ ẋk(t),δxk(t)⟩
= ⟨δ fk(t),δxk(t)⟩+ ⟨BΓ1ek(t),δxk(t)⟩
≤ α∥δxk(t)∥2 +(BΓ1ek(t))Tδxk(t)

≤ |α|∥δxk(t)∥2 +∥BΓ1∥∥δxk(t)∥∥ek(t)∥, (8)

while

⟨δ ẋk(t),δxk(t)⟩=
1
2

d((δxk(t))
Tδxk(t))

dt
. (9)

From (8) and (9), we know

d((δxk(t))
Tδxk(t))

dt
≤ 2|α|∥δxk(t)∥2 +2∥BΓ1∥∥δxk(t)∥∥ek(t)∥
≤ (2|α|+1)∥δxk(t)∥2 +∥BΓ1∥2∥ek(t)∥2

= c1∥δxk(t)∥2 + c2∥ek(t)∥2, (10)

where

c1 = 2|α|+1,c2 = ∥BΓ1∥2.

Integrating both sides of the expression (10) from 0 to t
and combining with (3), we can obtain

(δxk(t))Tδxk(t)

≤
∫ t

0
{c1∥δxk(τ)∥2 + c2∥ek(τ)∥2}dτ

+(δxk(0))Tδxk(0)

=
∫ t

0
{c1∥δxk(τ)∥2 + c2∥ek(τ)∥2}dτ

+(Lek(0))TLek(0),

which implies that

∥δxk(t)∥2 ≤
∫ t

0
{c1∥δxk(τ)∥2 + c2∥ek(τ)∥2}dτ

+∥L∥2∥ek(0)∥2,

Applying the Gronwall lemma and according to the defi-
nition of the λ -norm, it gives

∥δxk(t)∥2 ≤
∫ t

0
ec1(t−τ)c2∥ek(τ)∥2dτ

+∥L∥2∥ek(0)∥2ec1t

≤ c2

∫ t

0
ec1(t−τ)e2λτ{e−λτ∥ek(τ)∥}2dτ

+∥L∥2ec1T∥ek(0)∥2

≤ c2ec1t
∫ t

0
e(2λ−c1)τ dτ∥ek∥2

λ

+∥L∥2ec1T∥ek(0)∥2.

Let 2λ > c1, then

∥δxk(t)∥2

≤ c2ec1t e(2λ−c1)t −1
2λ − c1

∥ek∥2
λ +∥L∥2ec1T∥ek(0)∥2

= c2
e2λ t − ec1t

2λ − c1
∥ek∥2

λ +∥L∥2ec1T∥ek(0)∥2,

we further have

∥δxk∥2
λ =

(
sup

t∈[0,T ]
e−λ t∥δxk(t)∥

)2

= sup
t∈[0,T ]

e−2λ t∥δxk(t)∥2

≤ c2

2λ − c1
∥ek∥2

λ sup
t∈[0,T ]

{1− e(c1−2λ )t}

+∥L∥2ec1T∥ek(0)∥2

≤ c2

2λ − c1
∥ek∥2

λ +∥L∥2ec1T∥ek(0)∥2

≤
(√

c2

2λ − c1
∥ek∥λ +∥L∥

√
ec1T∥ek(0)∥

)2

.

Therefore,

∥δxk∥λ ≤
√

c2

2λ−c1
∥ek∥λ+∥L∥

√
ec1T∥ek(0)∥. (11)

It follows from (4) and (5) that

∥ek+1∥λ ≤ ∥I −DΓ1∥∥ek∥λ +∥C∥∥δxk∥λ
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≤ ρ1∥ek∥λ +∥C∥∥δxk∥λ . (12)

Substituting (11) into (12) results

∥ek+1∥λ ≤ ρ̂∥ek∥λ + c3∥ek(0)∥, (13)

where

ρ̂ = ρ1 +∥C∥
√

c2

2λ − c1
, c3 = ∥C∥∥L∥

√
ec1T .

Since 0 ≤ ρ1 < 1 by (4), it is possible to choose λ large
enough so that ρ̂ < 1. Then, it follows from (6), (13) and
Lemma 1 that

lim
k→∞

∥ek∥λ = 0.

Note that ∥ek∥s ≤ eλT∥ek∥λ , so we have lim
k→∞

∥ek∥s = 0,

which implies that

lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].

This completes the proof. □

Now, we adopt a closed-loop P-type learning algorithm
with initial state learning for the system (2) as follows:{

xk+1(0) = xk(0)+Lek(0),

uk+1(t) = uk(t)+Γ2ek+1(t),
(14)

where L∈Rn×p, Γ2 ∈Rm×p are the learning gain matrices,
and ek+1(t) = yd(t)−yk+1(t) is the output tracking error at
the (k+1)th iteration.

