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Decentralized Fault-tolerant Resilient Control for Fractional-order Inter-
connected Systems with Input Saturation
Venkatesan Nithya, Rathinasamy Sakthivel* ■ , Faris Alzahrani, and Yong-Ki Ma* ■

Abstract: This paper investigates the problem of robust decentralized fault-tolerant resilient control for fractional-
order large-scale interconnected uncertain system, and the problem considered here is subject to mixed H∞ and
passivity performance constraint, external disturbances, controller perturbations and control input saturation. Based
on the Lyapunov approach, the sufficient conditions are derived in terms of linear matrix inequalities to ensure
the asymptotic stabilization of the fractional-order large-scale system with a prespecified mixed H∞ and passivity
performance index. The main objective of this work is to design a robust decentralized fault-tolerant resilient
controller which compensates both actuator fault and input saturation in its design for obtaining the required result.
Finally, a numerical example is included to illustrate the effectiveness of the designed control law. The simulation
results reveal that our proposed controller not only can effectively deal with actuator faults, but also has very good
robustness for input saturation and external disturbances.

Keywords: Decentralized control, fractional-order large-scale systems, input saturation, mixed H∞ and passivity
performance, nonlinear actuator fault.

1. INTRODUCTION

Fractional calculus is a generalization of traditional in-
teger order calculus. In recent years, it has been proved
that the fractional calculus model can better describe many
real-world physical systems since it has greater flexibil-
ity and accuracy as compared with the conventional in-
teger order calculus. In the last two decades, fractional-
order control systems have received significant attention,
since it can used to well characterize many industrial prob-
lems such as control of autonomous vehicles, flexible
robot manipulator, signal processing, thermal-diffusion,
non-holonomic systems, chaotic systems and so on [1–3].
Moreover, it is noted that fractional-order controller can
enhance the control performance and can maintain strong
robustness level of the dynamical control systems. On
the other hand, there is an exponential rise in the con-
trol of dynamical systems which is composed of large-
scale interconnected systems. A large-scale system con-
sists of a set of interconnected subsystems, characterized
by a large number of state, input variables and paramet-
ric uncertainties [4–7]. It should be mentioned that the
interconnections among the subsystems plays a vital role
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in the dynamics of large-scale systems. It has great im-
portance and wide range of applications in power sys-
tems, transportation networks, industrial process systems,
multiple aircraft formation systems, economic and social
systems. For a fractional-order large-scale interconnected
system, maintaining the stability and stabilization of the
closed-loop system is an important task. Therefore, the
stability and stabilization problem for the fractional-order
large-scale interconnected system has received an increas-
ing attention [8]. Three main control schemes are there
for the large-scale systems and they are, centralized, de-
centralized and distributed controls. Precisely, the de-
centralized control scheme has attracted great attention
from researchers, since it reduces the computational bur-
den, storage requirements and easy debugging. There are
many valuable results regarding the decentralized control
of large-scale systems is reported in [9–11]. Tong et al.
[12] investigated the adaptive fuzzy decentralized fault-
tolerant control of nonlinear large-scale systems subject to
actuator failure. The authors in [13], discussed the decen-
tralized sliding mode control for a class of fractional-order
large-scale nonlinear systems. In [14], a robust decentral-
ized state feedback controller is proposed for a class of
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perturbed fractional-order linear interconnected systems
subject to structure and unstructure perturbations.

In practical large-scale interconnected systems, the
components may undergo sudden failures or one of the
subsystems may encounter failure. Such failures of one or
more subsystems may lead to poor performance or even
instability of the overall interconnected large-scale sys-
tems. So, it is necessary and important to design a fault-
tolerant controller, that will guarantee the reliable per-
formance of the system against the failure of individual
subsystems [15–17]. Recently, Li et al. [18] developed
an adaptive fuzzy output-constrained fault-tolerant control
for nonlinear stochastic large-scale systems. However, the
number of existing results taking the component failures
into account is still limited with the linear fault represen-
tation and it is essential to add some nonlinear features to
the controller term in order to achieve the better perfor-
mance. In general, uncertainties are unavoidable on the
design of controller due to roundoff errors and unknown
noises. If the uncertainties are not handled properly in
control design, then they could deteriorate system perfor-
mance. Therefore, the controller should be designed in
such a way that it will be insensitive and robust against its
own parameter variations, which is called as non-fragile
controller [19–21]. Recently, non-fragile control problem
for fractional-order systems has received much attention
due to its potential applications. Due to some physical
constraints, the saturation in control input is unavoidable
and it degrades the system performance or may destabi-
lize the closed-loop system. In [22], the asymptotic stabi-
lization problem of fractional-order linear systems in the
presence of input saturation is studied. A decentralized
adaptive output feedback controller is designed in [23] for
a class of large-scale time-delay systems with input con-
straints. The authors in [24] proposed a novel decentral-
ized adaptive neural controller for a class of uncertain non-
linear large-scale interconnected time-delay systems with
input saturation.

On the other hand, the mixed H∞ and passivity perfor-
mance can systematically make the control design when
compared with the individual H∞ and passivity setting.
It should be noted that the mixed H∞ and passive con-
trol unify the H∞ control and passivity control in a sin-
gle framework. The stabilization problem of fractional-
order interconnected uncertain systems with input satu-
ration and nonlinear actuator faults via fault-tolerant re-
silient controller with prescribed mixed H∞ and passivity
index has not been reported in the literature so far, which
motivates the present study. The main contributions of this
study is as follows:

• Stabilization of fractional-order large-scale intercon-
nected system is explored subject to external distur-
bances, controller perturbation and control input sat-
uration.

• A robust decentralized fault-tolerant resilient con-
troller is designed for the asymptotic stability of the
proposed system with a desired mixed H∞ and passiv-
ity performance index.

• Sufficient conditions are derived in terms of linear
matrix inequalities and by solving those LMIs, a fea-
sible solution can be obtained for the addressed prob-
lem.

The rest of this paper is organized as follows: In Sec-
tion 2, problem formulation and some preliminary re-
sults which will be used to prove the main results are
given. Section 3 describes the main results that include the
asymptotic stabilization of the proposed system through
the designed control. A numerical example and conclu-
sion is given in Section 4 and Section 5, respectively.

2. PROBLEM FORMULATION

In this section, we consider the stabilization prob-
lem for a class of fractional-order uncertain continuous-
time large-scale systems with input saturations and actu-
ator faults, which is composed of N interconnected sub-
systems. The state dynamics of the ith subsystem Si

of fractional-order uncertain continuous-time large-scale
systems is described by

dαxi(t)
dtα = (Aii+∆Aii(t))xi(t)+(Bi+∆Bi(t))sat(uF

i (t))

+
N

∑
j=1, j ̸=i

(Ai j +∆Ai j(t))x j(t)+Dwiwi(t),

zi(t) =Cixi(t)+Disat(uF
i (t)), i = 1,2, · · · ,N, (1)

where α ∈ R is the fractional commensurate order and
0 < α < 1, xi(t) ∈ Rni is the state, uF

i (t) ∈ Rpi is the con-
trol input, wi(t) ∈ Rqi denotes the disturbance which be-
longs to l2[0,∞) and zi(t) ∈Rmi is the controlled output of
the ith subsystem. Aii,Bi,Dwi,Ci and Di are known system
matrices of appropriate dimensions. The interconnection
between the ith subsystem to jth subsystem is given by
the matrix Ai j. Further, ∆Aii(t),∆Bi(t) and ∆Ai j(t) are the
norm bounded time-varying uncertainties and are of the
form,

∆Aii(t) =MaiiFi(t)Naii, ∆Bi(t) =MbiFi(t)Nbi,

∆Ai j(t) =Mai jFi(t)Nai j, (2)

where Maii,Mbi,Mai j,Naii,Nbi and Nai j are appropri-
ate dimensional known constant real matrices. Also,
Fi(t) is the uncertain matrix function which satisfy
FT

i (t)Fi(t) ≤ I. The characteristics of actuators may
not be linear always. So, linear controllers are unable
to achieve the desired system performance. Also, due
to some physical limitations, the saturation in input
is unavoidable. Further, sat : Rmi → Rmi are vector-
valued saturation functions defined as sat(uF

i (t)) =
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[sat(uF
1i(t)) sat(uF

2i(t)) · · · sat(uF
mi(t))]

T with sat(uF
ji(t))=

sign(uF
ji(t))min{1, |uF

ji(t)|}, j = 1,2, · · · ,m. In order to
tackle the nonlinear variations in actuators, in this paper
we will design a fault-tolerant controller for the system
(1) in the following form

uF
i (t) = Gui(t)+ fi(ui(t)), (3)

where G denotes the actuator fault matrix, fi(·) represents
the nonlinear actuator fault and ui(t) = Kixi(t), where
Ki is the control gain matrix of the ith subsystem to be
computed. The actuator fault matrix is defined by G =
diag{g1,g2, · · · ,gm}, satisfying gi = [g

i
, ḡi], i = 1,2, · · · ,n,

0 ≤ g
i
≤ gi ≤ ḡi ≤ 1. Let G = diag{g

1
,g

2
, · · · ,g

m
}, G =

diag{g1,g2, · · · ,gm} and Ḡ = diag{ḡ1, ḡ2, · · · , ḡm}. Here,
the variables gk, k = 1,2, · · · ,m specify the failures of the
actuators. Let us define G0 =

Ḡ+G
2 and G1 =

Ḡ−G
2 . Then,

the fault matrix G can be expressed as

G = G0 +G1Σ, (4)

where Σ = diag{σ1i, σ2i, · · · , σmi} ∈ Rmi×mi , −1 ≤ σ ji ≤
1, j = 1, 2, · · · , m. Let fi(ui(t)) = [ f1i(ui(t)) f2i(ui(t))
fmi(ui(t))]T and it satisfies | f ji(ui(t))| ≤

√
β j|ui(t)|, j = 1,

2, · · · , m, β j > 0 and hence

f T
i (ui(t)) fi(ui(t))≤ uT

i (t)Lui(t), (5)

where L = diag{β1,β2, · · · ,βm}.
Now, we will introduce some basic definitions and lem-

mas which will be useful in deriving the main results.