Theorem 2: For the system (2) with the learning al-
gorithm (14), and suppose that Assumptions 1-2 are sat-
isfied. If the gain matrices L and Γ2 can be chosen such
that

ρ2 =max{∥(I+DΓ2)
−1(I−CL)∥, ∥(I+DΓ2)

−1∥}
<1, (15)

then there exists a constant λ > 0 such that lim
k→∞

∥ek∥λ = 0,

which means that lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].

Proof: From (2) and (14), we have

ek+1(t) = ek(t)− (yk+1(t)− yk(t))

= ek(t)−Cδxk(t)−Dδuk(t)

= ek(t)−Cδxk(t)−DΓ2ek+1(t),

that is,

(I +DΓ2)ek+1(t) = ek(t)−Cδxk(t).

On account of the matrix I +DΓ2 is nonsingular, then we
can get

ek+1(t) = (I +DΓ2)
−1(ek(t)−Cδxk(t)). (16)

Furthermore, we can derive

ek+1(0) = (I +DΓ2)
−1(ek(0)−Cδxk(0))

= (I +DΓ2)
−1(I −CL)ek(0).

Taking Euclidean norm on both sides of the above expres-
sion and combining with (15), it becomes

∥ek+1(0)∥ ≤ ∥(I +DΓ2)
−1(I −CL)∥∥ek(0)∥

≤ ρ2∥ek(0)∥.

Since ρ2 < 1, we further have

lim
k→∞

∥ek(0)∥= 0. (17)

It follows from (2) and (14) that

δ ẋk(t) = δ fk(t)+Bδuk(t)

= δ fk(t)+BΓ2ek+1(t). (18)

Left multiplying both sides of the expression (18) by
(δxk(t))T and combining with Assumption 1, it gives

⟨δ ẋk(t),δxk(t)⟩
= ⟨δ fk(t),δxk(t)⟩+ ⟨BΓ2ek+1(t),δxk(t)⟩
≤ α∥δxk(t)∥2 +(BΓ2ek+1(t))Tδxk(t)

≤ |α|∥δxk(t)∥2 +∥BΓ2∥∥δxk(t)∥∥ek+1(t)∥. (19)

Obviously, (19) together with (9) implies

d((δxk(t))
Tδxk(t))

dt
≤ 2|α|∥δxk(t)∥2 +2∥BΓ2∥∥δxk(t)∥∥ek+1(t)∥
≤ (2|α|+1)∥δxk(t)∥2 +∥BΓ2∥2∥ek+1(t)∥2

= c1∥δxk(t)∥2 + c4∥ek+1(t)∥2,

where c4 = ∥BΓ2∥2. Similar to the procedure as that (10)
to (11) of Theorem 1, we can obtain

∥δxk∥λ ≤
√

c4

2λ−c1
∥ek+1∥λ+∥L∥

√
ec1T∥ek(0)∥.

(20)

It follows from (15) and (16) that

∥ek+1∥λ ≤ ∥(I +DΓ2)
−1∥∥ek∥λ

+∥(I +DΓ2)
−1C∥∥δxk∥λ

≤ ρ2∥ek∥λ +∥(I +DΓ2)
−1C∥∥δxk∥λ . (21)

Substituting (20) into (21) yields

∥ek+1∥λ

≤ ρ2∥ek∥λ +∥(I +DΓ2)
−1C∥

√
c4

2λ − c1
∥ek+1∥λ

+∥(I +DΓ2)
−1C∥∥L∥

√
ec1T∥ek(0)∥.
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Take the λ of above such that

∥(I +DΓ2)
−1C∥

√
c4

2λ − c1
< 1,

then we have

∥ek+1∥λ ≤ ρ̄∥ek∥λ + c5∥ek(0)∥, (22)

where

ρ̄ =
ρ2

1−∥(I +DΓ2)−1C∥
√

c4
2λ−c1

,

c5 =
∥(I +DΓ2)

−1C∥∥L∥
√

ec1T

1−∥(I +DΓ2)−1C∥
√

c4
2λ−c1

.

Due to 0 ≤ ρ1 < 1, so we can choose λ large enough so
that ρ̄ < 1. From (17), (22) and Lemma 1, we can obtain

lim
k→∞

∥ek∥λ = 0.

Since ∥ek∥s ≤ eλT∥ek∥λ , we know lim
k→∞

∥ek∥s = 0, it is ob-

vious that

lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].