Definition 1 [22]: The Caputo derivative is defined as
dα f (t)

dtα = 1
Γ(m−α)

∫ t
0

dm f (τ)
dtm

(t−τ)α−m+1 dτ , where m ∈ N satisfying
m−1 < α < m, α ∈ R+ and Γ(·) is the Gamma function
defined by Γ(z) =

∫ t
0 e−ttz−1dt.

Definition 2 [13]: The α th order fractional integral of
the function f (t) with initial value t0 is defined as Iα f (t)=

1
Γ(α)

∫ t
t0(t − τ)α−1 f (τ)dτ, α > 0.

Definition 3 [25]: The uncertain fractional-order large-
scale system is asymptotically stable with a mixed H∞ and
passivity performance index γ , if there exist θ ∈ [0,1] and
under zero initial condition, the output zi(t) satisfies∫ t

0

[
γ−1θzT

i (t)zi(t)−2(1−θ)zT
i (t)wi(t)

]
dt

≤
∫ t

0
wT

i (t)wi(t) for all t > 0. (6)

Definition 4 [2]: For a linear system x(t) = h(t)ν(t),
where ν(t) is the input, x(t) is the output and h(t) is the
impulse response of the system, then for the elementary
frequency ω , η(ω) is called the diffusive representation
(or frequency weighting function) of h(t) and it can be
expressed as h(t) =

∫ ∞
0 η(ω)e−ωtdω.

Remark 1: The fractional integration In f (t) can be in-
terpreted as the convolution of f (t) with the impulse re-
sponse h(t). That is, In f (t) = h(t) ∗ f (t), where ∗ is the
convolution operator, h(t)= tα−1/Γ(α) and also the diffu-
sive representation η(ω) is defined as η(ω)= sin(απ)

π ω−α .
Moreover, if z(ω, t) is the frequency distributed state
of the fractional integrator, then it satisfies the equation
∂ z(ω,t)

∂ t =−ωz(ω, t)+ν(t) and the output x(t) of the frac-
tional integrator can be expressed as the weighted integral

ranging from 0 to ∞, x(t) =
∫ ∞

0
η(ω)z(ω, t)dω .

Lemma 1 [2]: Due to the continuous frequency dis-
tributed model of the fractional integrator, the fractional
order equation Dα x(t) = Ax(t) can be expressed as,
∂ z(ω,t)

∂ t =−ωz(ω, t), x(t) =
∫ ∞

0
η(ω)z(ω, t)dω.

Lemma 2 [26]: Let Mi, Ni and Fi(t) be real constant
matrices of appropriate dimensions with Fi(t) satisfying
FT

i (t)Fi(t) ≤ I, then there exists a scalar ε > 0 such that
MiFi(t)Ni +(MiFi(t)Ni)

T ≤ ε−1MiMT
i + εN T

i Ni.

Let us define Hi ∈ Rmi×ni and a polyhedral L(Hi) =
{xi(t) ∈ Rni : |hi j(xi(t))| ≤ 1, j = 1,2, · · · ,m}, where hi j

represents the jth row of Hi. Let Pi ∈ Rni×ni be a sym-
metric matrix, and δ be a positive scalar, then define an
ellipsoid Ω(Pi,δ ) = {xi(t) ∈ Rni : xT

i (t)Pixi(t)≤ δ}.
Let D be the set of mi ×mi diagonal matrices with di-

agonal elements either 1 or 0. If each of its elements is
labeled as Ds, s = 1,2, · · · ,2m and denote D−

s = 1−Ds,
then both Ds,D−

s ∈ D.

Lemma 3 [27]: Let Ki,Hi ∈ Rmi×ni . Then for
any xi(t) ∈ L(Hi), we have sat(ui(t)) ∈ Co{Dsui(t) +
D−

s Hixi(t),s = 1,2, · · · ,2m} or equivalently, sat(ui(t)) =
∑2m

s=1 ζs(Dsui(t) +D−
s Hixi(t)), where Co represents the

convex hull, ζs for s = 1,2, · · · ,2m are some scalars which
satisfy 0 ≤ ζs ≤ 1 and ∑2m

s=1 ζs = 1.

Lemma 4 [26]: For x,y ∈ Rn and for any scalar ε > 0,
the inequality 2xT y ≤ ε−1xT x+ εyT y holds.

From (3) and Lemma 3, we have, sat(uF
i (t)) =

∑2m

s=1 ζs(DsuF
i (t)+D−

s Hixi(t)).
Also, by considering the controller gain fluctuations

into account, the system (1) can be written as

dα xi(t)
dtα = Ãxi(t)+ B̃ fi(ui(t))+ Âx j(t)+Dwiwi(t),

zi(t) = C̃xi(t)+ D̃ fi(ui(t)), (7)

where Ã = (Aii +∆Aii(t))+
2m

∑
s=1

ζs(Bi +∆Bi(t))
[
DsGK̂i +

D−
s Ĥi

]
, B̃ =

2m

∑
s=1

ζs(Bi + ∆Bi(t))Ds, Â =
N
∑

j=1, j ̸=i
(Ai j +

∆Ai j(t)), C̃ = Ci + Di
2m

∑
s=1

ζs[DsGK̂i + D−
s Ĥi], D̃ =

Di
2m

∑
s=1

ζsDs, K̂i = Ki +∆Ki(t) and Ĥi = Hi +∆Hi(t). Here,
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∆Ki(t) =MkiFi(t)Nki, ∆Hi(t) =MhiFi(t)Nhi, Mki, Nki,
Mhi, Nhi are known matrices of appropriate dimen-
sions and Fi(t) is unknown matrix function satisfying
FT

i (t)Fi(t)≤ I.

3. MAIN RESULTS
In this section, a new set of criteria in terms of LMI

is developed for the design of decentralized fault-tolerant
resilient controller which can guarantee the robust asymp-
totic stabilization of the fractional-order large-scale inter-
connected uncertain system with a prespecified mixed H∞
and passivity performance index. First, when the actuator
faults and control gain matrices are known, a set of suffi-
cient conditions is derived to ensure the asymptotic stabil-
ity of the closed-loop system (7) without considering the
gain perturbations. Further, a procedure is developed to
design the controller gain parameters of (3).

Theorem 1: For given scalars ε1 > 0, ρ > 0, γ > 0,
θ > 0, known fault matrix G, known gain matrices Ki and
Hi, the fractional-order large-scale uncertain closed-loop
system (7) with 0 < α < 1 is asymptotically stable with a
mixed H∞ and passivity performance index, if there exist
positive definite matrices Pi, i = 1,2, · · · ,N and scalars ε2i,
ε3i and ε4i, such that, for s = 1,2, · · · ,2m the following
LMI together with condition (9) holds:

Ψ = [Ψ]15×15 < 0, (8)

Ω(Pi,δ )⊂ L(Hi), (9)

where Ψ1,1 = PiAii + PiBiKi + AT
ii P

T
i +KT

i BT
i PT

i , Ψ1,2 =
PiDwi − (1 − θ)(CT

i + KT
i DT

i ), Ψ1,3 = PiBiDs, Ψ1,4 =

PT
i , Ψ1,5 = ε1

N
∑

j=1, j ̸=i
AT

ji, Ψ1,6 =
√

θ(CT
i + KT

i DT
i ),

Ψ1,7 = KT
i LT ρ , Ψ1,9 = ε2iPT

i Maii, Ψ1,10 = N T
aii, Ψ1,11 =

ε3iPT
i Mbi, Ψ1,12 = KT

i N T
bi , Ψ1,14 = ε1N T

ai j, Ψ2,2 = −γI,
Ψ2,3 = −(1 − θ)Ds, Ψ3,3 = −ρI, Ψ3,8 =

√
θDT

s ,
Ψ3,13 = DT

s N T
bi , Ψ4,4 = −ε1I, Ψ5,5 = −ε1(N − 1)−1,

Ψ5,15 = ε4iMai j, Ψ6,6 = −γI, Ψ7,7 = −ρI, Ψ8,8 = −γI,
Ψ9,9 = −ε2iI, Ψ10,10 = −ε2iI, Ψ11,11 = −ε3iI, Ψ12,12 =
−ε3iI, Ψ13,13 =−ε3iI, Ψ14,14 =−ε4iI, Ψ15,15 =−ε4iI, and

Ki =
2m

∑
s=1

ζs[DsGK̂i +D−
s Ĥi]

Proof: According to Lemma 1, the closed-loop system
(7) can be rewritten in the following form

∂Z(ω, t)
∂ t

=−ωZ(ω, t)+ Ãxi(t)+ B̃ fi(ui(t))+ Âx j(t)

+Dwiwi(t), (10)

xi(t)=
∫ ∞

0
η(ω)Z(ω, t)dω with η(ω)=

sin(απ)
π

ω−α.

where Z(ω, t) = [Z(ω1, t),Z(ω2, t), · · · ,Z(ωn, t)]T is the
frequency distributed state, xi(t) is the output of the frac-
tional weighted integrator with weight frequency η(ω).