This completes the proof. □

Remark 2: In the process of ILC design, the P-type
learning algorithm is needed for systems with direct feed-
through term. For the open-loop P-type learning algorithm
(3), the last cycle’s input is updated by the last cycle’s in-
formation to generate the current cycle’s input. And for
the closed-loop P-type learning algorithm (14), the last
cycle’s input is updated by the measurement data from the
current cycle to generate the current cycle’s input. On ac-
count of the causality, the output of the system is unavail-
able and only be replaced by its estimated value, which
results in the degradation of tracking performance. How-
ever, the closed-loop learning algorithms have the features
such as wide ranges in choosing learning gain and the im-
provement of convergence rate, in contrast to their open-
loop counterparts.

4. NUMERICAL EXAMPLE

In this section, an example is given to demonstrate the
effectiveness of the proposed P-type learning algorithms
with initial state learning. Construct the following nonlin-
ear system:{

ẋk(t) = f (xk(t))+Buk(t),

yk(t) =Cxk(t)+Duk(t),

where t ∈ [0,1], and xk(t) = [xT
1k(t) xT

2k(t)]
T,

B =

[
1 1

3 1

]
, C =

[
1 0

0 2

]
, D =

[
1 0

0 1

]
,

f (xk(t)) =

[
−x1k(t)(x2

1k(t)+ x2
2k(t))

−x2k(t)(x2
1k(t)+ x2

2k(t))

]
.

We know from [18] that the nonlinear function f (xk(t))
is one-sided Lipschitz in R2 with α = 0. Take the given
desired output trajectory as:

yd(t) =

[
sin(2πt)

t2(5t2 −1)

]
.

Furthermore, set the initial condition and the initial control
as:

x0(0) =

[
1

2

]
, u0(t) =

[
0

0

]
.

i) For the open-loop P-type learning algorithm with ini-
tial state learning, take the gain matrices

L =

[
1 0

0 0.5

]
, Γ1 =

[
0.5 0

0 0.5

]
,

then we can compute that

ρ1 = max{∥I −DΓ1 −CL∥,∥I −DΓ1∥}= 0.5 < 1.

Figs. 1 and 2 give the tracking situations of the system
outputs y(1)k (t) and y(2)k (t) to the desired trajectories at the
4th, 6th and 12th iterations, respectively. From Fig. 3, we
know that the maximum output tracking error is tend to
zero as the iteration number increases by using the learn-
ing algorithm (3).

ii) For the closed-loop P-type learning algorithm with
initial state learning, take the gain matrices

L =

[
0.5 0

0 0.5

]
, Γ2 =

[
1 0

0 1

]
,

then we have

ρ2 = max{∥(I +DΓ2)
−1(I −CL)∥,∥(I +DΓ2)

−1∥}
= 0.5 < 1.

From Figs.4 and 5, it is obvious that the output trajecto-
ries y(1)k (t) and y(2)k (t) at the 9th iteration are close to the
desired ones. From Fig. 6, we can see that the uniform
convergence of the output tracking error is guaranteed un-
der the action of the learning algorithm (14).

From the above simulation results, we know that both
algorithms (3) and (14) are effective for the one-sided Lip-
schitz nonlinear system (2). At the 9th iteration, the values
of ||e(i)k ||s (i = 1,2) are 2.46×10−2, 1.14×10−2 by using
the open-loop P-type learning algorithm (3), and the val-
ues of ||e(i)k ||s (i = 1, 2) are 3.3×10−3, 6.1×10−3 by em-
ploying the closed-loop P-type learning algorithm (14). It
can be seen from Figs. 3 and 6 that the closed-loop P-type
learning algorithm performs better than the open-loop one
in the speed of convergence.
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Fig. 1. The outputs y(1)k (t) and y(1)d (t) under the action of
the open-loop P-type learning algorithm (3).

Fig. 2. The outputs y(2)k (t) and y(2)d (t) under the action of
the open-loop P-type learning algorithm (3).

Fig. 3. The asymptotic convergence of tracking error with
iterations.

Fig. 4. The outputs y(1)k (t) and y(1)d (t) under the action of
the closed-loop P-type learning algorithm (14).

Fig. 5. The outputs y(2)k (t) and y(2)d (t) under the action of
the closed-loop P-type learning algorithm (14).

Fig. 6. The asymptotic convergence of tracking error with
iterations.
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5. CONCLUSION

This paper deals with the iterative learning control
problem for a class of nonlinear systems with one-sided
Lipschitz condition. Then the open-loop and closed-loop
P-type learning algorithms with initial state learning are
adopted for such nonlinear systems, and the correspond-
ing convergence conditions of the P-type learning algo-
rithms are established. We show that both algorithms can
ensure the output tracking error converges to zero on the
whole time interval. As well known, time-delay is often
encountered in many practical control problems. In the
next research phase, we will investigate the ILC problem
for time-delay systems with one-sided Lipschitz nonlin-
earity.
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