In order to prove the asymptotic stability of the sys-
tem (1), let us define two Lyapunov functions, ν(ω, t) =
ZT (ω, t)PiZ(ω, t), corresponding to the elementary fre-
quency ω and V (t) =

∫ ∞
0 η(ω)ν(ω, t)dω , correspond-

ing to all monochromatic ν(ω, t) with weighting function
η(ω). Then,

V (t) =
∫ ∞

0
η(ω)ZT (ω, t)PiZ(ω, t)dω, (11)

where Pi are positive definite matrices. Taking the time
derivative of V (t) along the trajectories of (10), we get,

V̇ (t) =
∫ ∞

0
η(ω)

{
−ωZT (ω, t)+ xT

i ÃT + f T
i (ui(t)B̃T

+ xT
j ÂT +wT

i (t)D
T
wi

}
PiZ(ω, t)dω

+
∫ ∞

0
η(ω)ZT (ω, t)Pi

{
−ωZ(ω, t)+ Ãxi(t)

+ B̃ fi(ui(t))+ Âx j(t)+Dwiwi(t)
}

dω,

=−2
∫ ∞

0
ωη(ω)ZT (ω, t)PiZ(ω, t)dω

+2xT
i (t)PiÃxi(t)+2xT

i (t)PiB̃ fi(ui(t))

+2xT
i (t)PiÂx j(t)+2xT

i (t)PiDwiwi(t). (12)

According to Lyapunov stability theory, system (10) is
asymptotically stable, if V̇ (t) < 0. In order to prove this,
we show that,

Ω =2xT
i (t)PiÃxi(t)+2xT

i (t)PiB̃ fi(ui(t))

+2xT
i (t)PiÂx j(t)+2xT

i (t)PiDwiwi(t)< 0. (13)

By Lemma 4 and following the procedure as in [8], we
can have the following inequality

N

∑
i=1

{[ N

∑
j=1, j ̸=i

(Ai j+∆Ai j)x j(t)
]T[ N

∑
j=1, j ̸=i

(Ai j+∆Ai j)x j(t)
]}

≤
N

∑
i=1

{[ N

∑
j=1, j ̸=i

(A ji+∆A ji)xi(t)
]T[ N

∑
j=1, j ̸=i

(A ji+∆A ji)xi(t)
]}

≤
N

∑
i=1

{
(N−1)

N

∑
j=1, j ̸=i

xT
i (t)(A ji+∆A ji)

T(A ji+∆A ji)xi(t)
}
.

(14)

Given a scalar ρ > 0, it follows from (5) that

ρ[K̂ixi]
T L[K̂ixi]−ρ f T (ui(t)) f (ui(t))≥ 0. (15)

From (13)-(15) and the mixed H∞ and passivity perfor-
mance index, it is easy to verify that

V̇ (t)<ΞT (t)Φ̂Ξ(t)+ ε−1
1 [Pixi(t)]T [Pixi(t)]

+
N

∑
i=1

{
(N −1)
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×
N

∑
j=1, j ̸=i

xT
i (t)(A ji+∆A ji)

T(A ji+∆A ji)xi(t)
}
,

(16)

where Ξ(t) =
[
xi(t) wi(t) f (ui(t)

]T and Φ̂ =Φ̂1,1 Φ̂1,2 PiB̃
∗ −γI −(1−θ)Ds

∗ ∗ Φ̂3,3

 , where Φ̂1,1 = sym
(
Pi(Aii +

∆Aii)+Pi(Bi +∆Bi)Ki + θγ−1(Ci +DiKi)
T (Ci +DiKi)+

ρK̂T
i LK̂i

)
, Φ̂1,2 = PiDwi − (1 − θ)(Ci + DiKi), Φ̂3,3 =

θγ−1DT
s Ds − ρI. It is obvious that V̇ (t) < 0 if Φ̂ < 0.

By decomposing the uncertain parts using Lemma 2 and
Schur compliment, it is easy to obtain the LMI in (8). This
shows that, the closed-loop system (7) is asymptotically
stable with known actuator faults and input saturation.
This completes the proof of Theorem 1. □

In Theorem 1, sufficient conditions are derived in terms
of LMIs such that, the closed-loop system (7) is asymptot-
ically stable with known actuator faults and without con-
sideration of perturbations in gain. In the following theo-
rem, a non-fragile controller will be designed, which can
guarantee the asymptotic stabilization of the system (1).

Theorem 2: For some given positive scalars ε1,ρ,γ,θ
and known fault matrix G, the uncertain fractional-order
large-scale system (1) with 0 < α < 1 is asymptoti-
cally stabilized via robust fault-tolerant non-fragile con-
trol law (3), if there exist positive definite matrices Pi, i =
1,2, · · · ,N and scalars ε2i, ε3i, ε4i and ε5i such that, for
s = 1,2, · · · ,2m, the following matrix inequality together
with the condition (9) holds:

Ψ̂ =

[Ψ̃]15×15 ΨT
2 ε5iΨ1

∗ −ε5iI 0
∗ ∗ −ε5iI

< 0, (17)

where Ψ̃1,1 = sym(AiiXi + BiDsGYi + BiD−
s Zi), Ψ̃1,2 =

Dwi − (1−θ)XiCT
i − (1− θ)[DsGYi +D−

s Zi]
T DT

i , Ψ̃1,3 =

BiDs, Ψ̃1,4 = I, Ψ̃1,5 = ε1Xi
N
∑

j=1, j ̸=i
AT

ji, Ψ̃1,6 =
√

θXiCT
i +

√
θ [DsGYi + D−

s Zi]
T DT

i , Ψ̃1,7 = ρ[DsGYi + D−
s Zi]

T LT ,
Ψ̃1,9 = ε2iMaii, Ψ̃1,10 = XiN T

aii, Ψ̃1,11 = ε3iMbi, Ψ̃1,12 =
[DsGYi + D−

s Zi]
TN T

bi , Ψ̃1,14 = ε1XiN T
ai j, Ψ̃2,2 = −γI,

Ψ̃2,3 = −(1−θ)Ds, Ψ̃3,3 = −ρI, Ψ̃3,8 =
√

θDT
s , Ψ̃3,13 =

DT
s N T

bi , Ψ̃4,4 = −ε1I, Ψ̃5,5 = −ε1(N − 1)−1, Ψ̃5,15 =
ε4iMai j, Ψ̃6,6 = −γI, Ψ̃7,7 = −ρI, Ψ̃8,8 = −γI, Ψ̃9,9 =
−ε2iI, Ψ̃10,10 = −ε2iI, Ψ̃11,11 = −ε3iI, Ψ̃12,12 = −ε3iI,
Ψ̃13,13 =−ε3iI, Ψ̃14,14 =−ε4iI, Ψ̃15,15 =−ε4iI, Ψ1 =

[
BiΛ

(1 − θ)DiΛ 0 . . . 0︸ ︷︷ ︸
3

√
θDiΛ ρLΛ 0 . . . 0︸ ︷︷ ︸

4

NbiΛ

0 . . . 0︸ ︷︷ ︸
3

]
, Ψ2 =

[
(Nki + Nhi)XT

i 0 . . . 0︸ ︷︷ ︸
14

]T , Λ =

2m

∑
s=1

ζs[DsGMki +D−
s Mhi]. Moreover, the fault-tolerant

controller gain and the auxiliary gain matrices can be
computed as Ki = YiX−1

i and Hi = ZiX−1
i .

Proof: The same steps as in Theorem 1 are fol-
lowed to prove Theorem 2. By taking the gain pertur-
bations into considerations, we obtain Φ̂ = Φ̃15×15 +
(Φ1FΦ2) + (Φ1FΦ2)

T , where Φ̃1,1 = sym(PiAii +
PiBiDsGKi +PiBiD−

s Hi), Φ̃1,2 = PiDwi − (1−θ)CT
i − (1−

θ)[DsGKi+D−
s Hi]

T DT
i , Φ̃1,3 = PiBiDs, Φ̃1,4 = PT

i , Φ̃1,5 =

ε1
N
∑

j=1, j ̸=i
AT

ji, Φ̃1,6 =
√

θCT
i +

√
θ [DsGKi + D−

s Hi]
T DT

i ,

Φ̃1,7 = ρ[DsGKi +D−
s Hi]

T LT , Φ̃1,9 = ε2iPiMaii, Φ̃1,10 =
N T

aii, Φ̃1,11 = ε3iPiMbi, Φ̃1,12 = [DsGKi +D−
s Hi]

TN T
bi ,

Φ̃1,14 = ε1N T
ai j, Φ̃2,2 = −γI, Φ̃2,3 = −(1− θ)Ds, Φ̃3,3 =

−ρI, Φ̃3,8 =
√

θDT
s , Φ̃3,13 = DT

s N T
bi , Φ̃4,4 = −ε1I,

Φ̃5,5 = −ε1(N − 1)−1, Φ̃5,15 = ε4iMai j, Φ̃6,6 = −γI,
Φ̃7,7 = −ρI, Φ̃8,8 = −γI, Φ̃9,9 = −ε2iI, Φ̃10,10 =
−ε2iI, Φ̃11,11 = −ε3iI, Φ̃12,12 = −ε3iI, Φ̃13,13 = −ε3iI,
Φ̃14,14 = −ε4iI, Φ̃15,15 = −ε4iI, Φ1 =

[
BiΛ (1 − θ)DiΛ

0 . . . 0︸ ︷︷ ︸
3

√
θDiΛ ρLΛ 0 . . . 0︸ ︷︷ ︸

4

NbiΛ 0 . . . 0︸ ︷︷ ︸
3

]
,

Φ2 =
[
(Nki +Nhi)XT

i 0 . . . 0︸ ︷︷ ︸
14

]T . Applying Lemma.

(2), the above expression can be rewritten as Φ̂ =
Φ̃15×15 + ε5iΦ1ΦT

1 + ε−1
5i ΦT

2 Φ2. In order to design the
controller gains, pre and post-multiplying the previous
expression by diag

{
Xi, I . . . I︸ ︷︷ ︸

14

}
, where Xi = P−1

i . Fur-

ther, by using Schur complement and letting Yi = KiXi

and Zi = HiXi, we can easily obtain the LMI (17). This
completes the proof of Theorem 2. □

In Theorem 2, sufficient conditions are derived by con-
sidering gain perturbations in the controller design such
that the closed-loop system (7) is asymptotically stable
with known actuator faults. In the following theorem, a
fault-tolerant resilient controller will be designed, which
can guarantee the asymptotic stabilization of the system
(1) with unknown actuator failures.

Theorem 3: Consider the uncertain fractional-order
large-scale system (1) with 0 < α < 1. For some pos-
itive scalars ε1,ρ,γ,θ and for unknown fault matrix G,
system (1) is asymptotically stabilized via the controller
(3), if there exist scalars ε2i, ε3i, ε4i, ε5i, ε6i, ε7i and
positive definite matrices Pi, i = 1,2, · · · ,N such that, for
s = 1,2, · · · ,2m, the following matrix inequality together
with the condition (9) holds:

Ψ̂1 =

[
[Ψ̄]15×15 Ψ̂1

∗ Ψ̂2

]
< 0, (18)

where Ψ̂1 =
[
Ψ̄T

2 ε5iΨ̄1 Ψ̄T
3 ε6iΨ̄4 ε5iΨ̄T

5 ε7iΨ̄6
]
,

Ψ̂2 = diag{−ε5iI,−ε5iI,−ε6iI,−ε6iI,−ε6iI,−ε6iI},
Ψ̄1,1 = sym(AiiXi + BiDsG0Yi + BiD−

s Zi), Ψ̄1,2 = Dwi −
(1 − θ)XiCT

i − (1 − θ)[DsG0Yi + D−
s Zi]

T DT
i , Ψ̄1,6 =√

θXiCT
i +

√
θ [DsG0Yi +D−

s Zi]
T DT

i , Ψ̄1,7 = ρ[DsG0Yi +
D−

s Zi]
T LT , Ψ̄1,12 = [DsG0Yi + D−

s Zi]
TN T

bi , Ψ1 =
[
BiΛ

(1 − θ)DiΛ 0 . . . 0︸ ︷︷ ︸
3

√
θDiΛ ρLΛ 0 . . . 0︸ ︷︷ ︸

4

NbiΛ
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0 . . . 0︸ ︷︷ ︸
3

]
, Λ =

2m

∑
s=1

ζs[DsG0Mki +D−
s Mhi], Ψ̄3 =

[
BiXi

(1 − θ)XT
i DT

1 0 . . . 0︸ ︷︷ ︸
3

√
θXT

i DT
1 ρLXT

i DT
1 0 . . . 0︸ ︷︷ ︸

4

XT
i NT

bi 0 . . . 0︸ ︷︷ ︸
5

]
, Ψ̄4 =

[
ζsDsG1 0 . . . 0︸ ︷︷ ︸

17

]
, Ψ̄5 =[

ζsGT
1 DT

s −(1−θ)ζsGT
1 DT

s DT
1 0 . . . 0︸ ︷︷ ︸

3

√
θζsGT

1 DT
s DT

1

ζsρLGT
1 DT

s 0 . . . 0︸ ︷︷ ︸
4

ζsGT
1 DT

s NT
b1 0 . . . 0︸ ︷︷ ︸

7

]
, Ψ̄6 =[

0 . . . 0︸ ︷︷ ︸
16

MT
ki 0 . . . 0︸ ︷︷ ︸

3

]
. Further, the fault-tolerant

controller gain and the auxiliary gain matrices can be
computed as Ki = YiX−1

i and Hi = ZiX−1
i .

Proof: By using the relation (4) in (17), with the aid
of Lemma 2 and Schur compliment Lemma, the LMI in
Theorem (3) can be easily obtained. Hence, it can be con-
cluded that, uncertain fractional-order large-scale system
(1) with 0 < α < 1 is asymptotically stabillized through
the controller (3) in the presence of nonlinear actuator
faults and input saturation. The proof is completed. □

Remark 2: In the derivation of main results, we have
employed Lyapunov stability theory to ensure the asymp-
totic stabilization of the considered system where the
number of variables in the obtained LMIs plays a crucial
role. Further, no free-weighting matrices are introduced
in the proofs of the theorems, so the structure of the ob-
tained LMIs is simpler and hence the computational bur-
den is reduced significantly. However, the conservatism of
proposed results could be further reduced by developing
control algorithms with the use of some advanced integral
inequalities.

4. NUMERICAL EXAMPLE
In this section, a numerical example is presented to vali-

date the effectiveness of the proposed robust decentralized
fault-tolerant resilient controller design. Consider a large-
scale system consisting of 2 subsystems (N = 2) and the
system parameters associated with that are,

A11=

[
−3 1
2 −3

]
, A12=

[
−1 2
0 −1

]
, B1=

[
1.6
1.8

]
,

Bw1=

[
1 0
1 1

]
, C1=

[
1 0
0 1

]
, D1=

[
1 0
0 1

]
,

A21=

[
−1 1
1 −2

]
, A22=

[
−3 0
2 −2

]
, B2=

[
1.4
1.8

]
,

Bw2=

[
1 0
0 1

]
, C2=

[
1 0
0 1

]
, D2=

[
1 0
0 1

]
.

Further, the uncertain matrices are chosen as

Ma11=

[
0.2
0.1

]
, Na11=

[
0.6 0.4

]
, Ma12=

[
0.2
0.1

]
,

Na12=
[
0.6 0.4

]
, Mb1=

[
0.2
0.1

]
, Nb1=

[
0.6

]
,

Ma21=

[
0.1
0.3

]
, Na21=

[
0.4 0.2

]
, Ma22=

[
0.1
0.3

]
,

Na22=
[
0.4 0.2

]
, Mb2=

[
0.1
0.3

]
, Nb2=

[
0.1

]
,

Mk1=
[
0.2

]
, Nk1=

[
0.1
0.1

]
, Mh1=

[
0.1

]
,

Nh1=

[
0.2
0.1

]
, Mk2=

[
0.2

]
, Nk2=

[
0.2
0.1

]
,

Mh2=
[
0.2

]
, Nh2=

[
0.2
0.1

]
.

The remaining parameters are taken as ε1 = 0.5, L =
0.01, ρ = 3, D1 = 1, D−

1 = 0, D2 = 0, D−
2 = 1 and

the actuator fault matrix G is assumed to lie in the in-
terval [0.6 0.8]. Further, the nonlinear function is cho-
sen as f (ui(t)) = sin(ui(t))− 0.15ui(t)cos(ui(t)). Also,
we take the external disturbance as wi(t) = 0.03sint. Us-
ing the above parameters and solving the LMIs obtained
in Theorem (3), the minimum H∞ and passivity perfor-
mance index is obtained as γ = 0.75 and the correspond-
ing state feedback controller gain matrices are obtained
as, K1 = [0.0007 − 4.3378], H1 = [0.8688 − 8.6117],
K2 = [0.7411 −6.0163] and H2 = [1.9345 −11.1401].

Moreover, for simulation purposes, we choose the ini-
tial conditions of the two subsystems as [0.2 − 0.2]T and
[0.3 −0.4]T respectively. Based on the obtained gain val-
ues, Figs. 1 and 7 depict the state trajectories of the two
subsystems in the presence of nonlinear actuator faults.
Figs. 2 and 8 show the trajectories of the system states
when there is no nonlinear faults in the actuators. Fur-
ther, the state responses of the two subsystems with un-
known actuator fault under H∞ and passivity performances
are shown in Figs. 5, 6, 11, and 12.

The response of the proposed fault-tolerant resilient
controller with and without nonlinear actuator faults are
shown in Figs. 3, 9, 4, and 10 respectively. Also, Figs. 13
and 14 show the maximal invariant ellipsoids of the sub-
systems with input saturation. It is evident from these fig-
ures that, for different initial conditions, the trajectories of
the states remain inside the ellipsoids, which proves the ef-
ficiency of the designed fault-tolerant resilient controller.

Hence, the simulation results concludes that, the
fractional-order uncertain large-scale system with input
saturation and unknown actuator faults is asymptotically
stabilized via the designed robust decentralized fault-
tolerant resilient controller even in the presence of nonlin-
ear term in the control input.

5. CONCLUSION

In this paper, the robust decentralized fault-tolerant re-
silient control problem for fractional-order large-scale in-
terconnected uncertain systems with input saturation and
nonlinear actuator faults is studied. By developing suit-
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Fig. 1. State responses of subsystem 1 when f (ui(t)) ̸= 0.
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Fig. 2. State responses of subsystem 1 when f (ui(t)) = 0.
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Fig. 3. Control response of subsystem 1 when f (ui(t)) ̸=
0.
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Fig. 4. Control response of subsystem 1 when f (ui(t)) =
0.
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Fig. 5. State responses of subsystem 1 under H∞ perfor-
mance.
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Fig. 6. State responses of subsystem 1 under passivity per-
formance.
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Fig. 7. State responses of subsystem 2 when f (ui(t)) ̸= 0.
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Fig. 8. State responses of subsystem 2 when f (ui(t)) = 0.
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Fig. 9. Control response of subsystem 2 when f (ui(t)) ̸=
0.
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Fig. 10. Control response of subsystem 2 when f (ui(t)) =
0.
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Fig. 11. State responses of subsystem 2 under H∞ perfor-
mance.

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (t)

 

 

x
11

(t)

x
12

(t)

Fig. 12. State responses of subsystem 2 under passivity
performance.
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Fig. 13. State Trajectories of subsystem 1.
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Fig. 14. State Trajectories of subsystem 2.

able Lyapunov functional together with LMI technique,
a set of sufficient conditions is derived in terms of lin-
ear matrix inequalities which ensures the asymptotic sta-
bilization of the considered system with prescribed mixed
H∞ and passivity performance index. Moreover, the fault-
tolerant resilient control gain matrices are obtained by
solving the developed LMIs. Finally, a numerical example
with simulation results is given to validate the efficiency
of the proposed controller design technique. Further, the
problem of fault-tolerant resilient control for stochastic
large-scale fractional-order interconnected systems with
nonlinearities, quantization and energy constraints is an
untreated area. These issues will be our future research
topic.
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